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The pole-skipping phenomenon has been proposed as a connection between chaotic properties of black
hole geometries and special points where regular solutions of linearized Einstein equations at horizons have
extra free parameters. In this work, we pursue the special points in the near-horizon analysis of integer spin-l
fields on the Rindler-AdS black hole. We construct linear combinations of field components to simplify
coupled equations of massive fields and investigate towers of the special points along with imaginary
Matsubara frequencies iω ¼ 2πðnþ 1 − lÞT with a non-negative integer n and the Hawking temperature T.
We also propose that integrals of spin-l bulk propagators over horizons of static black holes capture
behaviors at the special points, which are generalizations of integrals of graviton propagators for shock wave
geometries. Their interpretation is provided in terms of four-point amplitudes with the spin-l exchange.
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I. INTRODUCTION

In quantum field theories, correlation functions are
essential quantities to compute correlations between differ-
ent points and scattering processes of fundamental
particles. Depending on the application, the correlation
functions in position space and momentum space are used,
which are connected by a Fourier transformation. For
example, Feynman rules can be formulated in position
space and momentum space.
As a recent development, out-of-time-order correlation

functions (OTOCs) [1,2], which are correlation functions
in position space, have been proposed as a measure of
quantum chaos in large N quantum field theories.
Specifically, Lyapunov exponent λL and butterfly velocity
vB, which are determined from exponential behaviors of
subleading terms in the large N expansion of four-point
OTOCs, diagnose quantum chaos. It is also conjectured that
the Lyapunov exponent of consistent quantum field theo-
ries is bounded by the exponent in the theories that have the
Einstein gravity duals [3].
It has been studied that certain points called pole-

skipping points are related to the chaotic properties of

the theories with the Einstein gravity duals. These pole-
skipping points in momentum space are points such that
values of momentum Green’s functions are not uniquely
determined as functions of several complex variables. More
explicitly, the exponents λL and vB in the theories with the
Einstein gravity duals are related to pole-skipping points of
retarded two-point Green’s functions of energy density.
This relation is called a pole-skipping phenomenon [4,5].
If we assume the holographic dictionary, pole-skipping

points can be detected by near-horizon analysis on the bulk
side [6]. This near-horizon analysis searches conditions that
make incoming regular boundary conditions on a black
hole horizon nonunique, and we call points that satisfy such
conditions special points. Nonuniqueness of the incoming
regular boundary conditions at special points can make
retarded Green’s functions on the boundary theory side
ambiguous due to the holographic dictionary. One can
further find special points in bulk equations of general
fields on various backgrounds. See [7–47] for recent studies
of pole-skipping points and near-horizon analysis.
The pole-skipping points of fields other than the energy-

momentum tensor do not seem to be related to the
maximally quantum chaos because the maximally quantum
chaos will arise from the dominant contribution of the
energy-momentum tensor exchange in four-point OTOCs.
As a generalization of the original pole-skipping phenome-
non, one can expect that the pole-skipping points of scalar
and vector fields are related to the scalar and vector
exchange in the four-point OTOCs. The authors of
[25,34] showed this expectation in terms of conformal
field theories (CFTs) and holography. Moreover, in our
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paper [44], we also showed relations between the pole-
skipping points in CFTs on the Rindler spacetime and the
Regge limit of conformal blocks with the exchange of any
integer spin by using the Rindler-AdS black hole. In order
to understand the structure of generalized pole-skipping
phenomena like these studies, researches on the pole-
skipping points of various fields are useful. This is a
motivation to study the pole-skipping points of fields other
than the energy-momentum tensor.
Another motivation is to understand the pole-skipping

phenomenon in the string theory. The string theory contains
an infinite number of higher spin fields. When we consider
gravity theories as a low-energy limit of the string theory,
we can ignore the higher-spin fields, and the maximally
quantum chaos in the gravity theories is controlled by spin-
two gravitons. If we would like to study the pole-skipping
phenomenon in the string theory, we should consider the
pole-skipping points of higher spin fields. Although there
are subtleties due to the infinite number of fields, researches
on the pole-skipping points of higher spin fields will be a
good starting point for studying the pole-skipping phe-
nomenon in the string theory.
For bulk fields with spin-l, it has been observed that

there are towers of special points at frequencies iω ¼
2πðnþ 1 − lÞT (see, for instance, [9,10,18,20,21,31]),
where n ∈ f0g ∪ N, and T is the Hawking temperature
of a static black hole. It is important to check whether the
towers of special points exist in massive fields with l ≥ 1.
For the massive fields, we cannot use gauge-invariant
combinations for massless fields. Thus, we need to analyze
coupled bulk equations or find linear combinations of field
components for simple analysis.
The pole-skipping phenomenon implies that the leading

special points of gravitons with n ¼ 0 are related to shock
waves on black hole horizons that lead to λL and vB in the
holographic theories. However, even for the energy-
momentum tensor, we do not have a good interpretation
of the subleading special points. For a further interpretation
of the subleading special points, it is significant to general-
ize a construction of the shock waves for the subleading
pole-skipping points of various fields with n ∈ N.
In this paper, we analyze the overall structure of special

points of free fields with integer spin on the Rindler-AdS
black hole. Along with the well-analyzed tower structure of
scalar fields (l ¼ 0) [9,10], the special points of vector
fields (l ¼ 1) and rank-l higher-spin fields are investi-
gated. So far, the tower structure of special points with
l ¼ 1, 2 in the near-horizon analysis has been studied only
in massless cases by using a gauge-invariant method [10].1

This is because one can define gauge-invariant vari-
ables for massless fields to decouple the equations of
motions (EOMs) of vector and tensor fields, which are

complicatedly coupled differential equations. In this study,
we do not restrict ourselves to the analysis of the massless
fields and do not use the gauge-invariant variables to
decouple the EOMs. Rather, we use specific linear combi-
nations of the fields to decouple the EOMs in a straightfor-
ward way. We obtain the special point structure for l ¼ 0,
1, 2, 3 and induce results for the general spin-l fields.
Assuming the existence of special points at iω ¼

2πðnþ 1 − lÞT, we propose integrals of bulk propagators
in position space over black hole horizons that capture
behaviors at the special points of bosonic fields. Our
construction of the integrals can be applied to the propa-
gators satisfying a property about isometries of static black
holes. We also discuss the interpretation of our construction
from the viewpoint of tree-level scattering in the bulk.
Our analysis suggests a connection between the sub-

leading pole-skipping points with spin-l and bulk integrals
of spin-l propagators, which are generalizations of the
connection between the leading pole-skipping points of the
energy-momentum tensor and bulk integrals of graviton
propagators for shock wave geometries. This connection
gives a generalized picture of the pole-skipping phenomena
with various spin beyond the pole-skipping phenomenon
for the maximally quantum chaos.
The paper is organized as follows. In Sec. II we study

near-horizon analysis of massive fields with integer spin on
the Rindler-AdS black hole. We construct integrals of bulk
propagators that capture behaviors at special points of
scalar fields in Sec. III and of spin-l fields in Sec. IV. In
Sec. V we discuss the interpretation of the integrals. We
conclude in Sec. VI with a discussion.

II. NEAR-HORIZON ANALYSIS OF BULK
FIELDS WITH INTEGER SPIN-l ON THE

RINDLER-AdS BLACK HOLE

In this section we search for special points of spin-0, 1,
lðl ≥ 2Þ fields, not only the leading special points but also
the subleading special points. To begin with, we briefly
review near-horizon analysis to detect the special points.
Here we study on the Rindler-AdS black hole metric,2

which is given as

ds2 ¼ −ðr2 − 1Þdt2 þ 1

r2 − 1
dr2 þ r2dx2; ð2:1Þ

dx2 ¼ ρ−2ðdρ2 þ dx2⊥Þ; ð2:2Þ
where x is a coordinate on hyperbolic space Hd−1, and the
Hawking temperature, which would be the temperature of
the boundary theory, is 1=2π. The horizon of the black hole
is on r ¼ 1, and in order to give a regular incoming
boundary condition near the horizon, we need a coordinate
system that is regular in the vicinity of the horizon.

1The leading special points of massive fields in the near-
horizon analysis have been examined. See, for example, [24,34]. 2We set the anti–de Sitter radius as 1.

