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Abstract

Visual localization is defined as finding the camera pose from two-dimensional images, which is a core technique in many
computer vision tasks, including robot navigation, autonomous driving, augmented/mixed/virtual reality, mapping, etc. In
this study, we address the pose estimation problem from a single-color image using a neural network. We propose a
coarse-to-fine approach based on a deep learning framework, which consists of two steps: direct regression-based coarse
pose estimation that obtains a pose by finding a pose-based similar image retrieval and Siamese network-based essential
matrix estimation to obtain a refined pose. Experimental results using the 7-scenes, Cambridge, and RobotCar datasets
demonstrate that the proposed method performs better than the existing methods in terms of accuracy and stability.
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1. Introduction

Visual localization is a method of estimating the 6-DoF (De-
gree of Freedom) camera pose from a query image. It is a key
technique utilized in computer vision-based tasks, such as aug-
mented reality, simultaneous localization and mapping, and in-
door navigation. Traditional feature-based approaches acquire
image features through feature detection and description algo-
rithms. They compute the local features of two-dimensional (2D)
images and match them to create 3D scene structure features.
When the 2D-3D matching pairs are assigned, a perspective-n-
point solver is used to compute the camera pose. Mostly, these
approaches use well-known hand-crafted feature detection al-
gorithms, such as SIFT (Scale Invariant Feature Transform) by
Lowe (2004), SURF (Speeded Up Robust Features) by Bay et al.
(2006), and ORB (Oriented FAST and Rotated BRIEF) by Rublee et
al. (2011). The problem with these methods is that such features
are not robust when texture-less scenes are given, illumination
changes drastically, and occlusions and repetitive structures ex-

ist in the scenes. In such cases, a serious feature mismatch oc-
curs, causing significant errors in the pose estimation.
Recently, the success of the deep learning framework in com-
puter vision has motivated researchers to use a deep learn-
ing network to estimate the camera pose from a single image.
PoseNet by Kendall et al. (2015) is an end-to-end network that di-
rectly estimates the 6-DoF camera pose from a single RGB (Red
Green Blue) image. It modifies InceptionV3 and replaces the clas-
sification part with fully connected layers to regress the cam-
era poses. Many studies have been conducted to improve the
performance of PoseNet. Namely, MapNet by Brahmbhatt et al.
(2018) enforces geometric constraints by minimizing the total
loss consisting of the relative camera pose loss between image
pairs and direct pose loss. LSTM PoseNets by Walch et al. (2017)
replaces the fully connected layers with LSTM (Long Short-Term
Memory) units for structured feature correlation before the final
direct camera pose regression. Hourglass PoseNets by Melekhov
et al. (2017) integrates hourglass architecture layers with short-
cut connections to the direct pose regression network. These

Received: 29 December 2021; Revised: 5 April 2022; Accepted: 28 April 2022

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This is an Open Access
article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

1097

€20z Aenuepr g0 uo Jasn ABojouyoa | R 8ousIog Jo aynsu| nlbuems) Aq y18859/2601/S/6/2191ME/epal/wo dno olwapese//:sdny Woll papeojumoq


http://www.oxfordjournals.org
file:www.jcde.org
https://orcid.org/0000-0001-7668-5796
mailto:khko@gist.ac.kr
https://orcid.org/0000-0001-7668-5796
https://orcid.org/0000-0001-7668-5796
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

Table 1: The pros and cons of the proposed and existing methods.

Category RGB 3D Intrinsic parameter Generalized Processing time Accuracy
Structure based (o] (0) (0) No Slow High
Direct pose regression (0] - - No Fast Low
Relative pose regression (0] - - Yes Fast Low
Ours (o] - - Yes Fast Medium

methods are effective for featureless environments, where most
traditional methods do not work well. Learning-based pose re-
gression methods are more robust compared to the traditional
methods for images with viewport changes, repeated structures,
weak textures, and blurred scenes. However, they are generally
less accurate and difficult to generalize when the input scenes
are not related to the training dataset.

