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Abstract— Modern vehicles are equipped with various driver-
assistance systems, including automatic lane keeping, which
prevents unintended lane departures. Traditional lane detection
methods incorporate handcrafted or deep learning-based features
followed by postprocessing techniques for lane extraction using
frame-based RGB cameras. The utilization of frame-based RGB
cameras for lane detection tasks is prone to illumination varia-
tions, sun glare, and motion blur, which limits the performance
of lane detection methods. Incorporating an event camera for
lane detection tasks in the perception stack of autonomous
driving is one of the most promising solutions for mitigating
challenges encountered by frame-based RGB cameras. The main
contribution of this work is the design of the lane marking
detection model, which employs the dynamic vision sensor. This
paper explores the novel application of lane marking detection
using an event camera by designing a convolutional encoder
followed by the attention-guided decoder. The spatial resolution
of the encoded features is retained by a dense atrous spatial
pyramid pooling (ASPP) block. The additive attention mechanism
in the decoder improves performance for high dimensional input
encoded features that promote lane localization and relieve
postprocessing computation. The efficacy of the proposed work
is evaluated using the DVS dataset for lane extraction (DET).
The experimental results show a significant improvement of
5.54% and 5.03% in F1 scores in multiclass and binary-class
lane marking detection tasks. Additionally, the intersection over
union (IoU) scores of the proposed method surpass those of the
best-performing state-of-the-art method by 6.50% and 9.37% in
multiclass and binary-class tasks, respectively.

Index Terms— Lane marking detection, event camera, atten-
tion network.
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I. INTRODUCTION

ADVANCEMENTS in the development of sensor technol-
ogy have made a tremendous impact on autonomous

driving in terms of environmental perception [1]. In the
context of autonomous vehicles, the architecture mainly com-
prises a sensor layer, perception layer, planning layer, and
control layer [2]. The sensor layer includes the integration
of exteroceptive and proprioceptive sensors. The perception
layer utilizes the information obtained through the sensor
layer for environment understanding [3]. The decision from
the perception is fed to the planning layer that devises the
optimal trajectories for the autonomous vehicle [2]. Finally,
the control layer is responsible for the safe execution of
control commands applied to the vehicle through lateral and
longitudinal control [4]–[6].

The primary goal is to understand the environment sur-
rounding the autonomous vehicle through the fusion of exte-
roceptive and proprioceptive sensor modalities [7]. The per-
ception of the surrounding environment includes many chal-
lenging tasks, for instance, lane extraction, object detection,
and traffic mark recognition, which provides the foundation
for the safety of autonomous vehicles as standardized by the
Safety of the Intended Functionality SOTIF-ISO/PAS-21448.1

The fundamental task in the hierarchy of perception is the
extraction of lane information, as it assists an autonomous
vehicle in precisely determining its position between the lanes.
Accurate lane extraction forms the basis for the robust plans
of autonomous vehicles, which includes lane departure and
trajectory planning.

In the literature, much promising research has been pro-
posed based on either using handcrafted features or using an
end-to-end deep neural network for lane detection using con-
ventional frame-based RGB cameras [8]–[11]. Conventional
frame-based RGB camera performance is limited in various
extreme and complex scenes [12]. For instance, by using
conventional frame-based RGB cameras, the variation in illu-
mination conditions can affect the performance of the lane
detection algorithm because of unclear scenes in the input.
Moreover, motion blur is typical for frame-based images when
acquired from moving vehicles. The development of event
cameras offers a promising solution to overcome uncertainty
in conventional frame-based cameras caused by capturing the
image at regular intervals. Event cameras capture per-pixel
brightness changes, and each pixel streams the data asynchro-

1https://www.daimler.com/innovation/case/autonomous/safety-first-for-
automated-driving-2.htm
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Fig. 1. A sequence of images captured while coming out of a tunnel (T1-T2-T3-T4-T5). The top row shows the grayscale images, and the bottom row shows
the corresponding event camera images. RGB cameras are highly affected by illumination variations due to their low dynamic range. The figure is borrowed
from [13] to illustrate the difference between event cameras and frame-based RGB cameras.

nously. Compared to the frame-based camera, the event camera
provides a significant advantage in higher temporal resolution,
high dynamic range and less motion blur. Event cameras have
two primary characteristics: i) a low latency rate and ii) a high
dynamic range. An event camera captures the environment by
the change in events, and its low latency rate helps generate
the image faster than conventional frame-based cameras [12].
Additionally, this characteristic ensures that the image quality
is not affected by motion blur. The high dynamic range of
event cameras addresses the effect of illumination. Compared
to conventional frame-based cameras having a dynamic range
of 60 dB, event cameras (for the DET dataset CeleX-V)
provide a high dynamic range of 120 dB that mitigates the
illumination variation problem that appears in conventional
frame-based cameras for lane detection [12], [14]. Fig. 1
illustrates the difference between event cameras and standard
conventional cameras.

The perception of the environment plays an essential role
in the architecture of the autonomous vehicle by determining
the surrounding traffic entities, for instance, object detection.
The inclusion of event cameras in the sensor suite of the
autonomous vehicle provides an extra edge in the perception
pipeline of the autonomous vehicle [15]. Changes in illumina-
tion, sun glare, and motion blur are detrimental to frame-based
cameras and lead to performance degradation of the perception
module and may lead to autonomous vehicle fatalities. More-
over, in contrast to frame-based cameras, event cameras with
low latency can benefit the perception module [12]. Notably,
different exteroceptive sensors have pros and cons, but their
integration them for in the autonomous vehicles provides a
complement to different sensor modalities. This redundant
integration of sensors contributes to the safety of autonomous
vehicles in the environment.

In this work, inspired by the utilization of event cameras
in autonomous driving for lane detection tasks, as illustrated
in [13], an encoder-decoder neural architecture is designed
for lane detection using an event camera. The architecture of