KIM, LEE, and NISHIDA PHYS. REV. D 105, 126011 (2022)

126011-2



Eddington-Finkelstein coordinates ðv; r;xÞ are appropriate
for this purpose, and the metric (2.1) can be written as

ds2 ¼ −ðr2 − 1Þdv2 þ 2dvdrþ r2dx2; ð2:3Þ

where v ¼ r� þ t with the tortoise coordinate
r� ¼ log ðr−1rþ1

Þ1=2.
On the Eddington-Finkelstein coordinates, bulk fields

that we consider are spin-0, 1, l ≥ 2 fields:

hðv; r;xÞ∶ Scalar field;

hμðv; r;xÞ∶ Vector field;

hμ1…μlðv; r;xÞ∶ Symmetric traceless rank-l tensor fields ðl ≥ 2Þ: ð2:4Þ

We can make an ansatz for field solutions by separation of
the variables v, r, x as

hμ1…μlðv; r;xÞ ¼ e−iωvhμ1…μlðrÞfðxÞ; ð2:5Þ

where fðxÞ is an eigenfunction of the Laplacian operator
□H on (d − 1)-dimensional hyperbolic space,

□HfðxÞ ¼ λHfðxÞ; ð2:6Þ

with an eigenvalue λH [17,48]. For large geodesic distance
d ≫ 1,3the eigenfunction fðxÞ is proportional to e−μd,
where λH ¼ μðμ − dþ 2Þ [15,17]. Since we are interested
in asymptotic solutions of the fields near the horizon r ¼ 1,
we now expand the functions depending on r in the field
solutions (2.5) as

hμ1…μlðrÞ ¼
X∞
j¼0

hðjÞμ1…μlðr − 1Þj: ð2:7Þ

After plugging these expansions into the EOMs and
comparing them for each ðr − 1Þj order, we can get
expansion coefficients and determine the asymptotic field
solutions. However, specifying the asymptotic solutions is
not our interest. Rather, we want to figure out situations
where the asymptotic solutions depend on extra free
parameters and the solutions are not uniquely determined.

In the following sections, we explicitly figure out the
asymptotic solutions of the EOMs of fields with spin-0, 1,
l ≥ 2 and seek special points where the field solutions still
have the extra free parameters.

A. Near-horizon analysis of scalar fields (l= 0)

Near-horizon analysis of scalar fields on the Rindler-
AdS black hole was studied in detail by [31]. By reviewing
it, we investigate the tower structure of special points of the
scalar fields for generalizations to higher-spin fields.
The EOM of a free scalar field hðv; r;xÞ with mass

m2 ¼ ΔðΔ − dÞ on the Rindler-AdS black hole metric (2.3)
becomes

0 ¼ ð∇μ∇μ − ΔðΔ − dÞÞhðv; r;xÞ
¼ ðr2 − 1Þh00ðrÞ þ ððdþ 1Þr − ðd − 1Þr−1 − 2iωÞh0ðrÞ
þðr−2λH − iωðd − 1Þr−1 − ΔðΔ − dÞÞhðrÞ; ð2:8Þ

where ∇μ is the covariant derivative, prime is the derivative
with respect to r, and we inserted the field solution ansatz
(2.5). We drop the overall factor e−iωvfðxÞ henceforth. The
EOM for the scalar field becomes a second-order ordinary
differential equation (ODE) of the function hðrÞ. To
determine the asymptotic expansion of the field solution
near the horizon r ¼ 1, we apply the series expansion
ansatz (2.7) with l ¼ 0 into the EOM (2.8) and get

½ðλH − ΔðΔ − dÞ − ðd − 1ÞiωÞhð0Þ þ ð2 − 2iωÞhð1Þ�ðr − 1Þ0 þ ½ð−2λH þ ðd − 1ÞiωÞhð0Þ
þ ðλH − ΔðΔ − dÞ − ðd − 1Þiωþ 2dÞhð1Þ þ ð4 − 2iωÞhð2Þ�ðr − 1Þ1 þ ½� � ��ðr − 1Þ2 þ… ¼ 0: ð2:9Þ

In general, we can specify the field solution near the
horizon by requiring the vanishment of each expansion
coefficient with respect to ðr − 1Þj. More explicitly, from
the coefficient of ðr − 1Þ0 in (2.9), we have

ðλH − ΔðΔ − dÞ − ðd − 1ÞiωÞhð0Þ þ ð2 − 2iωÞhð1Þ ¼ 0:

ð2:10Þ

3The geodesic distance between two points d ≔ dðx;x0Þ on
hyperbolic space Hd−1 is given by

cosh dðx1;x2Þ ¼
ρ21 þ ρ22 þ ðx⊥1 − x⊥2Þ2

2ρ1ρ2
:
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Thus, except for the solutions at special points, hð1Þ can be
written in terms of hð0Þ. From the coefficient of ðr − 1Þ1 in
(2.9), we have

ð−2λH þ ðd − 1ÞiωÞhð0Þ þ ðλH − ΔðΔ − dÞ
− ðd − 1Þiωþ 2dÞhð1Þ þ ð4 − 2iωÞhð2Þ ¼ 0; ð2:11Þ

and hð2Þ can be written in terms of hð0Þ and hð1Þ. Moreover,
we can express hð2Þ in terms of hð0Þ by using (2.10).
Likewise, the higher-order coefficients hðjÞ of the field
solution can be induced from the higher-order series
expansion in (2.9) and can be written in terms of the
coefficients on the lower orders. By iterating this process,
one can determine all the coefficients hðjÞ only by hð0Þ.
Finally, hð0Þ can be fixed by the field normalization so that
the asymptotic field solution hðv; r;xÞ can be uniquely
determined near the horizon without any free parameters.
However, as we alerted earlier, there are special points

where the above chain of determining the expansion
coefficients still contains extra free parameters. For in-
stance, the coefficients of hð0Þ and hð1Þ in (2.10) vanish for
the following values of ðω; λHÞ,

iω ¼ 1; λH ¼ ðΔ − 1ÞðΔ − dþ 1Þ: ð2:12Þ

Thus, hð1Þ cannot be determined from hð0Þ, and the
asymptotic field solution still depends on hð1Þ even after
fixing the normalization. Therefore, at the points (2.12),
which are determined from (2.9) at the leading order
ðr − 1Þ0, the asymptotic field solution depends on the
extra free parameter, and we call such points (2.12)
the leading special points. Even though we luckily avoid
the leading special points (2.12), the same thing can occur
at the subleading order ðr − 1Þ1. To see it, we use the fact
that hð1Þ can be written in terms of hð0Þ except for the points
(2.12). By using this relation, Eq. (2.11) at the subleading
order ðr − 1Þ1 is written by a linear combination of hð0Þ
and hð2Þ. Just as the same case for the special points at the
leading order, we can also seek special points where
the coefficients of hð0Þ and hð2Þ vanish simultaneously.
The coefficient of hð2Þ easily determines the value of iω at
the special points: iω ¼ 2. Since the coefficient of hð0Þ
becomes quadratic in λH or quartic in μ, there are four
special points in terms of μ,

iω¼2; λH¼ΔðΔ−dþ2Þ; ðΔ−2ÞðΔ−dÞ; ð2:13Þ

where λH ¼ μðμ − dþ 2Þ. By iterating these processes,
one can find further special points from the higher-orders
ðr − 1Þj in (2.9).
We comment on conditions of hð0Þ at special points.

Due to (2.10), any regular solutions (2.5) with iω ¼ 1
satisfy

ð□H − ðΔ − 1ÞðΔ − dþ 1ÞÞhð0ÞfðxÞ ¼ 0; ð2:14Þ

which has a solution hð0Þ ¼ 0. The field solution with
hð0Þ ¼ 0 can be written in terms of hð1Þ and has no extra free
parameter after fixing the normalization. Thus, we do not
regard hð0Þ ¼ 0 as a special point. In other words, hð0Þ at the
leading special points should satisfy (2.14) and the follow-
ing condition,

hð0Þ is not the zero function: ð2:15Þ

We call conditions like (2.15) nonzero conditions for
special points.
Instead of (2.15), it is also convenient to consider the

following equation,

ð□H − ðΔ − 1ÞðΔ − dþ 1ÞÞgð0Þ ¼ N δðx;x0Þ; ð2:16Þ

whereN is a normalization constant, and δðx;x0Þ is a delta
function on Hd−1. Due to the delta function, gð0Þ is not the
zero function, and we can ignore the delta function if
x ≠ x0. Therefore, gð0Þ with x ≠ x0 can capture the be-
haviors (2.14) and (2.15) at the leading special points. In
Sec. III we will explicitly construct integrals that are related
to gð0Þ.
Now we briefly review a method that one can system-

atically determine special points for all orders [10]. To do
so, we collect the coefficients of the field solution as a
column vector h⃗ ¼ ðhð0Þ; hð1Þ; hð2Þ;…ÞT. The equations
coming from the vanishment of each order of ðr − 1Þj in
(2.9) can now be expressed as a matrix multiplication
Mðl¼0Þ · h⃗ ¼ 0 with

Mðl¼0Þ ¼

0
BBBBB@

M00 M01 0 0 0 � � �
M10 M11 M12 0 0 � � �
M20 M21 M22 M23 0 � � �
..
. ..

. ..
. ..

. ..
.

1
CCCCCA; ð2:17Þ

where

M00 ¼ λH − ΔðΔ − dÞ − ðd − 1Þiω;
M10 ¼ −2λH þ ðd − 1Þiω;
M11 ¼ λH − ΔðΔ − dÞ − ðd − 1Þiωþ 2d;

..