Unlike traditional feature-based methods, some methods es-
timate the 3D coordinates of each pixel from a query image and
the scene’s world coordinate, which are called the structure-
based methods. Shotton et al. (2013) demonstrated that a scene
coordinate regression forest on RGBD (Red Green Blue Depth)
features mapped from image locations to the corresponding
scene coordinates can be trained directly. DSAC (Differentiable
RANSAC), Brachmann et al. (2017), and DSAC++, Brachmann
and Rother (2018) replaced the conventional RANSAC (RANdom
SAmple Consensus)-based n-point solver with a novel differ-
entiable RANSAC method to enable end-to-end training of the
structure-based method pipeline. The structure-based methods
work with high robustness and accuracy on small indoor scenes.
However, they are not robust for large-scale outdoor scenes
because of local and global ambiguities (Schonberger et al.,
2018).

In addition, most structure-based methods do not provide
real-time performance. They rely on depth information or 3D
models, which are memory-intensive and time-intensive to con-
struct, and require inputs for training. Therefore, they require a
significant amount of time for training and inference. Further-
more, they cannot handle unseen scenes as effectively as direct
pose regression methods.

Liet al. (2020) introduced HSC-Net, a hierarchical joint learn-
ing framework to estimate scene coordinates and to eliminate
environmental ambiguities. Brachmann and Rother (2021) pro-
posed DSACk, a two-stage approach consisting of scene coordi-
nate regression and differentiable pose estimation. It uses RGB
images and poses without 3D models for training. However, it
cannot be generalized to unseen scenes.

While the direct pose regression-based methods regress
the camera pose in the global scene coordinate, relative pose
regression-based methods take two images as input and esti-
mate the relative pose between them. They need a reference
regarding the global scene coordinates. Thus, they use an im-
age retrieval method to obtain reference information. The im-
age retrieval method typically builds a large image dataset with
known camera poses, retrieves the most similar image in the
database, and obtains the camera pose of the retrieved image. It
provides a rough estimate, which is often used for general place
recognition. NetVLAD (Vector of Locally Aggregated Descriptors)
(Arandjelovic et al., 2018) transformed the existing hand-crafted
feature algorithm, VLAD, into a learnable feature-based deep
learning approach with a triplet ranking loss adapted to weakly
labeled data. NN-Net by Laskar et al. (2017) combined pairwise
relative pose estimation and nearest neighbor retrieval between

the query and top N ranked references with pose hypothesis fil-
tering and evaluated unseen scene performance through experi-
ments with 7Scenes dataset. Six of the scenes are taken for train-
ing, and the remaining scene is used for test. RP-Net by En et
al. (2019) utilized a sequence-based image retrieval approach to
estimate relative poses using an end-to-end trained neural net-
work with various inference methods. Bai et al. (2018) combined
CNN (Convolutional Neural Network) features and a sequence
matching method to improve the accuracy when viewpoints and
conditions change simultaneously. RelocNet (Balntas et al., 2018)
introduced a network that can retrieve the nearest pose neigh-
bors using a frustum overlap. CamNet by Ding et al. (2019) ap-
plied a three-stage coarse-to-fine retrieval approach that shares
one encoder network throughout the overall pipeline. The im-
age retrieval method can handle unseen scenes. However, most
image retrieval methods suffer from low accuracy in direct pose
regression. Nevertheless, these methods are scalable and robust
against varying conditions.

In this study, we propose a visual localization method thatin-
tegrates direct pose regression, pose-based image retrieval, and
essential matrix estimation for pose refinement in one frame-
work. We regress the initial pose using a pose regression. Then,
we find the nearest image in the database and compute a rela-
tive pose estimated by an essential matrix estimation network
for pose refinement. The overall comparison of the proposed
method with the existing methods is made. The pros and cons
of the methods are summarized in Table 1. The table shows
that the proposed method takes only RGB images and does not
use 3D models. It does not require intrinsic parameters of the
camera to work, which is more convenient than the others.
Moreover, it can be generalized to unseen scenes and estimates
the poses fast. The estimation accuracy is higher than direct
and relative pose regression methods, while it is inferior to the
structure-based method.

