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Abstract: We investigate the upper bound of charge diffusion constant in holography. For
this purpose, we apply the conjectured upper bound proposal related to the equilibration
scales (ωeq, keq) to the Einstein-Maxwell-Axion model. (ωeq, keq) is defined as the collision
point between the diffusive hydrodynamic mode and the first non-hydrodynamic mode,
giving rise to the upper bound of the diffusion constant D at low temperature T as D =
ωeq/k

2
eq. We show that the upper bound proposal also works for the charge diffusion and

(ωeq, keq), at low T , is determined by D and the scaling dimension ∆(0) of an infra-red
operator as (ωeq, k

2
eq) = (2πT∆(0), ωeq/D), as for other diffusion constants. However, for

the charge diffusion, we find that the collision occurs at real keq, while it is complex for
other diffusions. In order to examine the universality of the conjectured upper bound, we
also introduce a higher derivative coupling to the Einstein-Maxwell-Axion model. This
coupling is particularly interesting since it leads to the violation of the lower bound of the
charge diffusion constant so the correction may also have effects on the upper bound of
the charge diffusion. We find that the higher derivative coupling does not affect the upper
bound so that the conjectured upper bound would not be easily violated.
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1 Introduction

Holographic methods (gauge/gravity duality) [1–4] have been providing new and effective
ways to investigate the universal features in the transport properties of the strongly corre-
lated systems. For example, in strongly coupled systems like strange metals, the resistivity
(ρ) is universally linear in temperature (T ), ρ ∼ T , which is in contrast to ρ ∼ T 2 from
the Fermi liquid theory. The linear-T -resistivity (ρ ∼ T ) has been explored in holography.
See [1] and references therein for details. Another example is Homes’ law. Strange metals
would undergo a phase transition to the high temperature superconductor with a universal
relation between the superfluid density (ρs), the critical temperature (Tc), and the DC
electric conductivity (σDC), i.e. the so called Homes’ law: C := ρs(T = 0)/(σDC(Tc)Tc),
where C is universal and independent of the components of superconducting materials. For
holographic studies of Homes’ law, see [5–8].

In this paper, we focus on another universal property of strongly coupled systems in
holography: the identification of a universal bound of the diffusion constant (D).
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One of the famous examples of the holographic bound might be the Kovtun-Son-
Starinets (KSS) bound [9]1

Dshear ≥
c2

4π τpl , (1.1)

where Dshear is the shear diffusion constant of the shear mode, c the speed of light, and
τpl := ~/kBT the Planckian time scale [10, 11]. The KSS bound (1.1) first appeared to be
confirmed by experimental data [12–16], however it soon turns out that it can be easily
violated by breaking the translational invariance [17–20].2

Lower bound of D with quantum chaos: inspired from the violation of the KSS
bound, it has been motivated to find the bound of the diffusion constant (D) in terms of
the velocity (v) and the time (τ) scales:

D ≥ v2τ , (1.2)

which is universal, for instance, not violated by breaking a translational invariance.
When the translational symmetry is broken, one may study the diffusive process gov-

erned by several diffusion constants: i) energy (or crystal) diffusion constant;3 ii) charge
diffusion constant. Thus, it would be interesting to study which velocity and time scale can
make a universal bound of such diffusion constants in the presence of broken translational
symmetry.

It was proposed [29, 30] that the relevant scales (v, τ) for a lower bound would be
related to the properties from quantum chaos as

v = vB , τ = τL , (1.3)

where vB is the butterfly velocity and τL the Lyapunov time. For the energy (or crystal)
diffusive process, it was shown that the lower bound with quantum chaos (1.3) is robust
and hard to break in many models [31–44]. Moreover, in recent years, the lower bound
with (1.3) has also been understood with the interesting phenomena from the ill-defined
Green’s function, called pole-skipping [46, 47, 81].

On the other hand, in the case of the charge diffusion constant, it turned out that
the bound with (1.3) does not hold and could easily be violated. For instance, one of the
simplest ways to break the bound of the charge diffusion constant is by considering higher
derivative couplings [48].4

1One can find another form of the KSS bound with Dshear = η/(sT ), where η is a shear viscosity, and s
the entropy density.

2The KSS bound has been further investigated in numerous ways including a broken rotational symmetry
or the effects of anisotropy [20–24], a higher derivative gravity [25, 26]. Moreover, recently, the relation
between the momentum diffusivity and η/s has been further elaborated in [27].

3Depending on symmetry breaking patterns, one may study the energy diffusion constant (explicit sym-
metry breaking) or the crystal diffusion constant (spontaneous symmetry breaking). For the comprehensive
review for this with the holographic toy model, see [28] and references therein.