.

Mnðnþ1Þ ¼ 2ðnþ 1 − iωÞ ðn ≥ 0Þ:

The matrix Mðl¼0Þ has a form of a lower-triangular matrix
with the additional off-diagonal components Mnðnþ1Þ,
where n ≥ 0. In terms of the componentsMij, the equations
for each row of Mðl¼0Þ · h⃗ ¼ 0 become
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M00hð0Þ þM01hð1Þ ¼ 0; ð2:18Þ
�Yn−1

j¼0

−Mjðjþ1Þ

�−1
detMðnÞhð0Þ

þMnðnþ1Þhðnþ1Þ ¼ 0; ðn ≥ 1Þ ð2:19Þ

where MðnÞ is a square submatrix of M with the compo-

nentsMðnÞ
ij ¼ Mij, where i; j ¼ 0; 1;…; n. Equation (2.19)

can be derived by using the expressions of hðnÞ in terms of
the lower order coefficients, where we assume Mjðjþ1Þ ≠ 0

for j ¼ 0; 1;…; n − 1. Thus, we can systematically figure
out special points from (2.18) and (2.19) by imposing the
following conditions,

Mnðnþ1Þ ¼ 0; detMðnÞ ¼ 0; ðn ≥ 0Þ; ð2:20Þ

which give the results

iω ¼ nþ 1;

λH ¼ ðΔ − nþ 2q − 1ÞðΔ − nþ 2q − dþ 1Þ;
ðn ≥ 0; q ¼ 0; 1;…; nÞ: ð2:21Þ

At large d, after we restore the temperature T, these special
points represent exponential behaviors as

e−2πTðnþ1Þve−μd; μ¼
�ðΔ−nþ2q−1Þ
−ðΔ−nþ2q−dþ1Þ; ð2:22Þ

where n ≥ 0, q ¼ 0; 1;…; n.

B. Near-horizon analysis of vector fields (l= 1)

Now we move on to special points of vector fields. The
EOMs of a free vector field hμðv; r;xÞwith respect to hv, hr
and the Lorenz condition ∇μhμ ¼ 0 are written as [49]

ð∇μ∇μ − ΔðΔ − dÞ þ 1Þhvðv; r;xÞ ¼ ðr2 − 1Þh00vðrÞ þ ððd − 1Þr − ðd − 1Þr−1 − 2iωÞh0vðrÞ
þðr−2λH − iωðd − 1Þr−1 − ðd − 1Þ − ΔðΔ − dÞÞhvðrÞ − 2iωrhrðrÞ ¼ 0; ð2:23Þ

ð∇μ∇μ − ΔðΔ − dÞ þ 1Þhrðv; r;xÞ ¼ ðr2 − 1Þh00r ðrÞ þ ððdþ 1Þr − ðd − 1Þr−1 − 2iωþ 2rÞh0rðrÞ
þðr−2λH − iωðd − 1Þr−1 − ΔðΔ − dÞ þ ðd − 1Þr−2 þ 2ÞhrðrÞ
−ðd − 1Þr−2hvðrÞ − 2ðre−iωvfðxÞÞ−1∇ihiðv; r;xÞ ¼ 0; ð2:24Þ

∇μhμðv; r;xÞ ¼ h0vðrÞ þ ðr2 − 1Þh0rðrÞ þ ðd − 1Þr−1hvðrÞ
þ ððdþ 1Þr − ðd − 1Þr−1 − iωÞhrðrÞ þ ðe−iωvfðxÞÞ−1∇ihiðv; r;xÞ ¼ 0: ð2:25Þ

The EOM of the vector component hv (2.23) is a coupled ODE of hvðrÞ and hrðrÞ. The EOM of hr (2.24) is a coupled
ODE of hvðrÞ, hrðrÞ, and ∇ihiðv; r; xÞ. By combining the EOM of hr (2.24) and the Lorenz condition (2.25), one can
reduce the three equations (2.23), (2.24), and (2.25) into two coupled ODEs, which contains only the two field components
hvðrÞ and hrðrÞ,

ðr2−1Þh00vðrÞþððd−1Þr−ðd−1Þr−1−2iωÞh0vðrÞþðr−2λH− iωðd−1Þr−1−ðd−1Þ−ΔðΔ−dÞÞhvðrÞ−2iωrhrðrÞ¼0;

ð2:26Þ

ðr2 − 1Þh00r ðrÞ þ ððdþ 5Þr − ðdþ 1Þr−1 − 2iωÞh0rðrÞ þ 2r−1h0vðrÞ þ ðd − 1Þr−2hvðrÞ
þ ð−iωðdþ 1Þr−1 − ΔðΔ − dÞ þ 2dþ 4þ ðλH − dþ 1Þr−2ÞhrðrÞ ¼ 0: ð2:27Þ

By inserting the field expansion of each component around the horizon like (2.7), at the leading order, we have

ðλH − ΔðΔ − dÞ − ðd − 1Þ − iωðd − 1ÞÞhð0Þv − 2iωhð0Þr − 2iωhð1Þv ¼ 0; ð2:28Þ

ðλH − ΔðΔ − dÞ þ dþ 5 − iωðdþ 1ÞÞhð0Þr þ ðd − 1Þhð0Þv þ ð4 − 2iωÞhð1Þr þ 2hð1Þv ¼ 0: ð2:29Þ

In usual cases, these two constraints (2.28) and (2.29) determine hð1Þv and hð1Þr in terms of hð0Þv and hð0Þr . However, at special
points
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iω ¼ 0; λH ¼ ðΔ − 1ÞðΔ − dþ 1Þ; ð2:30Þ

the constraint (2.28) becomes trivial, and the other con-
straint (2.29) becomes

ðd − 1Þhð0Þv þ ð2dþ 4Þhð0Þr þ 2hð1Þv þ 4hð1Þr ¼ 0; ð2:31Þ

and hð1Þv or hð1Þr cannot be determined only by hð0Þv and hð0Þr .
At other special points

iω ¼ 2; λH ¼ ðΔ − 1ÞðΔ − dþ 1Þ; ð2:32Þ

two constraints (2.28) and (2.29) boil down to one
constraint

ðd − 1Þhð0Þv þ 2hð0Þr þ 2hð1Þv ¼ 0: ð2:33Þ

In this case, hð1Þr cannot be determined by hð0Þv , hð0Þr and
becomes a free parameter. We can repetitively do this
procedure in higher-order and get additional special points.
We can also decouple the two coupled ODEs (2.26) and

(2.27) so that we can apply the technique for scalar fields.
By defining two linear combinations

H0ðrÞ≡ hvðrÞ þ ðr2 − rÞhrðrÞ;
H1ðrÞ≡ hvðrÞ þ ðr2 þ rÞhrðrÞ; ð2:34Þ

we can decouple (2.26) and (2.27) into two decoupled
ODEs

ðr2 − 1ÞH00
0ðrÞ þ ððdþ 1Þr− ðd− 1Þr−1 − 2ðiωþ 1ÞÞH0

0ðrÞ
þ ðr−2λH − ðiωþ 1Þðd− 1Þr−1 −ΔðΔ− dÞÞH0ðrÞ ¼ 0;

ð2:35Þ

ðr2−1ÞH00
1ðrÞþððdþ1Þr−ðd−1Þr−1−2ðiω−1ÞÞH0

1ðrÞ
þðr−2λH−ðiω−1Þðd−1Þr−1−ΔðΔ−dÞÞH1ðrÞ¼0:

ð2:36Þ

Now we can repeat the same process for the scalar field
case to find all the special points of these decoupled ODEs.
Note that the ODE of H1ðrÞ is the same as that of H0ðrÞ
replaced by iω → iω − 2. The special points of (2.35) turn
out to be

iω¼ n; λH ¼ ðΔ− nþ 2q− 1ÞðΔ− nþ 2q− dþ 1Þ;
ðn ≥ 0; q¼ 0;1;…; nÞ: ð2:37Þ

The special points of (2.36) are equal to the points of (2.35)
replaced by iω → iω − 2,

iω¼nþ2; λH¼ðΔ−nþ2q−1ÞðΔ−nþ2q−dþ1Þ;
ðn≥0;q¼0;1;…;nÞ: ð2:38Þ

By using a fact that (2.35) and (2.36) are equal to the
ODE of scalar fields (2.8) where iω is replaced by iωþ 1
or iω − 1, one can directly obtain the results (2.37) and
(2.38) from (2.21). Note that the points (2.38) are a subset
of the special points (2.37) and, the leading special points in
(2.38) were already revealed in (2.32). Thus, the overall
special point structure of the vector fields (l ¼ 1) asso-
ciated with the components v and r is given by (2.37). Our
analysis here does not give special points associated with
∇ihi ¼ 0. At the large d limit, these special points represent
exponential behaviors

e−2πTnve−μd; μ ¼
� ðΔ − nþ 2q − 1Þ
−ðΔ − nþ 2q − dþ 1Þ ; ð2:39Þ

where n ≥ 0, q ¼ 0; 1;…; n.
Our results (2.37) and (2.38) show that special points in

decoupled ODEs of different linear combinations are
different in general. As another example, special points
of gauge-invariant variables constructed from a massless
gauge field on the Rindler-AdS black hole were studied
in [31]. The points derived in [31] are not (2.37), but a
subset of (2.37).
To give an understanding of the connection between the

approaches from coupled differential equations and from
decoupled differential equations, let us expand H0ðrÞ and
H1ðrÞ (2.34) as