The overall process of the proposed framework is presented in
Fig. 1, which is a retrieval-based coarse-to-fine framework with
deep neural networks. The framework consists of two modules:
a direct pose regression module for coarse retrieval and an es-
sential matrix estimation module for relative pose refinement.
The direct pose regression model is based on a single-stream ar-
chitecture with an RGB query image as the input. The essential
matrix estimation network is based on a Siamese architecture
using the image pair of the query image and associated image
in the training dataset.

We first estimate the rough pose of a query image using the
direct pose regression method. Next, we locate the image with
the closest pose to the estimated rough pose of the query im-
age in the training dataset. Once we retrieve the image from the
training dataset, we estimate an essential matrix with a scale
between the query and retrieved images. We use the estimated
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Figure 1: Overall process of the proposed framework.

essential matrix to compute the relative pose. Finally, we esti-
mate an accurate camera pose through pose refinement.

Sections 3—4 describe the proposed approach in detail. Sec-
tion 5 presents the experimental results. Finally, section 6 re-
ports the conclusions of our study.

3. Direct Pose Estimation for Coarse Retrieval

3.1. Direct pose regression

The direct pose regression step estimates the pose of a query im-
age directly using a neural network. For the backbone network,
we used ResNet-34 pre-trained on the ImageNet dataset. The
classification part of the network was replaced with fully con-
nected layers for pose regression. As shown at the top of Fig. 1,
we trained the network using a training database. The network
processes and RGB query image I; were used to predict the cam-
era pose relative to the scene global coordinate system. We took
two measurements of position and rotation:

Lx (It) := [1Xe — &elly ]

Lq (It) := liqe — Gxlly, vy

where x; and q; are the ground-truth camera position and rota-
tion components, respectively, & and g, are the estimated cam-
era position and rotation, respectively, and y refers to the L”-
norm. In this study, we use the L? Euclidean norm. The loss func-
tion is given as a combination of equations (1) and (2) defined by
Kendall and Cipolla (2017) as the following:

L (It) == Lx (It) exp (=8x) + 8x + Lq (It) exp (—8q) + Sq. ®3)

where §, and §4 are the two learnable parameters that balance
the scale difference between the position and rotation in the loss
function.

The direct pose regression method can always provide an ini-
tial pose, although not satisfactorily accurate for practical appli-
cations. However, it is more stable than traditional approaches
that fail to function when texture-less images or images con-
taining repetitive structures are provided. The estimated rough
pose is used to obtain an image that is close to the given query
image.

3.2. Pose-based near image retrieval

The image retrieval step locates the most similar image in the
dataset to the query image. A method using bag-of-words de-
veloped by Csurka et al. (2004) may lead to significant mem-
ory consumption and fail to work in some cases. A network-
based image retrieval method requires offline training, which
is time-intensive and memory-intensive. Therefore, we use a
pose-based image search method to obtain a “near image” from
the training dataset.

The near image search step is performed when the following
conditions are satisfied:

X=| % — %I, (4)
Q = |12+ acos (conj (dr. 4)) I ©)
L =min (X + 8Q), (6)

where x; and g, are the reference translation and rotation com-
ponents, respectively, % and G, denote the estimated position
and rotation components, respectively, and g is a scale balanc-
ing factor (e.g. B = 1 for indoor scenes.). Here, the image that
yields the minimum value for equation (6) is the near image.
The translation represents the distance error in 3D space. The
rotation represents the angle difference between the two quater-
nions. Note that the query and near images sufficiently overlap
in the camera frustum in most cases, namely, more than 50%,
as presented in Fig. 2, which is an essential condition for rela-
tive pose calculation.