the network is composed of three core blocks: i) an encoder,
ii) an atrous spatial pyramid pooling (ASPP) block [16],
[17], and iii) an attention-guided decoder. The encoder of the
proposed network is a combination of convolutional layers
followed by a DropBlock layer and a max-pooling layer for
the fast encoding of the input data. The ASPP block processes
the encoded feature maps for the extraction of long-range
features to ameliorate the spatial loss. The proposed decoder is
based on an attention-guided decoder and is followed by fully
connected layers to produce the lane detection predictions. The
generality of the proposed network is experimentally validated
on an event camera dataset. The event camera dataset contains
various lane types, for instance, a single solid line, a single
dashed line, a parallel solid line and a dashed line, and parallel
dashed lines, etc. In addition, different numbers of lanes in the
event dataset are collected by driving on roads with various
carriageways. The event dataset also includes scene sparsity in
addition to lane diversity. Therefore, the dataset is collected
in various traffic scenes, for instance, driving on overpasses
and bridges and in tunnels and urban areas, etc. Furthermore,
in real-world scenarios, the viewpoint of the image plays an
essential role in scene understanding. In this context, the event
camera dataset is collected by changing the camera’s location
to increase the dataset’s intraclass variance. The proposed lane
marking detection network (LDNet) trained on this dataset
handles complex scenes by incorporating the generalization
of the scene sparsity and lane sparsity. The experimental
evaluation of the proposed method is extensively tested on the
event camera dataset, the dynamic vision sensor (DVS) dataset
for lane extraction (DET), for multiclass and binary-class lane
detection tasks and evaluated using the F-measure (F1 score)
and intersection over union (IoU ) metrics. The proposed
method achieves a significant improvement of 5.54% and
5.03% on the mean F1 scores in the multiclass and binary-
class tasks, respectively, surpassing the best-performing state-
of-the-art method. In the case of the IoU scores, the proposed
method surpasses the best-performing state-of-the-art method
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by 6.50% and 9.37% in multiclass and binary-class tasks,
respectively.

Moreover, an ablation study is conducted on the Carla-DVS
dataset and Event-Segmentation dataset. Carla-DVS is a syn-
thetic dataset collected using the open-source Carla simulator.
The data consist of event data and binary labels for lane detec-
tion. The dataset is evaluated on the proposed algorithm and
compared with other state-of-the-art algorithms. The LDNet
is evaluated for generalization over the Event-Segmentation
dataset.

In summary, the main contributions of this work are as
follows:

1) The novelty of this work is in the design of a con-
volutional encoder-decoder network for lane segmen-
tation using the event camera dataset. We studied
the encoder-decoder architecture for the lane detection
task using the frame-based RGB camera as a sensor
modality. We designed the encoder-decoder architec-
ture for the novel application of lane detection using
an event camera as the sensor modality based on
the relevant literature. We present a detailed compar-
ative analysis of our encoder-decoder framework and
other state-of-the-art frameworks in Section II Related
Work.

2) In this work, we have proposed a convolutional encoder-
attention-guided decoder architecture in LDNet for lane
marking detection using an event camera. The encoder
architecture is composed of four convolutional layers
followed by DropBlock layers to handle the event
data lanes and scene sparsity. In the proposed method,
the reason for using few convolutional layers is to ensure
that the feature size computable (to avoid gradient explo-
sion) because of the sparsity of event data. In addition,
to retain the spatial resolution of the encoded features,
a dense ASPP block is employed. The additive attention
mechanism is utilized in the decoder part because of its
better performance for high dimensional input encoded
features that help improve lane localization and relieve
postprocessing computation.

3) In the proposed work, we employed the ASPP module to
retain the spatial resolution by increasing the receptive
field. The ASPP allows capturing valuable features as
well as objects at multiple scales. The novelty of ASPP
in the proposed work is the application to the event
camera dataset for lane marking detection. Since using
deeper convolutional neural networks (CNN) causes loss
of spatial information at multiple scales and due to the
sparsity of input data, it reduces the network perfor-
mance. Furthermore, in contrast to DeepLabv3, we used
the deep ASPP block for the feature extraction for lane
marking detection using the event camera data. The deep
ASPP block enables learning the feature representation
at multiple scales and is followed by the attention-guided
decoder module for lane marking detection. We have
evaluated our method against DeepLabv3 and achieved
obtained improvement of 15.82% in the mean F1 score
and 15.49% in the mean IoU score.

This work addresses the novel problem of lane detection
using an event camera by designing a convolutional encoder-
attention-guided decoder architecture. The design of the
encoder network consists of four convolutional blocks fol-
lowed by DropBlock layers to address the lane and scene
sparsity. In addition, to retain the spatial resolution of the
encoded features, we have employed the deep ASPP module.
Finally, we have added the attention-guided decoder that
helps the proposed method better generalize for the lane
detection task and relieve post-processing computations. The
efficacy of the proposed method is extensively evaluated on
the DET dataset and showing better performance in contrast
to other state-of-the-art methods. The remainder of the paper
is organized as follows: Section II introduces the event camera
and its principle of operation related to the proposed method.
Section III covers the related work. Section IV discusses
the proposed methodology. Section V focuses on the exper-
iments and results. The experimental analysis is discussed in
Section VI. The ablation study is performed in Section VII
and finally, Section VIII concludes the paper.

II. EVENT CAMERA AND PRINCIPLE OF OPERATION

Event cameras are operated asynchronously in contrast to
traditional frame-based cameras. The event camera captures
the change in brightness (events) for each pixel independently
in addition to capturing dense brightness, as in frame-based
cameras at a fixed rate. In event cameras, the light is sampled
by considering the scene dynamics with no dependencies
related to the external clock (for instance, 30 fps (frame
per second)) for the viewed scene. When measuring brightness
changes, event cameras generate the sparse signals that are
asynchronous in space and time, usually encoding moving
image edges. This enables the event camera to obtain an
advantage over traditional frame-based cameras in terms of
high temporal resolution, low latency, low power computation
and high dynamic range ((140 dB and 120 db) vs 60 dB of
standard cameras) [12], [18].

The event camera generates the output in the form of events
or spikes. The usability of these data to the convolutional
neural network is to transform it into an opposite represen-
tation (for instance, images). In this context, the stream of
event data is converted to an image where independent pixels
correspond to a change in brightness, specifically, the logarith-
mic brightness signal H (vi, ti )

.= logI (vi, ti ). For the pixel
location vi = (xi , yi )

T and time ti , an event is recorded when
the change in the brightness reaches the threshold (σ ) [19]:

H (vi, ti )− H (vi, ti − �ti ) ≥ piσ (1)

where pi ∈ {−1, 1} corresponds to the polarity of brightness
change and �ti represents the time since the last event
triggered at location vi . A sequence of events E(tN ) =
ei

N
i=1 = (xi , yi , ti , pi)

N
i=1 is generated in the time interval

�ti . Eq.1 represents the event generation model for the ideal
sensor. In this work, we used the event dataset generated using
the CeleX-V event camera [20]. In this camera, instead of
polarity, a new event packet is introduced E(tN ) = ei

N
i=1 =

(xi , yi , ti , ai )
N
i=1 where “a“ corresponds to an in-pixel time-

stamp or pixel logarithmic gray level value. The CeleX-V
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encodes the events to the image representation by accumulat-
ing the event along the time interval �ti that is set to 30 ms
for this dataset.