4One can also see the violation of the lower bound for the charge diffusion in striped holographic mat-
ter [49], the SYK model [50]. In particular, the bound with (1.3) does not hold for the Gubser-Rocha
model [44], giving a divergence in the low T limit (m/T � 1). See also the case with massive gravity
models [45].
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Diffusion Lower bound proposal (1.3) Upper bound proposal (1.5)
Energy (or Crystal) diffusion Obeyed Obeyed

Charge diffusion Violated ?

Table 1. Summary of holographic studies for the bounds of diffusion constants. In this paper, we
study the upper bound proposal (1.5) with the charge diffusion constant.

Upper bound ofD with the hydrodynamic convergence. In the similar perspective
of the lower bound, in recent years, the holographic study of the upper bound has also been
investigated as

D ≤ v2τ , (1.4)

with the simple question: the diffusion constant will also be bounded from the above?
Using the idea from the convergence of hydrodynamics, it is proposed [51] that the diffusion
constant may have the upper bound with the following scale:5

v = veq , τ = τeq , (1.5)

where veq := ωeq/keq is the equilibration velocity, τeq := ω−1
eq the equilibration time. In

order to study the upper bound with (veq, τeq) in (1.5), we need to identify the equilibration
scale (ωeq, keq). The equilibration scale is defined as the collision point in the (ω, k) space
between the diffusive hydrodynamic mode (2.7) and the first non-hydrodynamic mode.

Note that the collision implies that, at such a scale, the dynamics of the system cannot
be determined just by the hydrodynamic mode, i.e., the equilibration scale might be related
to the radius of the convergence of hydrodynamic perturbative series [54–64]. Note also
that (1.4) with (1.5) can be rewritten in terms of the equilibration scale (ωeq, keq) as

D ≤ ωeq
k2

eq
, (1.6)

where the upper bound (the equality) reflects the fact that the hydrodynamic dispersion
at the quadratic order (2.7) becomes a good approximation at (ωeq, keq).

In this paper, our goal is to study the upper bound of the charge diffusion constant.
For the energy (or crystal) diffusive process, the upper bound proposal with (1.5) has been
checked in [51, 65, 66].6 However, the analysis for the upper bound proposal with the charge
diffusion is still missing, thus we fill this gap in this paper. See table 1 for the summary
of the studies of the (lower/upper) bounds in holography. Moreover, we also investigate
the upper bound of the charge diffusion constant in the presence of the higher derivative
coupling [48] to examine the universality of the conjectured upper bound proposal (1.5).

This paper is organized as follows. In section 2, we introduce the gravity model to
study the charge diffusion in holography. In section 3, we study the upper bound of the

5More generally, it has been argued that the local equilibration time may set an upper bound on the
diffusivity in [52, 53].

6In [51], authors also checked that the upper bound proposal works for the shear diffusion constant in
the translational invariant system.
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charge diffusion constant with the model presented in section 2. In section 4 we investigate
the effect of the higher derivative coupling for the upper bound of the charge diffusion
constant. Section 5 is devoted to conclusions.

2 Holographic setup

2.1 Model

We consider the Einstein-Maxwell-Axion model [67] in (3+1) dimensions

S =
∫
d4x
√
−g

[
R+ 6

L2 −
1
4F

2 − 1
2

2∑
i=1

(∂ϕi)2
]
, (2.1)

where we set the gravitational constant 16πG = 1 and we have included two matter fields:
a U(1) gauge field A with the field strength F = dA and the massless scalar fields ϕi = mxi

where m denotes the strength of the translational symmetry breaking.
The model (2.1) allows the analytic background solution as

ds2 = −f(r)dt2 + dr2

f(r) + r2

L2 (dx2 + dy2) ,

f(r) = r2

L2

(
1 + L2µ2r2

h

4r4 − L4m2

2r2 −
r3
h

r3

(
1 + L2µ2

4r2
h

− L4m2

2r2
h

))
,

A = µ

(
1− rh

r

)
dt , ϕi = mxi ,

(2.2)

where f(r) is the emblackening factor, rh is the black hole horizon, and µ denotes the
chemical potential of the boundary field theory, µ = lim

r→∞
At. From here we set L = 1.

The thermodynamic quantities from (2.2) read

T = f ′(rh)
4π = 1

4π

(
3rh −

µ2 + 2m2

4rh

)
, ρ = µ rh , (2.3)

where ρ is interpreted as the expectation value of charge density.

Charge diffusion constant in holography: here we introduce the charge diffusion
constant (Dc) as

Dc := σ

χ
, σ = 1 + µ2

m2 , χ =
(
∂ρ

∂µ

)
T

, (2.4)

where σ is the electric conductivity [67] and χ is the compressibility. One can see that m
makes the conductivity finite because of the broken translational invariance.