4. Essential Matrix Estimation for Fine Pose
Refinement

4.1. Essential matrix estimation with respect to a scale

The relative pose between two images can be trained using a
Siamese network using the following weighted loss function:

Le(LT) =% = Xll2 + Blgr — g/ |2 @)

wherel = (x;, qr) denotes the true relative pose between an im-
age pair and I* = (x}, qf) denotes the estimated relative pose.
The hyper-parameter 8 plays a similar role in the pose-based
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Figure 2: Camera frustrum overlap between query and near image. Here, C and
C’ denote query and near image camera poses, respectively.

near image retrieval process. Namely, 8 is needed because rota-
tion (degrees) and translation (meters) are expressed in different
units. The effect of this difference is not significant for indoor
scenes where the position and rotation do not change signifi-
cantly. However, it can be critical for outdoor scenes where the
difference between the two camera positions is large because
it is difficult to obtain a suitable weighting factor. Such a prob-
lem can be eliminated by an essential matrix regression, which
implicitly defines the weights between the orthogonal rotation
matrix and unit norm translation vector. However, the unit norm
transform vector can only estimate the direction without a scale
factor. Therefore, by adding a scale factor to the final regres-
sion step of the network, the 2-DoF translation vector is cor-
rected with a scale. The detailed network structure is presented
in Fig. 3.

We use a Siamese neural network based on deep fundamen-
tal matrix estimation without correspondences (Poursaeed et al.,
2019). Using image pairs as input, we train the entire network
to regress the essential matrix directly. It comprises two feature
extraction networks and a reconstruction network. The feature
extractor networks are based on the universal correspondence
network (Choy et al., 2016), with the spatial transformers part re-
moved (Jaderberg et al., 2015). They are then concatenated into
two layers. Subsequently, six parameters (ty, ty, t;, 1x, Ty, andry)
are mapped using the loss function presented in equation (7).
The essential matrix is then reconstructed using equations (8-
10) with these six parameters. The scale factor is calculated us-
ing equation (11). Moreover, the reconstruction layer regresses
an essential matrix E with a scale factor, using equations (12)
and (13).

The multiple loss function Lt contains the hyper-parameter
beta in L. However, the essential matrix is reconstructed us-
ing equation (12) that does not contain the parameter, leading
to the reduced effect of the parameter in the computation. This
makes the proposed method different from the relative pose re-
gression approach. Here, Lr is used for the process to improve
the convergence of the essential matrix estimation learning
stage.

Le = ||tx — txlla + BIR — Rl @)
0 -t t
k=] tz 0 & @)

~ty t O

R = Ry (1) Ry (1y) R, (12) ©)

E = [t]xR (10)
s=/e+8+8 (11)
Lg = lle —&|2 (12)
Lt =Lp+Lg (13)

Here, e € R is the vectorized E e R**3 with a scale factor and &
is the vectorized predicted essential matrix with a scale factor.
The elements in e are the elements of the essential matrix. The
first element in the essential matrix is eg. The last element in the
matrix is eg. From equation (10), the multiplication of the trans-
lation vector and the rotation matrix produces the 3 by 3 essen-
tial matrix that corresponds to the nine elements in e. The scale
s is computed using the translation vector components by equa-
tion (11).

In the training stage, training image pairs are selected, which
have translation and angle differences within 0.5 m and 5°,
respectively, for indoor scenes and 5 m and 5°, respectively,
for outdoor scenes. Under these conditions, the selected image
pairs can have overlapping frustums that are sufficient for pose
refilnement.

Unlike the direct pose regression, which is a scene-specific
approach, the relative pose regression can be generalized to un-
seen scenes. However, the relative pose regression approach
has the disadvantage of requiring scene-dependent hyper-
parameters. Direct regression of the essential matrix can solve
the scene-dependent parameter problem. However, the essen-
tial matrix for a 2-DoF translation t is normalized to scale 1,
which denotes the unit direction. A scale factor should be es-
timated to de-normalize the translation vector. In this study, we
overcome these problems by estimating an essential matrix with
a scale factor, using a deep learning network.