H0ðrÞ ¼ hð0Þv þ ½hð1Þv þ hð0Þr �ðr − 1Þ þ…; ð2:40Þ

H1ðrÞ¼ ½hð0Þv þ2hð0Þr �þ½hð1Þv þ3hð0Þr þ2hð1Þr �ðr−1Þþ…:

ð2:41Þ

At the points (2.30), the coefficients of ðr − 1Þ0 and ðr −
1Þ1 in H0ðrÞ are still independent. As the coefficient of
ðr − 1Þ1 cannot be determined from the one of ðr − 1Þ0,
(2.30) are special points ofH0ðrÞ. At the same point (2.30),
the asymptotic expansion of H1ðrÞ (2.41) becomes

H1ðrÞ¼ ½hð0Þv þ2hð0Þr �
þð−d=2þ1=2Þ½hð0Þv þ2hð0Þr �ðr−1Þþ…; ð2:42Þ

where we used (2.31). The second coefficient depends on
the first one, and it is consistent with the fact that (2.30) are
not special points of H1ðrÞ.
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C. Near-horizon analysis of symmetric traceless rank-l tensor fields

The EOMs and divergence-free conditions of symmetric traceless rank-l tensor fields [49,50] on the Rindler-AdS black
hole metric (2.1) are

ð∇μ∇μ − ΔðΔ − dÞ þ lÞhv…vðv; r;xÞ ¼ ðr2 − 1Þh00v…v þ ððdþ 1 − 2lÞr − ðd − 1Þr−1 − 2iωÞh0v…v

þðr−2λH − iωðd − 1Þr−1 − lðd − 1Þ − ΔðΔ − dÞÞhv…vðv; r;xÞ
−ð2ilrωþ 2lðl − 1Þr2Þhv…vrðv; r;xÞ − lðl − 1Þr2ðr2 − 1Þhv…vrrðv; r;xÞ ¼ 0;

ð2:43Þ

ð∇μ∇μ − ΔðΔ − dÞ þ 1Þhv…vrðv; r;xÞ ¼ ðr2 − 1Þh00v…vr þ ððdþ 1Þr − ðd − 1Þr−1 − 2iω − 2ðl − 2ÞrÞh0v…vr

þ ðr−2λH − iωðd − 1Þr−1 − lðd − 1Þ − ΔðΔ − dÞ þ dþ 1þ r−2ðd − 1ÞÞhv…vr

− ð2iωðl − 1Þrþ 2ðl − 1Þðl − 3Þr2Þhv…vrr − ðl − 1Þðl − 2Þr2ðr2 − 1Þhv…vrrr

− ðd − 1Þr−2hv…v − 2ðre−iωvfðxÞÞ−1∇ihv…viðv; r;xÞ ¼ 0;

..

. ð2:44Þ

∇μhv…vμðv; r;xÞ ¼ h0v…vðrÞ þ ðr2 − 1Þh0v…vrðrÞ þ ðd − 1Þr−1hv…vðrÞ
þ ððdþ 1Þr − ðd − 1Þr−1 − iωÞhv…vrðrÞ þ ðe−iωvfðxÞÞ−1∇ihv…viðv; r;xÞ ¼ 0:

..

. ð2:45Þ

We can obtain a few special points ðn ¼ 0; 1;…Þ starting
from the leading special points as we did in the vector field
case even though the equations are complicatedly coupled
differential equations. The leading special points of sym-
metric traceless rank-l tensor fields were first determined
by this method in [44],

iω ¼ 1 − l; λH ¼ ðΔ − 1ÞðΔ − dþ 1Þ: ð2:46Þ

However, it is laborious to obtain the whole special point
structure by this method. Instead, one can decouple these
coupled differential equations, as we did in the previous
subsection. Then we can obtain the whole special point
structure by applying the matrix method for the scalar field
case with l ¼ 0 to each decoupled ODE. For higher-spin
fields, it is more difficult to decouple the EOMs because we
need at leastlþ 1 coupled differential equations (the EOMs
of hv…v; hv…vr;…; hr…r). Here, the divergence-free con-
ditions are used to make the EOMs into forms without
∇ihμ1…μl−1i. For the case with l ¼ 2, we find three specific
linear combinations,4

H0ðrÞ≡ hvvðrÞ þ 2rðr − 1ÞhvrðrÞ þ r2ðr − 1Þ2hrrðrÞ;
H1ðrÞ≡ hvvðrÞ þ 2r2hvrðrÞ þ r2ðr − 1Þðrþ 1ÞhrrðrÞ;
H2ðrÞ≡ hvvðrÞ þ 2rðrþ 1ÞhvrðrÞ þ r2ðrþ 1Þ2hrrðrÞ;

ð2:47Þ

which decouple the three EOMs of hvv, hvr, and hrr with the
divergence-free conditions into

ðr2−1ÞH00
0ðrÞþððdþ1Þr−ðd−1Þr−1−2ðiωþ2ÞÞH0

0ðrÞ
þðr−2λH−ðiωþ2Þðd−1Þr−1−ΔðΔ−dÞÞH0ðrÞ¼0;

ð2:48Þ

ðr2 − 1ÞH00
1ðrÞ þ ððdþ 1Þr − ðd − 1Þr−1 − 2iωÞH0

1ðrÞ
þ ðr−2λH − iωðd − 1Þr−1 − ΔðΔ − dÞÞH1ðrÞ ¼ 0;

ð2:49Þ

ðr2−1ÞH00
2ðrÞþððdþ1Þr−ðd−1Þr−1−2ðiω−2ÞÞH0

2ðrÞ
þðr−2λH−ðiω−2Þðd−1Þr−1−ΔðΔ−dÞÞH2ðrÞ¼0:

ð2:50Þ

The ODEs ofH1ðrÞ andH2ðrÞ can be obtained by replacing
iω → iω − 2, iω − 4 in (2.48). After repeating the
same technique that determines special points of the ODE
in the scalar field (l ¼ 0) case, special points of (2.48) turn
out to be

4We redundantly use the symbol H for linear combinations of
fields with different spin l. Depending on the spin of fields, there
are lþ 1 linear combinations H0; H1;…; Hl.
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iω¼n−1; λH¼ðΔ−nþ2q−1ÞðΔ−nþ2q−dþ1Þ;
ðn≥0;q¼0;1;…;nÞ; ð2:51Þ

and special points of (2.49) and (2.50) are equal to the special
points (2.51) replaced by iω → iω − 2 or iω → iω − 4,
which are subsets of (2.51).

We also confirm the special point structure of
symmetric traceless rank-3 tensor fields. The decoupled
ODEs obtained from the four EOMs and the
divergence-free conditions in terms of four specific linear
combinations

H0ðrÞ≡ hvvvðrÞ þ 3rðr − 1ÞhvvrðrÞ þ 3r2ðr − 1Þ2hvrrðrÞ þ r3ðr − 1Þ3hrrrðrÞ;
H1ðrÞ≡ hvvvðrÞ þ rð3r − 1ÞhvvrðrÞ þ r2ð3r2 − 2r − 1ÞhvrrðrÞ þ r3ðr − 1Þ2ðrþ 1ÞhrrrðrÞ;
H2ðrÞ≡ hvvvðrÞ þ rð3rþ 1ÞhvvrðrÞ þ r2ð3r2 þ 2r − 1ÞhvrrðrÞ þ r3ðr − 1Þðrþ 1Þ2hrrrðrÞ;
H3ðrÞ≡ hvvvðrÞ þ 3rðrþ 1ÞhvvrðrÞ þ 3r2ðrþ 1Þ2hvrrðrÞ þ r3ðrþ 1Þ3hrrrðrÞ;

are given by

ðr2−1ÞH0
00ðrÞþððdþ1Þr−ðd−1Þr−1−2ðiωþ3ÞÞH0

0ðrÞ
þðr−2λH−ðiωþ3Þðd−1Þr−1−ΔðΔ−dÞÞH0ðrÞ¼0;

ð2:52Þ

and the other three ODEs of H1ðrÞ, H2ðrÞ, and H3ðrÞ are
equal to (2.52) replaced by iω → iω − 2, iω − 4, iω − 6,
respectively. Special points of the symmetric traceless rank-
3 tensor fields turn out to be

iω¼n−2; λH¼ðΔ−nþ2q−1ÞðΔ−nþ2q−dþ1Þ;
ðn≥0;q¼0;1;…;nÞ: ð2:53Þ

Though we do not complete the general procedure to
decouple the differential equations for l > 3, we can infer
from our results with l ¼ 0, 1, 2, 3, that the special point
structure of symmetric traceless rank-l tensor fields is
expected to be

iω¼n−lþ1; λH¼ðΔ−nþ2q−1ÞðΔ−nþ2q−dþ1Þ;
ðn≥0;q¼0;1;…;nÞ; ð2:54Þ

where the leading special points (n ¼ 0) are revealed in
[44] for general integer l. Exponential behaviors at the
large d limit corresponding to these inferred results are

e2πTðl−n−1Þve−μd; μ¼
�ðΔ−nþ2q−1Þ
−ðΔ−nþ2q−dþ1Þ ; ð2:55Þ

where n ≥ 0, q ¼ 0; 1;…; n.