The event camera is a new sensor modality in contrast to
frame-based traditional cameras, requiring the same maturity
level of research as conducted on frame-based traditional
cameras. The challenge in utilizing the event camera relies
on processing event data, as agreement on the best method
for representing the events has not yet been reached [12],
[21]. The processing of event data is performed based on the
application. As the event camera operates on the illumination
variations in the scene, the utilization of the event camera
inside a static scene will limit its usability. Notably, when the
event camera is placed on a stationary vehicle with respect
to the road and the scene dynamics are constantly changing,
the camera generates data according to changes in brightness
regardless of the stationary position of the vehicle.

III. RELATED WORK

In autonomous driving, lane detection serves as a funda-
mental component, and much research has been focused on the
development of robust lane detection algorithms [22]. In the
literature, two types of mainstream techniques have been used
for lane detection: traditional image processing methods and
deep learning-based segmentation methods [23], [24] [25].

A. Traditional Image Processing Methods for Lane Detection

Traditional vision-based lane detection methods follow
pipelines that include image preprocessing, feature extraction,
lane model fitting and lane tracking. In traditional approaches,
image preprocessing is a necessary step in determining the
quality of features for lane detection tasks. For this purpose,
image preprocessing includes region of interest (ROI) gen-
eration, image enhancement for extracting lane information
and removal of non-lane information. The extraction of ROIs
is an efficient method for reducing redundant information
by selecting the lower part of the image [26]–[28], and
in some works, ROIs are generated using vanishing point
detection techniques [29]–[31]. Reference [32] has proposed a
global way to estimate dense vanishing points using dynamic
programming for multiple lane detection with horizontal and
vertical curves. Inverse perspective mapping (IPM) [33], [34]
or warp perspective mapping [35] is used after ROI generation
based on the parallel line assumption to reduce the effect of
noise and to conveniently extract lanes. Lane enhancement
is performed by using either color-based techniques or edge
detection methods, such as hue-saturation-intensity (HSI) [36],
luma, blue-difference and red-difference chroma components
(YCbCr) [29], and lightness, red/green and yellow/blue coor-
dinates (LAB) [37] as color-based models for transformation,
and the Sobel operator [38], [39] and Canny detector [40],
[41] as edge-based techniques. Hybrid methods comprising
color and edges are also used in research [28]. ROI generation
reduces the noise in images, but it is not robust to shadows and
vehicles. Filters are used in some works to eliminate non-lane
information [26], [42], [43]. In traditional approaches, lanes
can also be modeled in the form of lines [42], [44], parabolas

[39], [45], splines [24], [42], [46], hyperbolas [31], and so
on. Reference [47] solved the lane detection problem by
formulating it as a two-dimensional graph search problem.
They designed a graph model that incorporates the continuous
structure of lanes and roads. Furthermore, dynamic program-
ming is used to solve the shortest path problem for the lane
detection defined as the graph model. Additionally, tracking
is used as the postprocessing step to overcome illumination
variations. Kalman filtering and particle filtering are the most
widely used approaches for tracking lane detection [35], [44].
In addition to tracking, the authors also utilized Markov and
conditional random fields as a postprocessing approach for
lane detection [48]. Reference [49] used a normal map for
lane detection. The authors utilized the depth information for
the generation of normal maps and used adaptive threshold
segmentation for lane extraction.

The traditional image processing methods for lane detection
are unreliable for event camera data due to the nature of the
data. The event camera data are sparse and consist of spikes,
which indicate a change in brightness at each pixel. It lacks
color information and complex information of scenes present
in frame-based RGB images. The aforementioned techniques
cannot be directly applied to event camera data, such as edge
detectors, line fitting, Hough transforms, etc. They require
human supervision and fail to extract valuable features that
would affect the robustness of the lane detection task.

B. Deep Learning-Based Segmentation Methods

Recent advances in neural network architectures have exhib-
ited a tremendous impact on refining the extracted features for
lane detection tasks. The fine-tuning step of traditional meth-
ods in ROI generation, filtering and tracking has been solved
by the use of neural networks. The deep neural networks for-
malize the lane detection problem as a semantic segmentation
task. The vanishing point guided network (VPGNet) is guided
by vanishing points for road and lane marking detection [50].
Reference [51] proposed LaneNet, which performs detection
in two stages: i) lane edge proposal generation and ii) lane
localization. PolyLaneNet uses a front-facing camera for lane
detection by generating the polynomials for each lane in the
image via deep polynomial regression [52], [53]. In [54],
the authors formulated lane detection as a row-based selection
problem using global features. The use of row-based selection
has reduced the computational cost of lane detection tasks.
Moreover, the self-attention distillation (SAD) approach is also
used in lane detection tasks that allow model self-learning
with any additional labels [55]. Reference [56] used two
cascaded neural networks in an end-to-end lane detection sys-
tem. Reference [57] proposed a lane line detection technique.
The network consists of two parts. First, a simple module
follows an encoder-decoder architecture that learns features
and predicts reasonable lanes. To handle more complex scenes,
a second multitarget segmentation module is developed based
on Wasserstein generative adversarial network (GAN).

In the literature, the encoder-decoder architecture is broadly
used for semantic segmentation using the image data.
Lane marking detection, as the peculiar task of semantic
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Fig. 2. The proposed LDNet architecture. The network is composed of three core components: i) a convolutional encoder to learn the feature representation, ii) a
deep atrous spatial pyramid pooling (ASPP) block to retain the spatial resolution of encoded features, and iii) an attention-guided decoder. The attention-guided
decoder is comprised of Up-block layers followed by the same convolutional block of the encoder part. The network takes an event camera image and predicts
the lane marking detection.

segmentation, is used to classify the lanes in binary and mul-
ticlass categories. In the research domain, the most effective
method to employ for lane marking detection is encoder-
decoder architecture. In [58], the authors designed SegNet,
an encoder-decoder architecture for image semantic segmen-
tation. The encoder of the architecture consists of 13 con-
volutional layers inspired by the VGG-16 network followed
by batch normalization, rectified linear unit (ReLU) activa-
tion function and a max-pooling layer. Each encoder has a
corresponding decoding layer for upsampling the encoded
feature map to full input resolution feature maps for seman-
tic segmentation. The use of successive convolution results
in spatial information loss, and due to sparsity of event
data, in our proposed network, we use fewer convolution
blocks with atrous spatial pooling to cater to information
loss and improve lane detection. Reference [59] proposed an
encoder-decoder network for lane detection that is similar to
SegNet [58] architecture. They removed the pooling layers and
fully connected layers from the Segnet architecture and used
the low-resolution image to achieve real-time lane detection.
Furthermore, they trained the network by generating their
dataset as a set of points for the lanes from the TuSimple
dataset. The reduction in the resolution of the input image
in the case of event data causes significant information loss,
which is unfavorable for a robust lane detector.