The computed essential matrix containing the relative pose be-
tween the query and retrieved images is decomposed into a nor-
malized translation vector t and a rotation matrix R. There are
four possible candidate poses: (R, ), (R, —1), (R’, 1), and (R’, %),
where, R’ denotes the opposite of R. The correct translation and
rotation pairs among the four candidates can be found using
the chirality test. However, directly regressing the relative pose
does not include matching information used for the chirality
test. Therefore, the known reference pose of the dataset image
is used to select candidates that match the query image. The
directions of the rough and reference poses determine the di-
rection of t or ~t. Similarly, the minimum angle difference be-
tween the reference and candidate rotations determines R or R’.
Additionally, t is given as a normalized vector. Therefore, we use
a scale factor s to estimate the actual translation with respect
to the reference position. To correct the actual pose, a reference
pose is necessary, which is obtained from the near image present
in the training database. Then, we compute the refined pose by
adding the relative pose to the reference. Figure 4 depicts the
relationship between the four candidates, reference pose of the
near image, and rough pose of the query image.
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Figure 4: Essential matrix decomposed into the four candidates. Here, the pair
(Ry, t;) denotes a reference pose and (Rc, t.) denotes a rough pose.

5. Experiment and Results

The proposed method is tested using various datasets and com-
pared to other approaches.

5.1. Datasets

Three benchmark datasets, 7-scenes (Shotton et al., 2013), Cam-
bridge (Kendall et al., 2015), and Oxford RobotCar dataset (Mad-
dern et al, 2017), were used in the experiments. In the 7-
scenes dataset, seven indoor environments were measured with
a 640 x 480 resolution handheld Kinect RGB-D device. The
ground-truth camera poses were generated using the KinectFu-
sion method (Newcombe et al., 2011). Multiple sequences were
recorded inside one indoor environment, which were split into
training and test sequence sets of 500 or 1000 images. The Cam-
bridge dataset contains images of large-scale outdoor environ-

Concatenate 1

Essential matrix
m with scale

<o [er [ |
Y €3 €4 €5

S €6 €7 ¢€g

»

S

Reconstruction layer

ments taken around the Cambridge University. The dataset is di-
vided into training and test sequence sets, where each sequence
contains several hundred images. The ground-truth camera
poses were generated using structure-from-motion techniques.
The Oxford RobotCar dataset, again, contains images of large-
scale outdoor environments. The images were repeatedly cap-
tured following a consistent route over a long period of time and
documented various environmental changes. The ground-truth
camera poses were generated by combining heterogeneous sen-
sors, such as LiDAR, GPS, and camera. We used the LOOP subset
of the dataset.

5.2. Experiments on the 7-scenes dataset

We evaluated the proposed method against the state-of-the-art
techniques on the 7-scenes dataset. The results are summa-
rized in Table 2. ActiveSearch (Sattler et al., 2017), which is a
SIFT-based localization method, obtains the best accuracy but
often fails during localization with texture-less scenes because
the number of correspondence features was insufficient. The
number of images in which the method failed during localiza-
tion, is indicated in parentheses. ActiveSearch needs to build
a scene-by-scene 3D model as well. In contrast, the proposed
method works with single RGB query images without needing a
3D model. DSACx, proposed by Brachmann and Rother (2021) is
the state-of-the-art structure-based method that shows the best
performance. It uses RGB images without any 3D models. How-
ever, it requires camera intrinsic properties to initialize a scene
coordinate. Its average processing time is about 30 ms, whereas
the proposed method takes about 5 ms. Here, the camera trans-
lation and rotation errors are given in meters (m) and degree an-
gles (°), respectively. The median localization errors of the pro-
posed method on the 7-scenes dataset are 0.10 m and 5.47°. The

Table 2: The experimental results of the methods on the 7-scenes dataset (m/°).

Scene PoseNet MapNet NN-Net RelocNet ActiveSearch DSACsx (RGB) Ours

Chess 0.13/4.48 0.08/3.25 0.13/6.46 0.12/4.14 0.04/1.96 0.02/0.6 0.05/2.52
Fire 0.27/11.3 0.27/11.69 0.26/12.72 0.26/10.40 0.03/1.53(1) 0.02/0.9 0.10/8.81
Heads 0.17/13.0 0.18/13.25 0.14/12.34 0.14/10.50 0.02/1.45(1) 0.01/0.7 0.09/7.69
Office 0.19/5.55 0.17/5.15 0.21/7.35 0.18/5.32 0.09/3.61(34) 0.03/0.8 0.10/4.84
Pumpkin 0.26/4.75 0.22/4.02 0.24/6.35 0.26/4.17 0.08/3.10(68) 0.04/1.1 0.12/3.65
Red kitchen 0.23/5.35 0.23/4.93 0.24/8.03 0.23/5.08 0.07/3.37 0.04/1.3 0.13/4.10
Stairs 0.35/12.4 0.30/12.08 0.27/11.82 0.28/7.53 0.03/2.22 0.04/1.2 0.13/6.68
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Figure 5: Cases in which ActiveSearch fails to estimate the poses.