III. INTEGRALS OF SCALAR PROPAGATORS

Assuming that special points with iω ¼ 2πðnþ 1ÞT
exist, we construct integrals of scalar bulk-to-bulk propa-
gators over black hole horizons that capture behaviors
at the special points in the near-horizon analysis, where

n ∈ f0g ∪ N. First, we study the construction on the
Rindler-AdS black hole as a solvable example. Next, we
consider the construction in a large class of static
black holes.

A. Integrals for the leading special points on the
Rindler-AdS black hole

First, we construct integrals for the leading special points
with iω ¼ 1 on the Rindler-AdS black hole. Scalar bulk-to-
bulk propagator GΔðξÞ between two bulk points Y and Y 0
on the Rindler-AdS black hole is given by [49,51]5

GΔðξÞ ¼
�
ξ

2

�
Δ

2F1

�
Δ
2
;
Δþ 1

2
;Δþ 1 −

d
2
; ξ2

�
; ð3:1Þ

ξ ≔
ð1þUVÞð1þU0V 0Þ

2ðUV 0 þ VU0Þ þ ð1 −UVÞð1 −U0V 0Þ coshd ; ð3:2Þ

where we use the Kruskal-Szekeres coordinates

ds2 ¼ −
4dUdV

ð1þ UVÞ2 þ
�
1 − UV
1þUV

�
2

dx2: ð3:3Þ

When Δ satisfies the unitarity bound Δ ≥ d=2 − 1, the
three parameters of the hypergeometric function are non-
negative. Up to a delta function, GΔðξÞ is a solution of the
EOM

ð∇μ∇μ − ΔðΔ − dÞÞGΔðξÞ ¼ 0: ð3:4Þ

The singular behavior of the hypergeometric function at
ξ2 ¼ 1 in (3.1) is due to the delta function. To avoid this
singularity, we impose the following constraint,

UV≤0; U0V 0≤0; UV 0≥0; VU0≥0; d>0: ð3:5Þ

5For simplicity, the normalization of (3.1) is different from the
one in [49,51].
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Under this constraint, we obtain jξj < 1. To be more
explicit, we choose Y for the right region of the Penrose
diagram and Y 0 for the left region as follows:

U¼−er�−t; V ¼ er�þt; U0 ¼ er
0�−t0 ; V 0 ¼−er0�þt0 :

ð3:6Þ

Consider an integral ofGΔðξÞ over the horizon V 0 ¼ 0 asZ
∞

0

dU0GΔðξÞjV 0¼0: ð3:7Þ

By introducing a new variable U00 ≔ VU0, we see that (3.7)
is proportional to V−1 asZ

∞

0

dU0GΔðξÞjV 0¼0¼
1

V

Z
∞

0

dU00GΔ

�
1

coshdrþðrþ1ÞU00

�
:

ð3:8Þ

From the near-horizon analysis in Sec. II A, we can
evaluate the d dependence of (3.7) at r ¼ 1 without
performing the integration as follows. Since GΔðξÞ is a
solution of the EOM, (3.7) is also a solution if the integral
converges. Therefore, (3.7) at r ¼ 1, which is proportional
to V−1 ¼ e−2πTv ¼ e−v, satisfies

ð□H − ðΔ − 1ÞðΔ − dþ 1ÞÞ
Z

∞

0

dU0GΔðξÞjV 0¼0;r¼1 ¼ 0;

ð3:9Þ

which is valid if d ≠ 0.
Let us confirm that

R∞
0 dU0GΔðξÞjV 0¼0;r¼1 is a

nonzero function. One can explicitly calculateR
∞
0 dU0GΔðξÞjV 0¼0;r¼1 [44] as

Z
∞

0

dU0GΔðξÞjV 0¼0;r¼1 ¼
1

V

Z
∞

0

dU00GΔ

�
1

coshdþ 2U00

�

¼ 1

2Δþ1V

Z
1= coshd

0

dξξΔ−22F1

�
Δ
2
;
Δþ 1

2
;Δþ 1 −

d
2
; ξ2

�

¼ 1

4ðΔ − 1ÞV e−ðΔ−1Þd2F1

�
Δ − 1;

d
2
− 1;Δþ 1 −

d
2
; e−2d

�
; ð3:10Þ

where we assume Δ > 1 for convergence of the integral. In
fact, (3.10) is known as a solution of (3.9) up to a delta
function [52,53]. Since the eigenvalue ΔðΔ − dÞ in (3.4)
is invariant under Δ ↔ d − Δ,

R∞
0 dU0Gd−ΔðξÞjV 0¼0 with

d − Δ > 1 is another solution for the leading special points.
These two solutions have different asymptotic behaviors at
large d asZ

∞

0

dU0GΔðξÞjV 0¼0;r¼1 ≃
1

4ðΔ − 1ÞV e−ðΔ−1Þd ðd ≫ 1Þ;

ð3:11Þ
Z

∞

0

dU0Gd−ΔðξÞjV 0¼0;r¼1

≃
1

4ðd − Δ − 1ÞV e−ðd−Δ−1Þd ðd ≫ 1Þ; ð3:12Þ

which agree with (2.22) at n ¼ 0.
When d ¼ 0, the hypergeometric function in (3.10)

diverges, and we need to add the delta function to the
right-hand side of (3.9). In particular,

R∞
0 dU0GΔðξÞjV 0¼0;r¼1

is a solution of (2.16). The singular behavior of GΔðξÞ at
d ¼ 0 is related to the fact that

R
∞
0 dU0GΔðξÞjV 0¼0;r¼1 is a

nonzero function as explained around (2.16).

Summarizing the above, the integral (3.7) is a nonzero
function proportional to V−1 ¼ e−2πTv ¼ e−v and satisfies
(3.9) if d ≠ 0. Therefore, (3.7) captures the behavior at the
leading special points, i.e., (2.14), (2.15), and iω ¼ 1. In
this paper, we assume that integrals we construct satisfy
nonzero conditions for special points like (2.15) due to the
singular behaviors of propagators.

B. Integrals for the subleading special points on the
Rindler-AdS black hole

Next, we construct integrals for the subleading special
points with iω ¼ nþ 1, where n ∈ N. Our strategy is to
differentiate

R
∞
0 dU0GΔðξÞ with respect to V 0. As a first

example, let us consider

Z
∞

0

dU0∂V 0GΔðξÞjV 0¼0

¼ 1

V

Z
∞

0

dU00 ∂ξ
∂V 0

����
V 0¼0

∂ξGΔðξÞjξ¼ 1

coshdrþðrþ1ÞU00 ; ð3:13Þ

which is a solution of EOM up to a delta function if the
integral converges. We decompose ∂ξ

∂V 0 jV 0¼0 into two parts
for later convenience,
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∂ξ
∂V 0

����
V 0¼0

¼ U0 ∂ξ
∂ðU0V 0Þ

����
V 0¼0

þU
∂ξ

∂ðUV 0Þ
����
V 0¼0

; ð3:14Þ

U0 ∂ξ
∂ðU0V 0Þ

����
V 0¼0

¼ 1

V
U00

�
1

coshdrþ ðrþ 1ÞU00 þ
r coshd

ðcoshdrþ ðrþ 1ÞU00Þ2
�
;

ð3:15Þ

U
∂ξ

∂ðUV 0Þ
����
V 0¼0

¼ r − 1

V
1

ðcoshdrþ ðrþ 1ÞU00Þ2 ; ð3:16Þ

where we use U ¼ − r−1
Vðrþ1Þ. Since (3.14) is proportional to

V−1, (3.13) is proportional to V−2. Therefore, assuming that
the singular behavior of the propagator is related to nonzero
conditions for special points, (3.13) captures the behavior at
the subleading special points with iω ¼ 2. More generally,
one can argue that

R
∞
0 dU0ð∂V 0 ÞnGΔðξÞjV 0¼0 are propor-

tional to V−ðnþ1Þ and capture the behaviors at special points
with iω ¼ nþ 1.
Let us evaluate