At finite charge density, the generalized Einstein relation [68] shows the charge diffusion
constant is coupled with the energy diffusion constant, i.e., in order to focus on the charge
diffusion constant, we need to consider the zero charge density (or zero chemical potential)
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case. Therefore, we set µ = 0 in this paper.7 The charge diffusion constant (2.4) at zero
charge can be expressed as

Dc = 6
4πT +

√
6m2 + 16π2T 2

. (2.5)

Note that the upper bound of the energy diffusion constant at µ = 0 has been investigated
in [51].

2.2 Fluctuations for quasi-normal modes

Based on the background solution (2.2) at zero charge, we consider the following gauge
field fluctuations

δAt(r, t, x, y) = δĀt(r) e−iωt+ikx , δAx(r, t, x, y) = δĀx(r) e−iωt+ikx , (2.6)

which is relevant to the study of the hydrodynamic charge diffusion mode [69]:

ω = −iDc k
2 , (2.7)

where Dc corresponds to (2.5).
After Fourier transformation, one can find one single fluctuation equation of motion

0 = Z ′′A(r) + r3ω2f ′(r)− 2k2f(r)2

rf(r) (r2ω2 − k2f(r))Z
′
A(r) + r2ω2 − k2f(r)

r2f(r)2 ZA(r) , (2.8)

by introducing the variable

ZA(r) := k δĀt(r) + ω δĀx(r) . (2.9)

In order to study the quasi-normal mode spectrum for both the charge diffusion mode
(the lowest mode) and the higher modes, we need to solve the equation of motion (2.8)
with two boundary conditions: one from the horizon and the other from the AdS boundary.
Near the horizon, we impose the incoming boundary condition as

ZA = (r − rh)ν−
(
Z

(I)
A + Z

(II)
A (r − rh) + · · ·

)
, (2.10)

where ν− := −iω/4πT and Z
(I,II)
A are horizon coefficients. Near the AdS boundary, the

solution is expanded as

ZA = Z
(S)
A (1 + · · · ) + Z

(R)
A r−1(1 + · · · ) , (2.11)

where Z(S)
A is interpreted as the source term and Z(R)

A is for the response term via AdS/CFT
dictionary. Then, the quasi-normal mode spectrum can be found by the values of (ω, k)
where the source term Z

(S)
A in (2.11) is zero.

7At finite charge, the charge diffusion constant might be decoupled from the energy diffusion constant
in the strong momentum relation limit [44]. In this paper, we only focus on the simplest case to study the
charge diffusion constant: the µ = 0 case. We leave the study of the upper bound at finite charge in the
strong momentum relaxation regime as future work.
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3 The upper bound: Einstein-Maxwell-Axion model

In this section, we evaluate the quasi-normal modes from (2.8) and study the upper bound
of the charge diffusion constant, (1.6), with the equilibration scale (ωeq, keq). In particular,
we mainly focus on the low temperature (T ) case because the upper bound is approached
at low T . For the discussion beyond low T , see appendix B.

3.1 The equilibration scale

The equilibration scale (ωeq, keq) is defined as the collision point in (ω, k) space between
the hydrodynamic mode (2.7) and the first non-hydrodynamic mode, i.e., the equilibration
scale is related to the breakdown of the hydrodynamics.

Non-hydrodynamic modes (IR modes): let us first explain the non-hydrodynamic
modes. At low T , it is shown that the non-hydrodynamic modes correspond to the IR
modes from IR green’s function GIR [51, 66]. We present GIR of the fluctuation for the
charge diffusion (2.9) as

GIR =
( 3
π

)1−2∆(0)
T 1−2∆(0)

Γ
(

1
2 −∆(0)

)
Γ
(
∆(0)− iω

2πT

)
Γ
(
∆(0)− 1

2

)
Γ
(
1−∆(0)− iω

2πT

) , (3.1)

where ∆(0) is the scaling dimension of operator at the IR fixed point at zero wavevector.8
Then, one can find the IR modes from the IR green’s function (3.1) as

ωn = −i 2πT (n+ ∆(0)) , n = 0, 1, 2, · · · , (3.2)

where ∆(0) = 1 from (A.7).

The equilibration scale (ωeq, keq): in figure 1, we display the representative result
of quasi-normal modes at low T . From the figure, one can see that quasi-normal modes
are well approximated with i) the hydrodynamic mode (solid line) (2.7); ii) the IR modes
(dashed line) (3.2). In particular, from the gray region in figure 1, the equilibration scale
(ωeq, keq) can be obtained from the collision (ωc, kc) between the hydrodynamic mode and
the first non-hydrodynamic mode.