proposed method succeeds in all cases with comparable perfor-
mance, whereas ActiveSearch often fails to obtain the camera
pose. ActiveSearch uses RootSIFT features to establish 2D-3D
matches. It is based on prioritized matching, which terminates
the correspondence search once 200 matches have been found.
The pose is estimated via a PnP (Perspective-n-Point) solver in-
side a RANSAC loop, followed by non-linear refinement of the
pose. The 3D model required by ActiveSearch is built by match-
ing each training image against the nearby training images and
triangulating the resulting matches using the provided training
poses. Therefore, ActiveSearch fails or produces inaccurate pose
estimates when there is little or no visual overlap between the
test and training images. It also fails to estimate pose when no
or little matching results are obtained if the images are blurred
by a sudden motion or contain bright regions by a bright light
source, as shown in Fig. 5. However, the proposed method can
handle such images successfully with a faster computation per-
formance. Fig. 6 showes pose estimation results on the 7-scenes
chess dataset compare to the PoseNet and MapNet.
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5.3. Experiments on the Cambridge dataset

The Cambridge dataset covers large areas of outdoor environ-
ments. It is larger compared to the 7-scenes dataset but con-
tains less images per volume compared to the 7-scenes dataset.
Each sequence has several hundred frames. Therefore, the ex-
periment on the Cambridge dataset presents the influence of
relative posture estimation through essential metrics. We com-
pared our approach to PoseNet, MapNet, and RPNet methods us-
ing the Cambridge dataset. As reported in Table 3, our model per-
forms better than the other methods. Observe that, compared to
RPNet, our method can achieve a more accurate pose estimation
because it reduces the influence of the balancing parameters on
outdoor scenes.

5.4. Experiments on the Oxford RobotCar dataset

The structure-based methods, DSAC and DSAC++, cannot han-
dle large outdoor scenes (Lee et al., 2021). The Cambridge land-
mark dataset covers several tens or hundreds of meters. On the
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Figure 6: Pose estimation results on the chess dataset (green: GT, red: estimated pose, and blue: distance).
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Table 3: The experimental results of the methods on the Cambridge dataset (m/°).

Scene PoseNet MapNet RPNet Ours

Great Court 4.78/6.10 7.85/3.76 - 2.15/3.42
Kings College 5.97/9.24 1.07/1.89 1.93/3.12 0.96/1.58
Old Hospital 1.59/5.13 1.94/3.91 2.41/4.81 1.51/3.86
Shop Facade 1.05/6.19 1.49/4.22 1.68/7.07 1.03/3.99
St Marys Church 1.32/6.78 2.00/4.53 2.29/5.90 1.45/3.35

PoseNet (25.29m, 17.45)

Figure 7: Pose estimation results on the Loop dataset.

Table 4: The experimental results of the methods on the Oxford
RobotCar dataset (m/°).

Scene DSAC++ PoseNet MapNet Ours

Loop N/A 25.29/17.45 9.84/3.96 2.15/3.71

other hand, the Oxford RobotCar is an outdoor environment
where the length of the loop is about 1120 m, the range of which
is much larger than that of the Cambridge landmark dataset.
In the case of the Loop dataset, DSAC++ learning is not possi-
ble due to a memory problem because it requires the entire 3D
scene coordinates that must be reconstructed from the dataset,
which may take an enormous amount of memory depending on
the scene. Lee et al. (2021) also reported that the method failed in
the experiments. DSAC++ has the Cambridge landmark dataset
results. However, it required more information such as intrin-
sic parameters than RGB images for training, which means that
it does not belong to the category of the methods that use RGB
images only. Therefore, we do not consider DSAC++ in the com-
parison.