R∞
0 dU0∂V 0GΔðξÞjV 0¼0;r¼1 at large d. By

using an approximation GΔðξÞ ≃ ðξ=2ÞΔ at small ξ, we
obtain

Z
∞

0

dU0∂V 0GΔðξÞjV 0¼0;r¼1≃
1

8V2ðΔ−2Þe
−ðΔ−2Þd ðd≫1Þ;

ð3:17Þ

where we assume Δ > 2 for the convergence. Since (3.16)
becomes zero at r ¼ 1, (3.16) does not contribute to (3.17).
At the subleading order, (3.16) contributes to (3.13) as

1

V

Z
∞

0

dU00U
∂ξ

∂ðUV 0Þ
����
V 0¼0;r→1

∂ξGΔðξÞjξ¼ 1

coshdþ2U00

≃
r − 1

2V2
e−Δd ðd ≫ 1Þ; ð3:18Þ

where we assume Δ > 0, and the exponential behavior is
different from the one of (3.17). These two exponential
behaviors (3.17) and (3.18) agree with (2.22) at n ¼ 1.
We emphasize again the difference between the near-

horizon analysis in Sec. II and the analysis ofR
∞
0 dU0ð∂V 0 ÞnGΔðξÞjV 0¼0 in this section. In the near-
horizon analysis, we searched conditions that hð0Þ can be
a nonzero extra free parameter and obtained the special
points (2.21) at iω ¼ nþ 1. In this section, on the
other hand, we showed that

R
∞
0 dU0ð∂V 0 ÞnGΔðξÞjV 0¼0 are

proportional to V−iω ¼ e−iωv with iω ¼ nþ 1. IfR
∞
0 dU0ð∂V 0 ÞnGΔðξÞjV 0¼0;r¼1 are nonzero functions, the
integrals capture the behaviors at the special points
with iω ¼ nþ 1.

C. Integrals for special points in static black holes

Finally, we give a construction method for special points
in a static black hole

ds2 ¼ AðUVÞdUdV þ BðUVÞdx2
M; ð3:19Þ

where AðUVÞ and BðUVÞ are functions of UV ¼ fðrÞ
for the static metric, dx2

M is a metric on a manifold M.
We define dM as the spatial distance on M and rH as
the radius of a horizon such that UVðrHÞ ¼ fðrHÞ ¼ 0 in
the Kruskal-Szekeres coordinates and grrðrHÞ ¼ 0 in the
incoming Eddington-Finkelstein coordinates, where we
assume the unique horizon radius. Let us consider a scalar
propagatorG between two bulk points Y and Y 0 in the black
hole (3.19), which is a solution of a linear second-order
differential EOM up to a delta function, with the following
assumption:

The scalar propagator G is invariant under the isometry
of (3.19). Specifically, G is a function of UV, U0V 0,
UV 0, VU0, and dM.

6 We express this property
as GðUV;U0V 0; UV 0; VU0;dMÞ.
Generally, it is difficult to find an analytic expression of

GðUV;U0V 0; UV 0; VU0;dMÞ. The propagator (3.1) is an
example that satisfies the assumption.
Just like (3.7), consider an integral over the horizon

V 0 ¼ 0 asZ
∞

0

dU0GðUV;U0V 0; UV 0; VU0;dMÞjV 0¼0; ð3:20Þ

where we assume convergence of the integral and regularity
at r ¼ rH, except where GðUV;U0V 0; UV 0; VU0;dMÞ
diverges due to the delta function. By introducing a new
variable U00 ≔ VU0, we obtainZ

∞

0

dU0GðUV;U0V 0; UV 0; VU0;dMÞjV 0¼0

¼ 1

V

Z
∞

0

dU00GðfðrÞ; 0; 0; U00;dMÞ; ð3:21Þ

which is proportional to V−1.
As shown in the example in Sec. II A, recent holographic

studies of the pole-skipping phenomenon reveal towers of
pole-skipping points in Green’s functions and special
points in the near-horizon analysis at imaginary Matsubara
frequencies [9,10]. Thus, we assume that special points of
scalar fields exist at iω ¼ 2πðnþ 1ÞT. Since (3.20) is
proportional to V−1 ¼ e−2πTv, (3.20) satisfies an equation
like (2.14) at iω ¼ 2πT. As explained in Sec. III A, we

6The metric (3.19) is invariant under U → λU, V → V=λ.
Correspondingly, the scalar propagator GðUV;U0V 0; UV 0;
VU0;dMÞ is invariant under U → λU, V → V=λ, U0 → λU0,
V 0 → V 0=λ.

KIM, LEE, and NISHIDA PHYS. REV. D 105, 126011 (2022)

126011-10



assume that (3.20) also satisfies a nonzero condition like
(2.15) due to the singular behavior of the scalar propagator.
Thus, we argue that (3.20) captures the behavior at the
leading special points with iω ¼ 2πT in the black
hole (3.19).
Next, consider an integral

Z
∞

0

dU0∂V 0GðUV;U0V 0; UV 0; VU0;dMÞjV 0¼0; ð3:22Þ

which is a generalization of (3.13). By using UV ¼ fðrÞ
and U00 ¼ VU0, we obtain

Z
∞

0

dU0∂V 0GðUV;U0V 0; UV 0; VU0;dMÞjV 0¼0

¼ 1

V2

Z
∞

0

dU00
�
U00 ∂

∂U0V 0 GðfðrÞ; U0V 0; UV 0; U00;dMÞ

þ fðrÞ ∂
∂UV 0 GðfðrÞ; U0V 0; UV 0; U00;dMÞ

�����
V 0¼0

; ð3:23Þ

which is proportional to V−2 and capture the behavior at the
subleading special points with iω ¼ 4πT. Similarly, one
can construct

R
∞
0 dU0∂n

V 0GðUV;U0V 0; UV 0; VU0;dMÞjV 0¼0

for the subleading special points with iω ¼ 2πðnþ 1ÞT.

IV. INTEGRALS OF SPIN-l PROPAGATORS

We construct integrals for special points in the near-
horizon analysis of symmetric traceless rank-l tensor
fields. We mainly analyze vector fields with l ¼ 1 and
consider a generalization to arbitrary integer spin l.

A. Integrals for special points of vector fields

Let us consider a vector propagator Gμ0
μ between two

bulk points Y and Y 0 in the black hole (3.19). By
introducing a polarization vector Z0 of Y 0, we contract
the index μ0 of Gμ0

μ and express the propagator as
GμðY; Y 0; Z0Þ, which is a first-order polynomial of Z0.
We suppose that GμðY; Y 0; Z0Þ is a solution of a linear
second-order differential EOM in the black hole (3.19) up
to a delta function. For an example of GμðY; Y 0; Z0Þ, see the
AdS propagator in [49].
To satisfy Y 0μZ0

μ ¼ 0 at V0 ¼ 0, we choose the polari-
zation vector Z0 as

Z0
U ¼ 0; Z0

V ≠ 0; Z0
xM ¼ 0: ð4:1Þ

Due to the index μ, tensor structures of GμðY; Y 0; Z0Þ are
different from ones of scalar propagators. We assume the
following structure of GμðY; Y 0; Z0Þ at V 0 ¼ 0,

GμðY; Y 0; Z0Þ ¼ Yμg11ðY; Y 0ÞðVZ0
VÞ þ Y 0

μg12ðY; Y 0ÞðVZ0
VÞ

þ Z0
μg13ðY; Y 0Þ; ð4:2Þ

where functions g1i ðY; Y 0Þ are invariant under the isometry,
and we use Y 0μZ0

μ ¼ 0.
With the above preparation, consider theV dependence ofZ

∞

0

dU0GμðY; Y 0; Z0ÞjV 0¼0: ð4:3Þ

By using (4.1) and the similar analysis in Sec. III C with
U00 ≔ VU0, we obtainZ

∞

0

dU0GUðY; Y 0; Z0ÞjV 0¼0 ∝ V1;Z
∞

0

dU0GVðY; Y 0; Z0ÞjV 0¼0 ∝ V−1;Z
∞

0

dU0GxMðY; Y 0; Z0ÞjV 0¼0 ∝ V0: ð4:4Þ

Let us transform the integrals with μ ¼ U;V;xM in the
Kruskal-Szekeres coordinates to the ones with μ ¼ r; v;xM
in the Eddington-Finkelstein coordinates. With a trans-
formation ruleZ

∞

0

dU0GvðY;Y 0;Z0ÞjV 0¼0¼
∂V
∂v

Z
∞

0

dU0GVðY;Y 0;Z0ÞjV 0¼0;

ð4:5ÞZ
∞

0

dU0GUðY; Y 0; Z0ÞjV 0¼0

¼
�∂U
∂V

�
−1 Z ∞

0

dU0GVðY; Y 0; Z0ÞjV 0¼0

þ
�∂U
∂r

�
−1 Z ∞

0

dU0GrðY; Y 0; Z0ÞjV 0¼0; ð4:6Þ

∂V
∂v ∝ V;

∂U
∂V ∝ V−2;

∂U
∂r ∝ V−1; ð4:7Þ

the final result is given byZ
∞

0

dU0GμðY; Y 0; Z0ÞjV 0¼0 ∝ V0 ðμ ¼ r; v;xMÞ: ð4:8Þ

As a further generalization, one can obtainZ
∞

0

dU0∂n
V 0GμðY;Y 0;Z0ÞjV 0¼0∝V−n ðμ¼ r;v;xMÞ: ð4:9Þ

In Sec. II B we showed that the special points of vector
fields on the Rindler-AdS black hole exist at iω ¼ 2πnT,
where n ∈ f0g ∪ N. Suppose that these special points also
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exist in the EOMs of vector fields in the black hole (3.19).
Since the integrals (4.9) are also solutions of the EOMs that
are proportional to V−n ¼ e−2πnTv, we argue that the
integrals (4.9) capture the behaviors at special points with
iω ¼ 2πnT.