The equilibration scale (ωeq, keq) is defined as the collision point (ωc, kc) in absolute
value

ωeq := |ωc| , keq := |kc| , (3.3)

because the collision occurred in the complex (ω, k) space for the cases with other diffusion
constants [51, 65, 66], satisfying

ωc = ωeq e
i(φk−π2 ) , kc = keq e

iφk , (3.4)

where the finite phase φk, φk 6= 0, produces a complex (ωc, kc).
8We also present all the details for (3.1) in appendix A in a self-contained manner.
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The second non-hydrodynamic mode

The first non-hydrodynamic mode

 The hydrodynamic mode

0 100 200 300 400 500 600 700
0.0

0.5

1.0

1.5

2.0

k / T

-Im[ω]

2π T

Figure 1. Quasi-normal modes at m/T = 105. All dots represent quasi-normal modes. The solid
line is the hydrodynamic mode (2.7), and the dashed lines are IR modes (3.2). In the gray square
region, one can see the collision between the hydrodynamic mode and the first non-hydrodynamic
mode.

★★

The collision point

495 500 505 510 515

0.96

0.98

1.00

1.02

1.04

k / T

-Im[ω]

2π T

(a) Im ω vs k

★★

The collision point

495 500 505 510 515

-0.010

-0.005

0.000

0.005

0.010

k / T

Re[ω]

2π T

(b) Re ω vs k

Figure 2. The collision between the hydrodynamic mode and the first non-hydrodynamic mode.
The left figure is the zoom of the gray region in figure 1. The red star corresponds to the collision
point (ωc, kc).

However, for the charge diffusion case, we found that the collision occurs in the real
wavevector k, i.e.,

φk = 0 , (3.5)

which is a distinct feature not observed in other diffusion cases [51, 65, 66]. In figure 2,
we present how the hydrodynamic mode collides with the first non-hydrodynamic mode at
real k. In figure 2(a), the collision point (ωc, kc) is denoted as the red star. Note that, after
the collision (red star), the quasi-normal modes would be a complex value with real ω and
become pure imaginary at larger k. See figure 2(b).
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(a) ωeq vs T

0.00000 2.×10-6 4.×10-6 6.×10-6 8.×10-6 0.00001

500

600

700

800

900

1000

1100

1200

T / m

keq

T

(b) keq vs T

Figure 3. The temperature dependence of ωeq and keq. Dots are numerical data and the solid
lines are fitting curves (3.6). The red circle corresponds to the collision point (red star) in figure 2.

The temperature dependence in (ωeq, keq): in figure 3, we show that the equilibra-
tion scale has the following temperature dependence as

ωeq
2πT ∼ ∆(0) + #

√
T ,

keq
T
∼ #√

T
, (3.6)

where ∆(0) = 1 from (A.7). Note that the red circle in figure 3 corresponds to the collision
point (red star) in figure 2.

3.2 The upper bound

The upper bound of the charge diffusion constant (Dc): with the conjectured
upper bound proposal in (1.6), now we study the upper bound of the charge diffusion
constant (Dc):

Dc ≤
ωeq
k2

eq
, (3.7)

where Dc is (2.5) and the equilibration scale (ωeq, keq) is (3.6).
In figure 4, we show that the conjectured upper bound proposal is valid for the case

of the charge diffusion. In other words, the equality in (3.7) is approached at low T . Note
that the upper bound (or the equality) implies that, at low T , the quadratic hydrodynamic
mode (2.7) becomes a good approximation even at (ωeq, keq), i.e.,

1 =
k2

eqDc

ωeq
→ ωeq = Dc k

2
eq , (3.8)

which also can be checked in figure 5.

Further comments on the upper bound of the diffusion constants (D): in the
previous paragraph, we show that the upper bound proposal (1.6) is also valid for the
charge diffusion constant in addition to other diffusion constants [51, 65, 66]. This may
imply that there would be a universal feature for the upper bound proposal with any
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Figure 4. The upper bound of the charge diffusion constant. The dashed line denotes the upper
bound (or the equality) in (3.7).
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0.8

1.0

1.2
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-Im[ω]

2π T

(a) m/T = 103

870 875 880 885
0.96

0.98
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1.04

870 875 880 885

0.8
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-Im[ω]
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(b) m/T = 3× 105

Figure 5. Quasi-normal modes with different T . As the temperature T is lowered from figure 5(a)
to figure 5(b), quasi-normal modes (dots) are getting better and better approximated with hydro-
dynamic mode (solid line) (2.7) and IR modes (dashed line) (3.2).

diffusion constant D at low T . Thus, we may investigate further (1.6) with the low T

analysis to find such a universality.
First, let us consider the following low T behavior of (ωeq, keq) with D as

ωeq =
(

∆(0) + c1

(
T

Γ

)p1)
2πT , keq = c2(

T
Γ

)p2 T ,

D = c3
Γ + c4

(
T p3− 1

Γp3

)
,

(3.9)

where ci are coefficients, pi the T -scaling power, and Γ is an additional factor for the
dimensionless analysis.9 For instance, in the case of Γ = m, the scaling power (pi) would be

Energy diffusion: p1 = 1, p2 = 1
2 , p3 = 3,

Charge diffusion: p1 = 1
2 , p2 = 1

2 , p3 = 2, (3.10)

9Note that dimensionless quantities would be (ωeq/T, keq/T, DT ) together with Γ/T .
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where the energy diffusion is from [51] and the charge diffusion case can be read from (3.6)
with (2.5).