In addition, some works have employed two decoders and
semantic segmentation in an encoder-decoder architecture. For
instance, [60] used the VGG16 network as a base model for

the encoder followed by dilated convolution layers and two
separate decoders for the semantic and instance segmenta-
tion for the lane detection task. In [61], inspired by spatial
pyramid pooling, the authors designed an encoder-decoder
network. The main focus of their work is on designing the
encoder network that includes an efficient dense module of
depthwise separable convolution (EDD) and a dense spatial
pyramid (DSP) module. For the decoder, they utilized bilinear
interpolation and deconvolution for upsampling the encoder
feature maps. Reference [62] designed an encoder-decoder
network on the top of LaneNet architecture by replacing the
LaneNet encoder with a sequential combination of atrous
ResNet-101 and the spatial pyramid pooling (SPP) net-
work. The decoder module consists of two decoder networks
for embedding the feature map and binary segmentation
map.

This work employed the encoder-attention-guided decoder
architecture for lane marking detection using event cam-
era data. In contrast to the abovementioned encoder-decoder
architecture, we used the DropBlock layer with convolutional
blocks to retain the network generality for the lane detection
task. In the SegNet [58] architecture and [59], the spatial
resolution is lost in the succession of the encoder architecture.
We employed the ASPP module to retain the spatial resolution
followed by the attention-guided decoder, which improves the
localization of lanes. Moreover, in our work, the attention-
guided decoder is beneficial to lane marking detection by
not performing additional postprocessing steps and in contrast
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to [60], [61] [62] optimizes the localization of features in the
feature map.

C. Datasets for Lane Marking Detection

The most common datasets used by the traditional and
deep learning-based methods include the Caltech dataset [23],
TuSimple dataset [63], and CULane dataset [64]. These
datasets are based on RGB images generated by conventional
cameras. The change in illumination and motion blur in
the images will affect the performance of the lane detec-
tion algorithm. Event cameras are a type of novel sensor
that address the problem of standard cameras by having a
dynamic range and low latency. In the literature, several event
camera datasets have been published, including the Synthe-
sized Dataset [14], Classification Dataset [65], Recognition
Dataset [66], and Driving Dataset [67]. The aforementioned
event camera datasets are for general purposes, and none
of them are explicitly dedicated to the lane detection task.
Additionally, these datasets have low spatial resolutions. The
two main applications that have been published in the research
on the event camera include steering angle prediction [68]
and car detection [69]. Reference [13] proposed an event
camera dataset for lane detection tasks. The authors evaluated
their dataset with different lane detection algorithms, including
DeepLabv3 [17], a fully convolutional network (FCN) [70],
RefineNet [71], LaneNet [51] and a spatial convolution neural
network (SCNN) [64], and published the benchmark for lane
detection tasks using event cameras. In their lane detection
benchmark, the SCNN [64] outperformed all the other algo-
rithms and achieved a better mean IoU and mean F1 score.
Inspired by [13], in this work, we use their dataset in the lane
detection task, and the experimental evaluation of the proposed
method surpasses the abovementioned benchmark in terms of
both the mean F1 and IoU scores.

IV. METHODS

In this section, we describe in detail the proposed framework
for lane marking detection, as illustrated in Fig. 2. The frame-
work consists of three modules: a convolutional encoder mod-
ule, which extracts the features from the input image; a deep
ASPP block to extract global features, and an attention-guided
decoder module. In addition, skip connections are added from
the encoder to the decoder to retain high-frequency spatial
features.

A. Encoder

The CNNs outperform traditional computer vision and
image processing techniques that incorporate handcrafted fea-
tures for lane marking detection using standard RGB cam-
eras [26]–[28]. However, lane marking detection with event
cameras is a new research domain, and many state-of-the-
art deep learning-based lane detection algorithms, such as
SCNN [64], LaneNet [51], and FCN [70], are implemented
on event camera images but require further improvements
in robustness [13]. Fig.2 shows the design of the encoder
for the event camera for lane marking detection. The related

TABLE I

THE DETAILED ARCHITECTURE OF THE PROPOSED LDNET

work gives an insight into the motivation of the designed
encoder. We adopted and modified the encoder from the
SegNet architecture [58]. SegNet uses convolution blocks
similar to the VGG architecture [72]. In contrast to SegNet,
the LDNet encoder has four operation blocks so that the
feature map size is sufficient for ASPP to extract features,
and on the other hand, it reduces the number of parameters
in the LDNet encoder from 14.7M to 583.07 k. Each block
consists of a convolution stack, a max-pooling layer and an
additional DropBlock layer that improves the regularization
of the LDNet. However, the last operational block does not
include a max-pooling layer to match the filter size of the
decoder. The encoder details of each layer are given in Table I.

Since the convolution stack of the encoder architecture is
adopted from the VGG architecture [72], the convolutional
layer parameters in terms of the receptive filter size and stride
are kept the same as those of the VGG architecture: 3 × 3
and 1, respectively. To increase the detailed representation
of low-level feature encoding, the convolution stack consists
of two convolutional layers followed by batch normalization.
A nonlinear activation function is employed after the second
convolutional layer, which makes the decision function dis-
criminative. Let xl be the higher-dimensional image repre-
sentation extracted from convolutional layers by progressively
processing local features layer by layer. This process cate-
gorizes pixels in higher-dimensional space corresponding to
their semantics. However, the model predictions are condi-
tioned on the features extracted from the receptive field. For
each convolutional layer l, a feature map xl is obtained by
sequentially applying a linear transformation realized by a
nonlinear activation function. The ReLU function is chosen
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as a nonlinear activation function, as shown in Eq.2:

σ(xl
i,c) = max(0, xl

i,c), (2)

where c represents the channel dimension, i denotes the spatial
channel dimensions and σ corresponds to the activation func-
tion. Eq.3 represents the feature map activation formulation.

xl
c = σ1(

∑

c�∈Fl

xl−1
c� ∗ kc�,c), (3)

∗ represents the convolution operation, Fl is the number of
feature maps in layer l, and k is the convolution kernel. The
subscript i is ignored for notational clarity in the equation. The
function f (xl;�l) = xl+1 is applied to convolutional layer l,
where φl is a trainable kernel parameter. These parameters are
learned by minimizing the objective function during training.

The DropBlock layer is introduced after each convolution
stack in the operational block, as inspired by [73]. It is a
structured form of dropout that is particularly efficient in reg-
ularizing the CNN. The notable difference between DropBlock
and dropout is that DropBlock drops the contiguous regions
from a feature map rather than random independent values.
The pseudocode of DropBlock is illustrated as Algorithm 1.
BS and γ are the two main tuning parameters. The BS
represents the size of the block to be dropped, while γ is
a control parameter for the number of activation connections
to be dropped. DropBlock is not applied during evaluations,
similar to dropout. A max-pooling layer is incorporated in each
operational block to reduce the size of the feature map.