B. Integrals for special points of spin-l fields

Consider propagators Gμ1…μlðY; Y 0; Z0Þ of symmetric
traceless rank-l tensor fields, which are solutions of the
EOMs up to delta functions and lth-order polynomials of

Z0. We assume the following property of Gμ1…μlðY; Y 0; Z0Þ
at V 0 ¼ 0:

Property 1: Tensor structures of Gμ1…μlðY; Y 0; Z0Þ
are determined from Yμ, Y 0

μ, Z0
μ, and the metric

gμiμj . The propagators Gμ1…μlðY; Y 0; Z0Þ at V 0 ¼ 0
can be expressed by these tensor structures, VZ0

V ,
and functions gli ðY; Y 0Þ invariant under the isometry
of (3.19).

For example, Gμ1μ2ðY; Y 0; Z0Þ with Y 0μZ0
μ ¼ 0 under the

assumption can be expressed as

Gμ1μ2ðY;Y 0;Z0Þ ¼ Yμ1Yμ2g
2
1ðY;Y 0ÞðVZ0

VÞ2 þ Y 0
μ1Y

0
μ2g

2
2ðY;Y 0ÞðVZ0

VÞ2 þ Yfμ1Y
0
μ2gg

2
3ðY;Y 0ÞðVZ0

VÞ2 þ gμ1μ2g
2
4ðY;Y 0ÞðVZ0

VÞ2

þ Yfμ1Z
0
μ2gg

2
5ðY;Y 0ÞðVZ0

VÞ þ Y 0
fμ1Z

0
μ2gg

2
6ðY;Y 0ÞðVZ0

VÞ þZ0
μ1Z

0
μ2g

2
7ðY;Y 0Þ; ð4:10Þ

where g2i ðY; Y 0Þ are invariant under the isometry, and
Yfμ1Y

0
μ2g ≔ ðYμ1Y

0
μ2 þ Yμ2Y

0
μ1Þ=2. The same analysis as

in the previous subsection yields

Z
∞

0

dU0∂n
V 0Gμ1μ2ðY; Y 0; Z0ÞjV 0¼0 ∝ V1−n ðμi ¼ r; v;xMÞ;

ð4:11Þ

and a generalization for arbitrary l is

Z
∞

0

dU0∂n
V 0Gμ1…μlðY;Y 0;Z0ÞjV 0¼0∝Vl−1−n ðμi¼ r;v;xMÞ:

ð4:12Þ

In the study of the pole-skipping phenomena, the leading
special points of gravitons have been found at iω ¼ −2πT
[6]. On the Rindler-AdS black hole, the leading special
points of spin-l fields were found at iω ¼ 2πð1 − lÞT
[44], and the towers of special points (2.55) at iω ¼ 2πðnþ
1 − lÞT seem to be present from the analysis in Sec. II. If
these special points of spin-l fields in the black hole (3.19)
also exist at iω ¼ 2πðnþ 1 − lÞT, the integrals (4.12)
capture the behaviors at these special points.
For the convenience of the reader, we summarize the

assumptions of our argument.
(i) The propagators Gμ1…μlðY; Y 0; Z0Þ of symmetric

traceless rank-l tensor fields, which are lth-order
polynomials of the polarization vector (4.1), are
solutions of linear second-order differential EOMs
in the static black hole (3.19) up to delta functions
and satisfy Property 1.

(ii) Except where Gμ1…μlðY; Y 0; Z0Þ diverge due to the
delta functions, the integrals

R
∞
0 dU0∂n

V 0Gμ1…μlðY; Y 0; Z0ÞjV 0¼0, where n ∈ f0g ∪ N, are well de-
fined; they are regular at r ¼ rh and converge.

From these assumptions, one can argue (4.12). In addition
to them, we assume the following:

(i) Special points of the spin-l fields exist at
iω ¼ 2πðnþ 1 − lÞT, where T is the Hawking
temperature of the black hole (3.19). Specifically,
there are independent regular solutions of the EOMs
that are proportional to Vl−1−n.

(ii) The integrals (4.12) with xM ≠ x0
M satisfy nonzero

conditions for the special points like (2.15).
Then, we argue that the integrals (4.12) capture the behaviors
at the special points. As discussed in Sec. III A, the singular
behaviors of the propagators seem to be related to the assump-
tion that the integrals (4.12) satisfy the nonzero conditions.

V. INTERPRETATION OF THE INTEGRALS
FOR SPECIAL POINTS

We discuss the interpretation of the integrals we con-
structed for special points by using four-point amplitudes
with the exchange of a spin-l field. We see that late time
behaviors of the amplitudes are related to the integrals due
to bulk-to-bulk propagators in the amplitudes.

A. Integrals for the leading special points

We start reviewing a scalar four-point tree-level diagram
with the exchange of a spin-l field in AdSdþ1 as in Fig. 1
[54]. To represent AdSdþ1, we use X ¼ ðxþ; x−; xÞ7 in the
embedding space R1;1 ×R1;d−1, where xþ and x− are light
cone coordinates on the Minkowski space R1;1, and x is a
point in the Minkowski space R1;d−1. With these embed-
ding coordinates, AdSdþ1 with the AdS radius L ¼ 1 can
be represented by

−xþx− þ x2 ¼ −1: ð5:1Þ
With a three-point derivative coupling between the scalar
and spin-l fields, the amplitude of the tree-level diagram in
Fig. 1 is given by [54]

7Our coordinates X correspond to x in [54].
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Z
AdSdþ1

fdX�
ϕ3

�Yl
i¼1

∂ai

�
ϕ1

�
ha1…alðXÞ; ð5:2Þ

ha1…alðXÞ ≔
Z
AdSdþ1

gdX0Πa1…al
a0
1
…a0lðX;X0ÞTa0

1
…a0l

ðX0Þ;

ð5:3Þ

Ta0
1
…a0l

ðX0Þ ≔ ϕ4

�Yl
i¼1

∂a0i

�
ϕ2; ð5:4Þ

where fdX is an integral measure in AdSdþ1, ϕi are external
wave functions of the scalar fields,Πa1…al

a0
1
…a0lðX;X0Þ is a

bulk-to-bulk propagator of the spin-l field, and we ignore
an unimportant normalization constant.
To make a shock wave, the authors of [54] chose the

wave functions ϕ2 and ϕ4 so that the source Ta0
1
…a0l

ðX0Þ is
localized along x0− ¼ 0 and a0i ¼ −. Moreover, we choose
Ta0

1
…a0l

ðX0Þ localized at y in transverse hyperbolic space
Hd−1 as

Ta0
1
…a0l

ðX0Þ ∝
�Yl

i¼1

δ−a0i

�
δðx0−Þδðx0; yÞ; ð5:5Þ

where δðx0; yÞ is a delta function in Hd−1. Due to these
delta functions, the (dþ 1)-dimensional integral in (5.3)
with (5.5) becomes a one-dimensional integral in the
x0þ-direction.
Our integrals (4.12) for the leading special points with

n ¼ 0 can be interpreted as a generalization of (5.3) with
(5.5) in the black hole (3.19). The light cone coordinates
xþ and x− correspond to U and V,8 and the propagator
Πa1…al

a0
1
…a0lðX;X0Þ corresponds to Gμ1…μl

μ0
1
…μ0lðY; Y 0Þ.

The localization of (5.5) along a0i ¼ − corresponds
to the polarization vector (4.1), and the x0þ-integral at
x0− ¼ 0 corresponds to the U0-integral at V 0 ¼ 0. When X

approaches to the point where Ta0
1
…a0l

ðX0Þ is localized,
ha1…alðXÞ becomes singular. To avoid the singular behav-
ior of (4.12), we choose two bulk points Y and Y 0 from
different regions of Penrose diagrams as shown in Fig. 2,
which is related to (3.6) for the Rindler-AdS black hole.
When we consider a graviton propagator with l ¼ 2,

(5.3) with (5.5) is metric deformation for a shock wave
geometry [54]. The Lyapunov exponent λL and the butterfly
velocity vB in holographic models can be calculated from
the metric deformation [55,56]. Since (4.12) with n ¼ 0 is a
generalization of (5.3), we would also obtain λL and vB
from (4.12). In fact, the Lyapunov exponent λL ¼ 2πT is
deduced from the V dependence V ∝ e2πTt of (4.12), and
the butterfly velocity vB is obtained from the dM depend-
ence of (4.12) at r ¼ rH and large dM, which measures
propagation of the source in the spatial direction. Since
(4.12) are the integrals for special points, the dM depend-
ence can be computed from equations at the special points
like (3.9). This explains why the leading special points of
metric perturbation in the near-horizon analysis, which
corresponds to the energy-momentum tensor in the boun-
dary theories, can detect λL and vB in the holographic
models.