With (3.9), the upper bound of the diffusion constant, the equality in (1.6), can be
expanded at low T as

k2
eqD

ωeq
= (c2)2 c3

2π∆(0)

(
T

Γ

)1− 2p2

+ . . . , (3.11)

where . . . denotes sub-leading terms in T . From this leading order result (3.11), we may
notice two things. First, in order to have a universal upper bound independent of T , p2
should be universal as

any diffusion constant D: p2 = 1
2 , (3.12)

for all D, which can also be observed in (3.10) as well as in other cases [51, 65, 66]. Second,
there would be a non-trivial relation between coefficients ci and ∆(0) to have the same
upper bound, i.e.,

k2
eqD

ωeq
= (c2)2 c3

2π∆(0) = 1 , (3.13)

where the last equality is verified by the case of the charge diffusion as well as other diffusion
cases [51, 65, 66].10 Note that, even for the case of the same diffusion constant D, ∆(0)
would be different depending on Γ so that one may not easily expect the relation in the
last equality in (3.13): for instance, for the energy diffusion, ∆(0) = 2 for Γ = m (m is an
axion charge) [51], while ∆(0) = 1 for Γ = H (H is a magnetic field) [66].

4 The upper bound with higher derivative coupling

In the previous section, we show that the conjectured upper bound also works for the
charge diffusion constant, i.e., our work would be complementary to previous studies of
upper bound of other diffusion constants [51, 65, 66].

As demonstrated in the introduction, it was shown that the charge diffusion may not
have a universal “lower” bound in holography. One of the representative examples is a
simple gravity model with a higher derivative coupling [48].

In this section, we further investigate the “upper” bound of the charge diffusion con-
stant in the presence of the higher derivative coupling to examine the universality of the
conjectured upper bound proposal.

First, we review the higher derivative model and how the higher derivative coupling
breaks the lower bound of the charge diffusion constant. Then we discuss the upper bound
with the coupling.

10c3 in (3.9) might be understood analytically, however c2 mostly would be obtained from numerics by
fitting so that the last equality in (3.13) would be non-trivial.
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4.1 Model and the lower bound: a quick review

Gauge-axion coupling model: let us consider the higher derivative coupling model [48]

S =
∫
d4x
√
−g

[
R+ 6− 1

4F
2 − Tr[X ]− J

4 Tr
[
XF 2

] ]
, (4.1)

where

X µν ≡
1
2

2∑
i=1

∂µϕi∂νϕ
i , T r[X F 2] ≡ [X ]µν F νν′ F ν

′
µ . (4.2)

Note that (4.1) becomes the Einstein-Maxwell-Axion model (2.1) at zero coupling, J = 0.11

The coupling J does not affect the background equations of motion [48] so that (4.1)
allows the same analytic solution (2.2) with the temperature (2.3).

Dc with the butterfly velocity vB (the lower bound): the lower bound of the charge
diffusion constant in (4.1) can be studied with the following electric conductivity (σ), the
butterfly velocity (vB), and the Lyapunov time (τL)

σ = 1− J m2

4r2
h

, v2
B = πT

rh
, τL = 1

2πT , (4.3)

at µ = 0.12 Recall that we need to consider the case at zero charge density for the study
of the charge diffusion decoupled from the energy diffusion.

Using (4.3) with the definition of Dc in (2.4), one can find that the charge diffusion
constant and the butterfly velocity behave at low T as

Dc

τL
∼
√

6π(2− 3J)
m/T

,
1
v2
B

∼ 1√
6π

m

T
, (4.4)

where the horizon rh is replaced by T (2.3). Then, we have the lower bound of the charge
diffusion constant, (1.3), from (4.4) as

BL := Dc

v2
BτL

= 2− 3J , (4.5)

where it is approached at low T . For instance, see the case of J = 1/3 in figure 6.
From (4.5), we can see that the coupling J can break the lower bound of the charge
diffusion constant, i.e., BL = 0 at J = 2/3.

4.2 The upper bound with the coupling

Next, we study the upper bound of the charge diffusion, (1.5), at a finite coupling J . For
this purpose, we need to investigate the coupling dependence in (τeq, veq).