Algorithm 1: DropBlock Layer

Input: feature map obtained from convolutional layer xl ,
BS, γ , mode

if mode == evaluation then
return xl

end
Randomly generate mask M : Mi, j Bernoulli(γ )
For each zero position Mi, j , a spatial square mask is
created with size equal to BS and centered at Mi, j

Set all the values inside the spatial square mask equal to
zero

Apply the mask xl = xl × M Normalize the feature map
xl = xl × count (M)/count − ones(M)

B. Atrous Spatial Pyramid Pooling Block

In CNNs, reducing the receptive field size results in the
loss of spatial information, which is associated with repeated
usage of max pooling and strided convolution completed in
the successive layers. One possible way to decrease the spatial
loss is the addition of deconvolutional layers [70], [74], but it
is computationally intensive. The notion of atrous convolution
was introduced by [16], [17] to overcome the spatial loss prob-
lem. The dilated convolution operation increases the receptive
field without increasing the training parameters or feature map
resolution. Table I gives the details of the ASPP module. Here,
we used a deeper ASPP module than those in [16], [17], which

helps LDNet in learning higher-dimensional features across the
entire feature map and refining full-resolution lane marking
detection for event data. The event data are sparse in nature,
and reducing the feature map in successive convolution causes
information loss. However, we used a deep ASPP module that
helps to extract deeper features without reducing the feature
map size.

The atrous convolution operation is employed for
one-dimensional or two-dimensional input data. Considering
one-dimensional input data first, an atrous convolution is
formalized as the output y[i ] of the input signal x[i ] with
a kernel filter w[k] of length K , as shown in Eq.4:

y[i ] =
K∑

k=1

x[i + r.k]w[k], (4)

where r is the rate parameter that corresponds to the stride
through which the input signal is sampled. The standard
convolution is an atrous convolution with a rate of r = 1.
The variable i represents the location on the output signal
y[i ] when the atrous convolution having kernal filter w[k]
is applied on the input image x[i ]. k represents the indices
of the atrous convolution kernel. The increase in the rate
parameter increases the receptive field of the feature map at
any convolutional layer without the increase in computation
power and number of parameters. It introduces r − 1 zeros
in the consecutive filter values in the feature map, efficiently
increasing the kernel size of the K × K filter to Kd = k +
(k −1)(r −1) without increasing the number of parameters or
increasing the computational complexity. Therefore, it offers
an effective mechanism to control the receptive field of view
and find the best compromise between the localization of
an object of interest and context assimilation. In this work,
the feature enhancer module consists of a deep ASPP block.
The feature map obtained from the encoder module is con-
volved with the deep ASPP block. It consists of six layers
with a rate ranging from r = 20 to 25. The output from each
layer is concatenated and given to the attention-guided decoder
block.

C. Attention-Guided Decoder

The semantic contextual information is captured efficiently
by the acquisition of a large receptive field, and for this step,
the feature map is gradually downsampled in a typical CNN.
The features on the coarse spatial grid model the location
and their relationship with different features at the global
level. However, reducing false-positive predictions for small
objects with large variability is a challenging task. In this work,
we propose a novel attention-guided decoder. Generally, in the
literature, attention (additive [75] and multiplicative [76]) and
self-attention are used. In the proposed method, we have used
additive attention [75] to transfer the information from the
encoder to the decoder. Choosing this attention in the proposed
method enhances the feature representation and localization
that progressively reduces the feature response in unrelated
background regions without extracting the ROI. In this atten-
tion mechanism, the decoder neurons receive the additional
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Fig. 3. The working operation of the attention-guided decoder is illustrated.
The term g corresponds to the vector taken from the lowest layer of the
decoder. In our case, it is taken from the Up-Block layer. xl represent the
encoded features from the encoder network.

input through attention from encoder states/activation provid-
ing more flexibility in terms of what to focus on from a
regional basis when combined with gating signal from the
coarsest scale activation map. In addition, the use of additive
attention in comparison to multiplicative attention is employed
because the additive attention tends to perform better for high
dimensional input features.

We have not employed the self-attention mechanism in the
proposed method because, in the self-attention mechanism,
only the attention is applied within one component. The
objective of the proposed method is to detect the lane marking,
and for this task, an encoder-decoder architecture with the
addition of the ASPP module as a spatial feature enhancer
is employed. In the proposed method, if self-attention is
employed, then the decoders usability is limited, or no decoder
will be used, as in bidirectional encoder representations from
transformers (BERT) [77] architecture.

The attention coefficient αi ∈ [0, 1] in the attention-guided
decoder distinguishes prominent image regions and prunes
features from task-specific activations. The output of the
attention module is the elementwise multiplication of attention
coefficients and input feature maps described in Eq. 5:

x̂ l
i,c = xl

i,c · αl
i , (5)

For each pixel vector xl
i ∈ R

Fl , a single scalar attention
value is calculated. Reference [78] proposed a multidimen-
sional attention coefficient to learn sentence embeddings.
Since lane marking detection is a multiclass problem, we uti-
lize multidimensional attention coefficients to learn the seman-
tic context in the image. Fig. 3 shows the attention module.
The input vector gi ∈ R

Fg determines the focus region for
each pixel i . Eq.6 shows the additive attention formulation.

ql
at t = ψT (σ (W T

x xl
i + W T

g gi + bg))+ bψ,

αl
i = σ2(q

l
at t(x

l
i , gi ;�at t)), (6)

Here, σ2(xi,c) = 1
1+exp(−xi,c)

represents the sigmoid activa-
tion function. �at t characterizes a set of parameters including
the linear transformation Wx ∈ R

Fl×Fint , Wg ∈ R
Fg×Fint ,

ψ ∈ R
Fint ×1 and bias term bψ ∈ R, bg ∈ R

Fint . The term g
represent the vector taken from the lowest layer of the network.
The channel-wise 1 × 1 × 1 convolutions compute the linear
transformation for the input tensors, which is called “vector
concatenation-based attention“ and involves concatenating the

features xl and g and linearly mapping to a R
Fint multi-

dimensional space [79]. There are three operational blocks
in the attention-guided decoder. Each block consists of a
convolutional stack that is similar to the encoder, an Up-Block
layer to increase the feature map size, and the attention
module. The Up-Block layer includes an upsampling layer
followed by convolutional, ReLU and batch normalization
layers. The attention module highlights the salient features that
are carried through the skip connections, as shown in Fig 2.
The features obtained at the coarse scale are used in gating to
remove irrelevant and noisy skip connections. Gating is per-
formed before concatenation to add only relevant activations,
as in Fig. 3. A fully connected layer is added following the
decoder module, which classifies each pixel in the feature map
and is further compared with the corresponding ground truth
to calculate the loss during training.