B. Integrals for the subleading special points

The classical profile (5.3) of the spin-l field with the
localized source (5.5) at the horizon leads to the leading
exponential behavior of the tree-level amplitude with
respect to time. One might expect that the integrals for
the subleading special points would be related to sublead-
ing corrections of the tree-level amplitude. This expectation
is partially correct, but there are some subtleties. We
explain them by using the scalar exchange amplitude in
the Rindler-AdS black hole.
As the scalar exchange amplitude, we consider the

following amplitude of the half-geodesic Witten diagram
as in Fig. 3 [44],

FIG. 1. Scalar four-point tree-level diagram with the exchange
of a spin-l field in AdSdþ1, where pi are points on the AdS
boundary, straight lines represent external wave functions ϕi of
scalar fields, and a wavy line represents a spin-l bulk-to-bulk
propagator Πa1…al

a0
1
…a0l.

FIG. 2. Two bulk points Y and Y 0 in Penrose diagrams, where
we introduce new conformal coordinates ŨðUÞ and ṼðVÞ.
The Penrose diagrams on the left and right are for points xM
and x0

M, respectively. A wavy line represents the propagator
Gμ1…μl

μ0
1
…μ0lðY; Y 0Þ.

8More precisely, U and V in the Rindler-AdS black hole
correspond to uþ=2 and u−=2 in [54]. When uþ ¼ 0 or u− ¼ 0,
the two coordinates are equal such as xþ ¼ uþ and x− ¼ u−.
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WR
Δ;0 ≔

Z
∞

0

dλ
Z

0

−∞
dλ0Gb∂ðYðλÞ;WL;ΔWÞGb∂ðYðλÞ;WR;ΔWÞGΔðξðλ; λ0ÞÞGb∂ðY 0ðλ0Þ; VL;ΔVÞGb∂ðY 0ðλ0Þ; VR;ΔVÞ;

ð5:6Þ

where WL, WR, VL, and VR are the AdS boundary points, Gb∂ is the scalar bulk-to-boundary propagator, and GΔ is the
scalar bulk-to-bulk propagator (3.1). The bulk points YðλÞ and Y 0ðλ0Þ are integrated over half geodesics between the AdS
boundaries and the centers of diagrams such that

YðλÞ∶ UðλÞ ¼ −e−tW tanh
λ

2
; VðλÞ ¼ etW tanh

λ

2
; xðλÞ ¼ xW; ð5:7Þ

Y 0ðλ0Þ∶ U0ðλ0Þ ¼ −e−tV tanh
λ0

2
; V 0ðλ0Þ ¼ etV tanh

λ0

2
; x0ðλ0Þ ¼ xV: ð5:8Þ

See [44] for more details.
At late times tW − tV ≕ tR ≫ 1, the bulk-to-boundary

propagators can be approximated as constants [44]. Thus,
we approximate the half-geodesic Witten diagram (5.6) in
the late time limit as

WR
Δ;0 ∼

Z
∞

0

dλ
Z

0

−∞
dλ0GΔðξðλ; λ0ÞÞ: ð5:9Þ

Since V 0ðλ0Þ → 0 in the late time limit, the integralR
0
−∞ dλ0GΔðξðλ; λ0ÞÞ can be interpreted as the integral
(3.7). This analysis implies that the late time behavior of
the half-geodesic Witten diagram can be detected from the
leading special point. In fact, the near-horizon analysis in
[44] captured the late time behavior.
Let us evaluate subleading corrections of (5.9). Consider

a series expansion of GΔðξÞ,

GΔðξÞ ¼ GΔðξÞjV 0¼0 þ ∂V 0GΔðξÞjV 0¼0

þ 1

2
ð∂V 0 Þ2GΔðξÞjV 0¼0 þ…: ð5:10Þ

The leading behavior of (5.9) comes from the integral of the
first term in (5.10). The integrals of the other terms give the
subleading corrections of (5.10), and these integrals

correspond to the solutions
R∞
0 dU0ð∂V 0 ÞnGΔðξÞjV 0¼0 con-

structed in Sec. III B. Therefore, the integrals for the
subleading special points are related to the part of the
subleading corrections.
Let us discuss problems with this interpretation of the

subleading special points. First, at the subleading order, we
need to consider contributions from the bulk-to-boundary
propagators, and not all the subleading corrections are
related to the solutions at the special points. In the late time
limit, the four-point amplitude can be approximated from
the integral of the bulk-to-bulk propagator. But in general,
the four-point amplitude also depends on the bulk-to-
boundary propagators. Second, as explained in Sec. III B,
the convergence of the integral changes. Note that these
problems depend on the definition of the amplitude, and it
remains to be seen what happens when other amplitudes
are used.

VI. CONCLUSION AND DISCUSSION

We applied near-horizon analysis to obtain the overall
structure of special points by studying the EOMs of bulk
free fields with integer spin on the Rindler-AdS black hole.
After we reviewed the well-studied special point structure
of the scalar fields (l ¼ 0), we obtained the special point
structure of nonzero integer spin fields. For the vector fields
(l ¼ 1), we obtained a few special points from the coupled
differential EOMs by searching for the conditions that
some series coefficients become extra free parameters,
which is the main philosophy of the near-horizon analysis.
In principle, one can do this repetitive job to get further
special points. Instead, we found specific linear combina-
tions of vector field components that decouple the coupled
differential equations into the decoupled ODEs. Thus, we
can apply the matrix method to these decoupled ODEs that
was used to get the special points of the scalar fields
systematically and entirely. In this way, we obtained the
overall structure of special points for the massive vector
fields, not restricted to the massless vector fields. Not only
for the vector fields, but we also found specific linear

FIG. 3. Half-geodesic Witten diagram in the two-sided Rindler-
AdS black hole. The bulk-to-boundary propagators and the bulk-
to-bulk propagator are represented by blue straight lines and a
blue wavy line, respectively. Interaction vertices YðλÞ and Yðλ0Þ
are integrated over half-geodesics that are represented by orange
dotted curves.
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combinations of the symmetric traceless rank-l tensor
fields with l ¼ 2, 3 associated with indices v, r such that
their EOMs are decoupled. It should be mentioned again
that these decouplings are not restricted to massless fields.
We expect that this decoupling process is also possible for
the fields with l > 3. From our results and predictions, we
concluded the overall special point structure of integer spin
fields and corresponding exponential behaviors as (2.54)
and (2.55).
We proposed a construction method of integrals that

capture behaviors at special points with imaginary
Matsubara frequencies iω ¼ 2πðnþ 1 − lÞT, where
l is spin of bosonic fields, n is a non-negative integer,
and T is the Hawking temperature. As seen in (4.12),
our construction by integrating bulk propagators over
horizons of static black holes leads to the frequencies
iω ¼ 2πðnþ 1 − lÞT. We also discussed the interpretation
of our construction in bulk scattering amplitudes on the
black hole spacetime and explained that our integrals are
generalizations of integrals of graviton propagators for a
shock wave geometry, which are related to chaotic proper-
ties of theories with the Einstein gravity duals.
Let us discuss some future directions of our work. We

explicitly obtained the special point structure with spin
l ¼ 0, 1, 2, 3, and predicted the special points of general
spin-l fields inductively. This is because it becomes more
difficult to decouple the EOMs for higher-spin fields. To do
so systematically, we need to understand why such specific
linear combinations of field components can decouple the
EOMs. We focused on the field components only with
indices v, r in the Eddington-Finkelstein coordinates (i.e.,
hv…v; hv…vr;…; hr…r) because they are expected to give

the leading special points [9,10,13], and it really does in our
case [44]. However, the other components of fields (i.e.,
hv…vi; hv…vij;…; hijk…, where i, j, k are the coordinates on
hyperbolic space Hd−1) should be investigated for com-
pleteness. One can also generalize our analysis on the
Rindler-AdS black hole background (2.1) into the more
general static black hole background (3.19).
To justify our proposal, it is important to further

investigate explicit examples of (4.12). Specifically, it is
worth studying the integrals of propagators of vector or
graviton fields. In our construction, we used the polariza-
tion vector (4.1). If we use another polarization vector, we
will obtain behaviors with different frequencies than (4.12),
and it would be interesting to examine this difference.
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