11The causality and the stability condition give the constraint to J as 0 6 J 6 2/3 [48].
12For the details of (4.3), see [48].
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Figure 6. The lower bound of Dc at J = 1/3, which approaches BL = 1 in (4.5) at low T

(m/T � 1).

The equilibration time scale τeq: following the same procedure in appendix A, τeq can
be read from the IR modes. We found that the fluctuation equation of motion of (4.1) is

0 = ∂2
ζZA +

(
2ζ

ζ2 − ζ2
h

− (36− 54J)ζk2

9(2− 3J)k2 (ζ2 − ζ2
h

)
− ζ2

ωm
2

)
∂ζZA

+
(

ζ2
ω

9
(
ζ2 − ζ2

h

)2 − (2− 3J)k2

m2 (ζ2 − ζ2
h

))ZA , (4.6)

where the extremal geometry is (A.3)13 and also note that (4.6) becomes (A.5) at J = 0.
In (4.6) one can see that the coupling J disappears if k = 0. This means that τeq is

independent of the coupling J because ωeq is evaluated at k = 0 (A.10), i.e.,

τeq := 1/ωeq = 1
2πT∆(0) = τL , (4.7)

where (4.3) is used in the last equality with ∆(0) = 1 (A.7).

The equilibration velocity scale veq: the velocity scale can be obtained as follows.

v2
eq :=

ω2
eq
k2

eq
= ωeqDc , (4.8)

where we used (3.8) in the second equality. Note that it would be nontrivial if (3.8) is
also valid at finite J : recall that (3.8) implies that, at low T , the quasi-normal modes are
well approximated by both the hydrodynamic mode (2.7) and the IR modes (3.2). We
have numerically checked that (3.8) would also be valid at finite J .14 For instance, see
the representative example for J = 1/3 in figure 7(a).15 Figure 7(b) shows that the upper
bound proposal (3.8) can be valid at a finite coupling. Recall that k2

eqDc
ωeq

→ 1 implies the
hydro approximation works better. Comparing with figure 4, we find that if J increases
then the hydro approximation becomes better in the sense that the value k2

eqDc
ωeq

approaches
to the unity faster as temperature decreases.

13Recall that the background geometry is not affected by the coupling J .
14As J → 2/3, we checked that Dc is decreasing (4.4), while keq increases so that (3.8) would be respected

at J → 2/3.
15(3.8) at finite J is already implying that the upper bound proposal is valid at finite coupling.
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diffusion constant at J = 1/3. The dashed line denotes the equality in (3.7).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.90

0.95

1.00

1.05

1.10

J

veq
2

vB
2 (2-3 J)

Figure 8. The relation between veq and vB at m/T = 105. veq is numerically computed via
ωeq/keq (4.8), while vB is from (4.3). Dots are numerical data at J ∈ [0, 2/3) and the dashed line
is (4.10).

With the time scale (4.7), the equilibration velocity (4.8) can be further expressed as

v2
eq = ωeqDc = Dc

τL
, (4.9)

and, using (4.4), one can find the relation between the equilibration velocity and the
butterfly velocity as

v2
eq = (2− 3J) v2

B . (4.10)

Thus, the coupling J does not affect τeq (4.7), but veq (4.10). In order to verify the
relation (4.10), we make the plot of veq in figure 8.16

Dc with the equilibration velocity veq (the upper bound): then, now one can find
the upper bound of the charge diffusion at finite J as

BU := Dc

v2
eqτeq

= Dc

v2
BτL

1
2− 3J = 1 , (4.11)

where we used (4.7) and (4.10) for the first equality and (4.5) for the second equality.
16With the explanation around (4.8), one can notice that (4.10) implies that keq satisfies (3.8).
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From the perspective of (3.4)–(3.6), we may understand the independence of the cou-
pling J as follows. At finite J , (3.4) and the leading terms of (3.6) hold while (3.5) and the
sub-leading terms of (3.6) do not hold. However, to check the upper bound proposal (1.6)
only the leading terms of (3.6) are relevant and our final result BU = 1 does not depend
on J . In other words, (3.11) and (3.12) hold even at finite J .

5 Conclusion

We have studied the upper bound of the charge diffusion constant with the conjectured
upper bound proposal [51, 65, 66]:

D ≤ ωeq
k2

eq
, (5.1)

where the equilibration scale (ωeq, keq) is identified with the collision point between the
diffusive hydrodynamic mode and the first non-hydrodynamic mode. The upper bound
(an equality) in (5.1) is approached at low T with

ωeq → 2πT∆(0) , k2
eq →

ωeq
D

, (5.2)

which implies that the hydrodynamic mode at quadratic order (2.7) would be a good
approximation even around the equilibration scale.