The proposed encoder-decoder network is jointly trained
in end-to-end manner for lane marking detection. During the
training, the loss is backpropagated to optimize the weight of
the network. We incorporated the cross-entropy function given
by Eq.7:

Loss = − 1

N

j=1∑

N

c=1∑

M

yc, j ln(ŷc, j ) (7)

where N is number of pixels in the ground truth and M is
the number of classes. yc, j defines the ground truth of a pixel
belonging to the correct class, and ŷc, j defines whether the
predicted pixel belongs to correct class c.

V. EXPERIMENTS AND RESULTS

The effectiveness of the proposed method for lane marking
detection in event camera-based images (DET dataset [13]) is
evaluated using multiclass and binary-class labels. The results
are compared with the state-of-the-art algorithm benchmark on
the DET dataset. The proposed method is evaluated in terms
of the mean F1 score and the mean IoU . The details are
described below.

A. DET Dataset

In our experiments, we use the benchmark developed
by [13]. A high-resolution dynamic vision sensor dataset for
lane detection is published. The dynamic vision sensor is
a type of event-based sensor that responds to variations in
brightness. It does not follow the principle of frame-based
RGB cameras, but individual pixels are incorporated in the
sensor function individually and asynchronously, recording
variations in brightness. The DET dataset is collected using
a CeleX-V event camera with a resolution of 1280 × 800
mounted on a car. The dataset is recorded at different times of
day and comprises various traffic scenes, such as urban roads,
tunnels, bridges, and overpasses. The dataset also includes
various lane types, such as parallel dashed lines, single lines,
and single dashed lines. The DET dataset consists of a total
of 5424 images with binary and multiclass labels. In the case
of multiple classes, the labels are categorized into five classes,
where four labels correspond to different lane types and the
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Fig. 4. The qualitative comparison between different lane detection methods using multiclass labels. There are 5 classes: background, lane-1, lane-2, lane-3
and lane-4. (a) shows the input image. (b) shows the ground-truth labels. (c-h) show the results for FCN, DeepLabv3, RefineNet, SCNN, LaneNet and LDNet
(ours), respectively.

last label is for the background. In this work, we use both
(lanes and background) types of labels to evaluate the proposed
method. For the experimental evaluation, the dataset is split
into training, validation and test data at percentages of 50%,
16%, and 33%, respectively.

B. Training Details

The proposed LDNet is implemented using the PyTorch
deep learning library. The network is trained from scratch in
an end-to-end manner. A 256 × 256 size image is input to the
network. The input images does not have any preprocessing
or filtering step in our network. The network learns to filter
out white noise present in the images. The Adam optimizer
is adopted for training the network with the learning rate
schedule policy given by Eq.8. The initial learning rate of
5−4; epsilon is set to 1−8, and the weight decay is set to
1−4. In Eq.8, the value of power in training the network is
set to 0.9. The tuning of neural network parameters involves
heuristics, or some parameters are architecture-specific, but in
the literature, some parameters are considered to have been
perfected after years of studies. In this work, we conducted
extensive experimentation and evaluation to determine the best
parameters for the proposed method. In all of our experiments,
we kept the same parameter settings.

L R = ini tial − L R × (
1 − epoch

max − epochs
)power , (8)

In addition, the DropBlock parameters mentioned in Algo-
rithm. 1, i.e., BS and γ , are also fixed when training the
proposed network. The value of BS is fixed at 5, whereas

the γ value is determined by Eq.9 for controlling the features
to be dropped during training.

γ = 1 − k P

BS2

f eat2

( f eat − BS + 1)2
, (9)

where k P defines the probability of keeping a unit. In our
experiments, the value of k P is linearly increased from 0.0 to
0.5. f eat denotes the feature map size. These hyperparameter
values are inspired by [73] and were selected empirically by
using grid search.

The proposed method is evaluated with both label cate-
gories, i.e., multi-class labels and binary class labels. However,
in experimenting with both labels, the training parameters
of the proposed network are kept the same. The training
process runs for a total of 100 epochs, with batch size of
4 using PyTorch deep learning library on an Nvidia RTX
2060 GPU.

C. Evaluation Metrics

The research society has matured and standardized the
evaluation metric for lane marking detection. The public
frame-based lane detection benchmarks have utilized F1 and
IoU scores to evaluate lane marking detection [80], [81].
Moreover, in the literature, to evaluate event camera segmen-
tation [82] and lane marking detection [13], F1 and IoU
scores are adopted. Notably, in evaluating the proposed LDNet,
the image size is kept at 256×256. In this work, we have also
used the mean F1 and IoU scores to evaluate the proposed
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TABLE II

COMPARISON OF EVALUATION RESULTS OF LDNET WITH OTHER STATE-
OF-THE-ART METHODS ON THE DET DATASET. THE MEAN F1

SCORES (%) AND MEAN IoU S (%) ARE USED AS EVALUATION

METRICS FOR THE MULTICLASS LABELS. THE VALUES IN

BOLD ARE THE BEST SCORES

TABLE III

COMPARISON OF THE EVALUATION RESULTS OF LDNET WITH OTHER

STATE-OF-THE-ART METHODS ON THE DET DATASET. THE MEAN F1
SCORES (%) AND MEAN IoU S (%) ARE USED AS EVALUATION

METRICS FOR THE BINARY CLASS LABELS. THE VALUES IN

BOLD ARE THE BEST SCORES

method. The F1 score is expressed in Eq.11:

F1 = 2 × P × R

P + R
, (10)

P = T P

T P + F P
, (11)

R = T P

T P + F N
, (12)

where T P , F P and F N represent the number of true positives,
false positives, and false negatives, respectively. The IoU is
given by Eq. 13:

IoU(Sm, Sgt ) = N(Sm
⋂

Sgt )

N(Sm
⋃

Sgt )
, (13)

where Sm represents the predicted lane detection output and
Sgt denotes the ground-truth labels.

⋂
,

⋃
, and N repre-

sent intersection, union and number of pixels, respectively.
We evaluated the mean F1 and IoU scores for both multiclass
and binary-class lane detection.

D. Results

The DET dataset is benchmarked on typical lane detection
algorithms, which include the FCN [70], RefineNet [71],
SCNN [64], DeepLabv3 [17] and LaneNet [51] algorithms.

The FCN algorithm is one of the earliest works to perform
semantic segmentation by classifying every pixel in an image.
An end-to-end FCN is trained to predict the segmentation
map. DeepLabv3 investigates ASPP by upsampling a feature
map to extract dense and global features. RefineNet explores
a multipath refinement network that extracts features along
the downsampling process to allow high-resolution predictions
using long residual connections.

However, LaneNet and SCNN were specifically designed
for lane detection tasks. SCNNs achieve state-of-the-art accu-
racy on the TuSimple dataset [63]. They use slice-by-slice
convolutions within feature maps to enable message crossing
between pixels across rows and columns. LaneNet applies a
learned perspective transformation trained on the images. For
each predicted lane, a third-degree polynomial is fitted, and
lanes are reprojected onto the images.