We compared our model to MapNet and PoseNet on the Loop
dataset. PoseNet and MapNet resulted in position and direction
errors of 25.29 m and 17.45°, and 9.84 m and 3.96°, respectively.
The proposed method resulted in position and direction errors
of2.15m and 3.71°, respectively, which underlines that it is more
accurate compared to both PoseNet and MapNet, as depicted in
Fig. 7. and Table 4.

The proposed method shows similar or inferior performance
to the existing methods with a few datasets. For example, as
shown in Table 3, the proposed method shows about 10% less ac-
curate estimation result than PoseNet with the St Marys Church
dataset, one scene of the Cambridge dataset. However, for oth-
ers, the proposed method works better. The same result is ob-
tained from the experiments with the Oxford RobotCar dataset,
which shows much better accuracy than the others by about
78%, as shown in Table 4. For the 7-scenes dataset, the proposed
method shows better accuracy than the others except for the
structure-based methods (ActiveSearch and DSACx) by about 40—
60%. The structure-based methods show higher accuracy than
the proposed method. However, they require 3D models and ad-

MapNet (9.84m, 3.96)

Our (2.15m, 3.71)

ditional parameter values in addition to RGB images, and they
need more computation time to estimate the pose than the pro-
posed method.

In this section, we evaluate the pose-based near-image method
of the retrieval stage in the pipeline, which returns images in
the dataset related to a query image. Traditional image retrieval
methods locate the image most similar to the query image from
a dataset. The similarity between the two images is computed
as follows: Images are converted into vectors (descriptors) us-
ing VLAD or bag-of-visual-words. Next, the Euclidean distances
between them are calculated. We experimentally compared the
performance of our method to that of NetVLAD, an advanced im-
age retrieval method, with respect to seven scenarios. We iden-
tify the candidate images in the dataset using each method,
given a target image. Then, we locate the reference image, the
nearest one to the target image from the pose data present in
the dataset, and calculate the error between the candidates and
reference images. Our method relies on the direct pose regres-
sion method; therefore, it cannot always locate the most simi-
lar image. However, when there are enough datasets in a small
volume, such as the 7-scenes dataset, the results are similar to
or better than those of NetVLAD. This shows that the proposed
method is sufficiently effective in relative pose refinement. The
images obtained using NetVLAD and proposed method are pre-
sented in Fig. 8 when the target images are given as query im-
ages. Table 5 showes our pose-based retrieval results on 7Scenes
dataset. The proposed method can retrieve images closer to the
target images than those obtained by the NetVLAD method.

The direct pose regression and structure-based methods have
limitations on unseen scenes. In contrast, relative pose regres-
sion can be generalized to handle unseen scenes. In this section,
we experiment on the generalization performance of the pro-
posed method and compare it to NN-Net and DSACx. Six scenes
from the 7-scenes dataset were used for training, and the re-
maining scene data were used as queries. The results are sum-
marized in Table 6. The final pose estimation result by query-
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Target image

NetVLAD

Pose based

Figure 8: Examples of target images and images retrieved by the NetVLAD and pose-based methods.

Table 5: The experimental image retrieval results (m/°).

Scene NetVLAD Pose based
Chess 0.08/5.22 0.07/3.26
Fire 0.18/7.29 0.15/5.12
Heads 0.16/6.32 0.17/7.10
Office 0.36/9.28 0.16/10.52
Pumpkin 0.24/10.52 0.21/8.28
Red kitchen 0.23/7.31 0.18/5.35
Stairs 0.27/5.50 0.27/11.27

ing the chess scene image has a translation and rotation error
of 0.25 m and 12.07°, respectively. Similarly, the errors related to
the heads and red kitchen scenes are considered. The results in-
dicate that the proposed method has a similar accuracy to that of
NN-Net. The direct pose regression step of the proposed method
sometimes yields a significant error in the rough pose estima-
tion process. However, a stable result can be obtained after a few
frames using the proposed method, which locates the nearest
image using the previous pose estimation.