Charge diffusion constant and the upper bound: we check that the upper bound
proposal (5.1) also works for the charge diffusion constant, Dc, in addition to other diffusion
constants: energy diffusion constant [51, 66], shear diffusion constant [51], crystal diffusion
constant [65, 66]. This implies that there would be a universal property for the upper
bound, independent of the type of diffusion constants. From the low temperature (T )
analysis in (3.9), we found that keq plays the major role in the upper bound of any diffusion
constant D, as

k2
eqD

ωeq
∼ T 1−2p2 , (5.3)

where p2 is from keq ∼ T 1−p2 . Thus, one can notice that p2 should be universal as p2 = 1/2
in order to have the upper bound (or a T -independent quantity). Note also that our work
filled the gap in the table 1 in which the analysis of the upper bound of the charge diffusion
constant was missing for the Einstein-Maxwell-Axion model [51, 65, 66].

In addition to the universal feature, p2 = 1/2, we also found that the charge diffusion
case would have a distinct feature in the phase of k, φk, in (3.4), which is not observed in
other diffusion constants:

Charge diffusion : φk = 0 , Other diffusions : φk 6= 0 , (5.4)

For instance, energy diffusion constant has a finite T -dependence as φk ∼ T 7/2−∆(0) [66].
Note that (5.4) implies the collision occurs at a real wavevector for the charge diffusion
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while it is complex for other diffusions [51, 65, 66].17 It will be interesting to understand
why φk = 0 is allowed only in the charge diffusion case. However, it may be subtle because
there are some cases where φk 6= 0 for charge diffusion: models with a finite coupling J in
section 4 and more complicated models such as the model with the gauge coupling [77].

Universal upper bound: we further investigated the upper bound of the charge dif-
fusion constant with the higher derivative couplings and found that, unlike the lower
bound (4.5), the coupling cannot break the upper bound of the charge diffusion con-
stant (4.11), thus we speculate that the conjectured upper bound

k2
eqDc

ωeq
= 1 , (5.5)

would be universal independent of the couplings (or UV data), but only depends on the IR
fixed points as in the universal lower bound of the energy diffusion constant.18 It would
be interesting to investigate how (5.5) (as well as the case with other diffusion constants)
can be generalized to generic IR fixed points.19 We leave this subject as future work and
hope to address it in the near future.
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A Non-hydrodynamic poles: infra-red modes

It was shown that non-hydrodynamic modes are associated with infra-red Green’s func-
tion [51, 66]. The infra-red Green’s function can be calculated by solving the fluctuation
equation in the extremal geometry with scaling dimension ∆(k) at the infra-red fixed point.
For the details, we refer the readers to [66].

17In [70], it was shown that the radius of convergence of linear hydrodynamics in liquids is also related
to the real wavevector, called k-gap [71].

18We are grateful to Yan Liu and Xin-Meng Wu for sharing the preliminary results for the case of the
charge diffusion in the conformal to AdS2 fixed point [77]: it seems that the gauge coupling may play an
important role to study the upper bound as well the IR geometry. For the detailed discussion and extension,
we refer to their forthcoming work [77].

19Recall that (5.5) is for the AdS2 fixed point. We expect that there could be a universal constant on the
right hand side of (5.5) because the leading constant at low T does not depend on the UV data (T,Γ) as
can be seen in (3.13).
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The extremal geometry: from (2.3), we can consider the following relation at zero
temperature:

rh = re , re = m√
6
. (A.1)

Moreover, considering the following coordinate transformation, one can have the extremal
geometry

r = re + ε ζ , rh = re + ε ζh , t = u

ε
, (A.2)

where ζh = 4π δT / 9 represents a small temperature correction.
Considering (A.2) in the ε → 0 limit, the metric of (2.2) is transformed into the

extremal geometry as

ds2 = − ζ
2

L2
2

(
1− ζh

ζ

)2
du2 + L2

2

ζ2
(
1− ζh

ζ

)2 dr2 + r2
e

(
dx2 + dy2

)
, (A.3)

where the AdS2 radius L2 is
√

1/6.

Fluctuation equation for IR modes: similarly, we can do the coordinate transforma-
tion in the Fourier space as

r = re + ε ζ , rh = re + ε ζh , ω = ε ζω , (A.4)

and from this transformation we can express the fluctuation equation (2.8) in the extremal
geometry as

0 = ∂2
ζZA +

(
2ζ

ζ2 − ζ2
h

− 36ζk2

18k2 (ζ2 − ζ2
h

)
− ζ2

ωm
2

)
∂ζZA

+
(

ζ2
ω

9
(
ζ2 − ζ2

h

)2 − 2k2

m2 (ζ2 − ζ2
h

))ZA , (A.5)

where the second term of the first derivative of (A.5), the k-dependent term, did not appear
in other diffusion cases [51, 65, 66].