The aforementioned methods are considered baseline meth-
ods and compared with the proposed network. Table II
and Table III show the evaluation of the proposed method
to the baseline methods. LaneNet and SCNN outperform
typical semantic segmentation algorithms such as FCN,
DeepLabv3 and RefineNet. However, LDNet (the pro-
posed method) outperforms the best-performing state-of-the-
art SCNN with an improvement of 5.54% on the mean F1
score and 6.5% on the mean IoU for multiclass lane detection,
and an improvement of 5.03% on the mean F1 score and
9.37% on the mean IoU for binary-class lane detection.
This comparison provides insight into how the use of the
ASPP module with an attention-guided decoder improves
the detection of lane markings. It should be noted that no
postprocessing step is utilized in our framework. Fig. 4 shows
the qualitative results of the proposed algorithm with the
baseline methods in multiclass lane detection.

We calculated the FLOPs (floating point operations per sec-
ond) and number of parameters for the proposed method
and the state-of-the-art methods. Table IV illustrates the
computational cost in FLOPs and the number of parameters.
The proposed network has 5.71M parameters and 12.49
GMac2 FLOPs, second-best compared to other state-of-the-
art algorithms. As the proposed LDNet has utilized the dense
ASPP (the initial variant introduced by DeepLabV3) in an
encoder-attention-guided decoder architecture, the proposed
model has a lower computational cost and higher accuracy
than DeepLabv3.

VI. EXPERIMENTAL ANALYSIS

In this section, we investigate the effect of the different
factors (using a backbone network before the encoder network,
the addition of the DropBlock layer and the attention-guided
decoder) on the performance of the proposed method.

We experiment with the proposed network with a
deeper encoder by utilizing six different backbone

2MACS is the abbreviation for the number of fixed-point multiply-
accumulate operations performed per second. It is a measure of the fixed-point
processing capacity of a computer. This amount is often used in scientific
operations that require a large number of fixed-point multiply-accumulate
operations. A GMACS: equal to 1 billion (= 109) fixed-point multiply-
accumulate operations per second.
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TABLE IV

COMPARISON OF THE COMPUTATIONAL COSTS OF THE PROPOSED LDNET
AND OTHER STATE-OF-THE-ART METHODS IN TERMS OF FLOPS AND

NUMBER OF PARAMETERS

Fig. 5. The visualization of feature activation with and without the attention
module in the decoder. The input image and the corresponding labels are
also shown. The orange color shows the predicted class, and blue is the
nonpredicted class. The first row from left shows the predicted background,
lane 1, lane 2, lane 3 and lane 4.

networks: VGG16 [72], ResNet-18 [83], ResNet-50 [83],
MobileNetV2 [84], ShuffleNet [85] and DenseNet [86]. The
image is fed to the backbone network, and the feature map is
given to the proposed encoder. The pretraining weights are
used for the backbone networks. Table V shows the results
when using the deeper encoder in the proposed network. The
evaluation results show no significant gain from incorporating
the backbone network compared to the proposed network.
This finding justifies the use of shallow encoders in LDNet.

Table VI shows the evaluation of the proposed network
with DropBlock, spatial dropout, and no dropout. The dropout
layer is added to the network to regularize the network
and to prevent overfitting. The addition of the DropBlock
shows improved results on the test dataset compared to no
dropout or spatial dropout. The contiguous regions in the
feature map are highly correlated; dropping random units still
allows information flow but is not efficient in regularizing the

TABLE V

QUANTITATIVE ANALYSIS OF LDNET WITH DIFFERENT BACKBONE NET-
WORKS. THE EXPERIMENTAL ANALYSIS IS PERFORMED ON BOTH THE

MULTICLASS AND BINARY-CLASS TASKS AND THE RESULTS ARE

EVALUATED IN TERMS OF THE MEAN F1 AND IoU SCORES

Fig. 6. The Carla-DVS dataset: (a) shows the event information. The blue
and red colors in the event information show the increase and decrease of
brightness of that specific pixel, respectively. (b) shows the frame-based RGB
image, (c) shows the semantic ground-truth labels, and (d) shows the lane
binary labels obtained from semantic labels.

network. The DropBlock helps the network retain semantic
information required for lane marking detection.

Fig. 5 shows the visualization of the feature activations.
The output of the LDNet is a feature map with 5 layers.
Each layer predicts 5 classes, four labels corresponding to
different lanes and the background. The orange color shows
the class predicted in each image. The first row from left shows
the predicted background, lane-1, lane-2, lane-3 and lane-4.
The blue color shows the remaining pixels. The comparison
between using an attention-guided decoder with a convolution
decoder is illustrated. The attention-guided decoder shows
improved localization of features, which eliminates the need
for external localization of the features and postprocessing
steps.

VII. ABLATION STUDY

A. Perfomance of LDNet on Carla-DVS Data

For the proposed LDNet method’s efficacy, a synthetic
dataset using the Carla open-source driving simulator is uti-
lized [87]. The dataset consists of event data, semantic labels
and frame-based RGB images. Fig.6 illustrates a sample of
data that is used for the evaluation of LDNet. In the dataset,
all the map data having different weather conditions are
utilized. Furthermore, we sampled the data that contain the
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Fig. 7. Qualitative comparison between different semantic segmentation methods on Carla dataset (a) shows the input image. (b) shows the ground-truth
image. (c-h) show the results for FCN, DeepLabv3, RefineNet, SCNN, LaneNet and LDNet (ours), respectively.

Fig. 8. Illustrations of the case-study of having no predictions by the proposed network in some regions. (a) explains the lane event dataset is available near
the simulated vehicle. (b) shows the projection visualization that is learned by the network. (c) illustrates the prediction results by the proposed LDNet.

TABLE VI

QUANTITATIVE ANALYSIS ILLUSTRATING THE EFFECT OF DROPOUT AND

THE DROPBLOCK ON LDNET. THE EVALUATION IS PERFORMED FOR
BOTH MULTICLASS AND BINARY CLASS LABELS, AND THE MEAN

F1 SCORE AND IoU ARE EVALUATED FOR EACH CASE AND

LABEL

lane information for the evaluation of LDNet. The training
details for LDNet are similar to the descriptions in section V-C

with training samples of 2522 and test samples of 1220,
respectively.

The quantitative evaluation of the proposed LDNet is per-
formed with the same aforementioned lane detection algo-
rithms on the Carla-DVS dataset. Table VII illustrates the mean
F1 and IoU scores of the LDNet along with other state-of-the-
art algorithms. Fig.7 shows the qualitative results of LDNet in
comparison to the other algorithms.