5.7. Ablation study

In this section, we assess how the components used in the
proposed method affect the visual localization system perfor-
mance through an ablation study. The study considered the
following four networks to highlight the contributions of each
part of the framework: (i) Base, which regresses the direct pose;
(ii) Base + DE (Directly estimate Essential matrix), which re-
gresses an essential matrix directly using nine parameters; (iii)
Base + RE, which regresses an essential matrix with a recon-
struction layer; and (iv) Base + RE (with Reconstruction layer es-

Table 6: Generalization test results on the 7-scenes dataset (m/°).

Removed scene NN-Net DSACx Ours

Chess 0.27/13.05 2.61/99.9 0.25/12.07
Heads 0.23/15.03 2.80/89.7 0.26/17.04
Red kitchen 0.36/12.60 3.29/105.3 0.36/13.41

timate Essential matrix) + s, which regresses an essential matrix
with a scale factor.

The ablation study results are presented in Table 7. The first
case (Base) denotes the initial pose estimation results, which
can be used as a reference to show how each part contributes
to the performance. In the second case (Base + DE), the re-
sults do not improve much compared to the first case. Be-
cause the scale of each element of the essential matrix is very
different, the direct regression method needs a long time to
converge, whose results are not promising. Therefore, the pro-
posed method does not consider the direct regression of the es-
sential matrix and the scale. The third case (Base + RE) indi-
cates that the pose error has been reduced by approximately
40% when an essential matrix is obtained with a reconstruc-
tion layer. The reconstruction network is significantly effective
in producing an accurate essential matrix. In the fourth case
(Base + RE + s), the results improved substantially compared to
the third case. The essential matrix has a unit translation vec-
tor, whereas the third case only corrects the direction. Therefore,
considering the scaling effect in the estimation can improve the
performance.

6. Conclusions

In this study, we propose a coarse-to-fine visual localization
framework that combines direct pose regression, pose-based re-
trieval, and essential matrix regression to estimate the 6-DoF
camera pose when only a 2D query image is given, without using
3D information about the scene.

The proposed method integrates direct pose regression,
pose-based image retrieval, and essential matrix estimation for
pose refinement in one framework, which combines the char-
acteristics and strengths of each approach to strike a balance
between robustness and accuracy. Although it employs some el-
ements of the existing methods, it reduces the processing time
by using an estimation method that takes pose information in
the image retrieval step. After that, a method is developed to
estimate the relative pose through the essential matrix estima-
tion, which reduces the sensitivity of the hyperparameter, re-
sulting in higher estimation accuracy in the outdoor environ-
ments compared to the existing methods.
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Table 7: Ablation study results on the 7-scenes dataset (m/°).

Scene Base Base + DE Base + RE Base + RE +s
Chess 0.14/6.17 0.12/4.14 0.07/3.25 0.05/2.52
Fire 0.24/10.08 0.23/10.4 0.17/9.04 0.10/8.81
Head 0.18/11.6 0.14/10.5 0.12/8.45 0.09/7.69
Office 0.21/5.77 0.18/5.32 0.15/5.38 0.10/4.84
Pumpkin 0.25/5.92 0.16/4.17 0.13/4.93 0.12/3.65
Red kitchen 0.23/7.01 0.23/5.08 0.20/5.01 0.13/4.10
Stairs 0.27/10.6 0.25/7.53 0.15/6.94 0.13/6.68

The pose-based image retrieval approach is more efficient in
terms of speed and memory, while presenting similar results to
those obtained by traditional image retrieval methods. Essential
matrix-based relative pose estimation can be applied to unseen
scenes, which underlines that the proposed method is more ro-
bust and stable with respect to various scenes. The proposed
method is motivated by the image retrieval approach. Therefore,
it experiences the limitations that the image retrieval method
has. Namely, it should maintain a large RGB image and the cor-
responding pose dataset. It also requires training before it can
be used for pose estimation.

Our proposed framework results in a more accurate pose
estimation compared to the state-of-the-art visual localization
methods, which is confirmed based on the experimental results
obtained on indoor and outdoor datasets.
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