The qualitative and quantitative results depict the efficacy
of the proposed LDNet method, indicating that it surpasses
the state-of-the-art lane detection algorithms. However, as the
proposed method is applied on simulated data, it is assumed
that the results will be better than a real-world dataset.
In contrast, the results could be improved compared to the real-
world dataset. To analyze this case-study, we review the dataset
and find that the number of event data points is not sufficient at
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Fig. 9. The qualitative comparison between different semantic segmentation methods on the EV-Seg dataset, where (a) shows the input image and (b) shows
the grayscale image. (c-g) show the results for Basic Dense encoding, Temporal dense encoding, EV-SegNet LDNet (ours) and the ground truth, respectively.
In the semantic map, the blue color corresponds to the vehicle, the red color to a person, the green color to vegetation, the purple color to roads, the yellow
color to poles and lamps and gray to the sky and buildings.

TABLE VII

COMPARISON OF THE EVALUATION RESULTS OF LDNET WITH OTHER

STATE-OF-THE-ART METHODS ON THE CARLA-DVS DATASET. THE
MEAN F1 SCORES (%) AND MEAN IoU S (%) ARE USED AS EVALU-

ATION METRICS FOR THE BINARY CLASS LABELS. THE VALUES

IN BOLD ARE THE BEST SCORES

far distances from the simulated vehicle compared to locations
near the vehicle. The network can learn the schematic at the
front using the available event data points but is limited to
no predictions at far distances using the same event data.
Fig.8 illustrates this behavior for the prediction lanes using
the Carla-DVS dataset.

B. Performance of LDNet on Event-Segmentation Data

We perform extensive experimentation of the proposed
method on the dynamic vision sensor. Considering that
dynamic vision sensor is a newly evolving sensor, not many
public datasets are available. Due to the scarcity of lane

detection datasets, we used the Event Segmentation dataset
[82] to test the proposed algorithm’s generalization. The Event
Segmentation dataset is an extension of the DDD17 dataset
[68], which added semantic segmentation ground truth to the
original DDD17 dataset consisting only of grayscale images
and event information. The semantic labels have six classes:
buildings, objects, trees, person, vehicles and background.
The LDNet is trained in an end-to-end manner on the Event
Segmentation dataset. The training parameters are similar,
as described in section V-C. For a fair comparison, the dataset
has the standard split consisting of 15,950 training event
images and 3890 test event images.

Table VIII shows the quantitative evaluation on the Event
Segmentation dataset. We compared our model with already
existing algorithms. The IoU and Accuracy show the efficacy
of LDNet. All the training and testing data were recorded
at 50 − ms intervals. The proposed algorithm does not
perform any encoding or preprocessing of the input data.
The attention-guided decoder mechanism helps the network
to learn the localization of the features. Fig. 9 shows the
qualitative comparison of semantic segmentation.

C. Effect of Frame-Based Images on LDNet

We experimented with the effect of frame-based images on
the proposed LDNet. To validate this claim, we performed
experiments with LDNet on the TuSimple dataset. The TuSim-
ple dataset provides the RGB images with the correspond-
ing lane labels. The dataset has 3626 training images and
2782 testing images. First, we evaluated LDNet trained on
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Fig. 10. The bar graph shows the quantitative analysis between the
frame-based RGB TuSimple dataset and the Event Camera dataset on the
LDNet. This graph illustrates the efficacy of the proposed method when
trained on the TuSimple dataset. For a fair comparison with the event
camera dataset, the proposed network parameters are kept the same in this
experimental analysis for the frame-based RGB TuSimple dataset.

TABLE VIII

COMPARISON OF THE EVALUATION RESULTS OF LDNET WITH OTHER
STATE-OF-THE-ART METHODS ON THE EVENT SEGMENTATION

DATASET. THE MEAN F1 SCORES (%), MEAN IOUS (%) AND

ACCURACY ARE USED AS EVALUATION METRICS FOR THE
SEMANTIC LABELS. “−“ INDICATES THE METRIC IS NOT

INCLUDED IN THE EVALUATION. THE VALUES IN BOLD

ARE THE BEST SCORES

event camera images with TuSimple testing images. After-
ward, we trained the LDNet on the TuSimple dataset to make
a fair analysis for the lane marking detection task. We did not
optimize the network parameters for the TuSimple dataset, and
the network is used in the same configuration as optimized on
the event camera dataset. Fig. 10 illustrates the quantitative
results of LDNet with TuSimple. The environmental condi-
tions covered in the TuSimple dataset are limited; therefore,
we also trained the LDNet with the augmented TuSimple
dataset. The augmentations on the TuSimple dataset are sun
glare, illumination variations and motion blur. Moreover, 30%
of the images in the training dataset were augmented. The
evaluation of the TuSimple test data result is shown in Fig. 10.

VIII. CONCLUSION

Both academia and industry have spent considerable
resources and efforts to bring autonomous driving closer
to real-world applications. The main challenge is to design
reliable algorithms that work in diverse environmental scenar-
ios. There has been extensive development at the algorithm
level inspired by deep neural networks. Furthermore, the new
sensor development work is progressing, and deployment in

the autonomous driving sensor suite continues to mature.
The sensor setup might be redundant, but different sensor
modalities complement each other to achieve the safety of the
autonomous vehicle. Event cameras are fast-growing sensors
that provide information with precise timing. In contrast
to the event cameras, frame-based cameras and Lidar are
sampling-based sensors that oversample distant structures and
undersample close structures. Moreover, event cameras capture
the scene with precise timing when there is a change in
brightness. Thus, they provide a very high dynamic range and
low latency compared to standard conventional sensors.

In this paper, we proposed LDNet, a novel encoder-decoder
architecture for lane marking detection in event camera
images. LDNet extracts higher-dimensional features from an
image, refining full-resolution detections. We introduced the
ASPP block as the core of the network, which increases the
respective field of the feature map without increasing the
number of training parameters. The use of an attention-guided
decoder improves the localization of features in the feature
map, hence removing the need for the postprocessing step. The
proposed network was evaluated on an event camera bench-
mark, and it was found to outperform the best-performing
state-of-the-art methods in terms of the mean F1 and IoU
scores. LDNet achieves mean F1 scores of 75.58% and
85.13% and mean IoUs of 62.79% and 76.71% for multiclass
and binary-class tasks, respectively. Moreover, an ablation
study is performed on two datasets, i.e. the Carla-DVS dataset
and Event Segmentation dataset, which shows the efficacy of
LDNet.

The utilization of an event camera in contrast to a
frame-based camera is beneficial for the autonomous vehi-
cle’s perception of the environment because the event cam-
era dataset is invariant to illumination conditions. In future
work, one possible direction is to investigate the application
of the current work with the planning and control module
of autonomous driving [2], [89] for lane keeping and lane
changing tasks.
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