In the AdS2 boundary (ζ →∞), the solution for (A.5) can be expanded:

ZA = Z(S)ζ∆(k)−1 + Z(R)ζ−∆(k) , (A.6)

where Z(S)
A is interpreted as the source term and Z(R)

A is for the response term and ∆(k)
is the operator of dimension at the infra-red fixed point

∆(k) = 1
2 +
√

8k2 +m2

2m . (A.7)
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The non-hydrodynamic modes: according to the holographic dictionary, the infra-red
Green’s function, GIR, can be calculated by solving the fluctuation equation (A.5) near the
AdS2 boundary (ζ →∞) [78, 79]:

GIR ∝
Z(R)

Z(S) , (A.8)

where Z(R) and Z(S) are the coefficients of the solution (A.6), respectively.
Then one can find GIR at k = 020 as

GIR =
( 3
π

)1−2∆(0)
T 1−2∆(0)

Γ
(

1
2 −∆(0)

)
Γ
(
∆(0)− iω

2πT

)
Γ
(
∆(0)− 1

2

)
Γ
(
1−∆(0)− iω

2πT

) , (A.9)

where the pole of the GIR of (A.9), IR modes, are

ωn = −i 2πT (n+ ∆(0)) , n = 0, 1, 2, · · · , (A.10)

with ∆(0) = 1 from (A.7). In figure 9, we show that the non-hydrodynamic pole is
approaching the IR modes (A.10) at low T .

B Quasi-normal modes beyond low temperature

In section 3, we mainly focused on the “low” temperature regime (m/T � 1) in order to
study the bound of the charge diffusion constant, showing that, at low T , the quasi-normal
modes are well approximated with i) the hydrodynamic mode (2.7); ii) the IR modes (A.10).
See figure 1.

Motivation: in this section, we further investigate the quasi-normal modes at “higher”
temperature (i.e., smaller m/T ) to show how (2.7) and (A.10) would be good approxi-
mations to the quasi-normal modes at low T . To our knowledge, our work is the first
holographic study showing the excellent applicability of approximations ((2.7), (A.10)) in

20We focus on the case at k = 0, which is sufficient for the non-hydrodynamic mode [51, 66].
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Figure 10. Quasi-normal modes from high T to low T . All dots are quasi-normal modes and
the black solid line is the charge diffusion mode (2.7). Note that the region around k/T ∼ 50 in
figure 10(c) corresponds to figure 5(a).

terms of the full dynamics of quasi-normal modes from high T to low T .21 Although we
focused on the charge diffusion constant in this paper, we believe similar dynamics may
occur in the case of other diffusion constants [51, 65, 66].22

Quasi-normal modes at high T : first, let us show the representative result of high
T in figure 10(a).23 At high T , one can find that there is a feature in the quasi-normal
modes: the structure consisting of three lines (e.g., A (red), B (orange), Z (yellow)) repeats
in the frequency ω direction. As we decrease the temperature, the structure in figure 10(a)
would change into what we observed in section 3 (e.g., figure 1). Now one may notice
that it is non-trivial to obtain the low T result (e.g., figure 1) from the high T result (e.g.,
figure 10(a)).

We find that as T decreases, Z (yellow) in figure 10(a) plays an important role in
obtaining the low T result. In particular, the low T result can be understood by the
interaction between Z and the non-hydrodynamic mode (C and D) in figure 10(a). We
explain this further in two steps: i) Z1 (pink) becomes irrelevant; ii) Z (yellow) interacts
with non-hydrodynamic modes.

From high T to intermediate T : the first step can be seen in the intermediate T
regime. In figure 11, as T is lowered from figure 11(a) to figure 11(f), one can see that
Z1 (pink) is interacting with the non-hydrodynamic mode (E) and goes in the higher
frequency regime (i.e., Z1(pink) is moving upward from figure 11(a) to figure 11(f)). Thus,
at intermediate T (e.g., figure 11(f)), Z1 does not contribute to the low T result.

21In order to deliver the main message clearly, we only display the imaginary part of the quasi-normal
modes in the paper.

22For the energy diffusion case, the collision between the hydrodynamic mode and the non-hydrodynamic
mode appears at complex k at low T [51, 66] and real k at high T [47, 80]. On the other hand, for the
charge diffusion, the collision occurs at real k for all T as we will show below. Therefore, dynamics from
the energy diffusion would be more complicated than the charge diffusion case.

23At m/T = 0, one can obtain the quasi-normal modes at higher temperature (T → ∞). However, the
qualitative structure of the quasi-normal modes does not change, i.e., figure 10(a) can be considered as the
high enough temperature case.
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Figure 11. Quasi-normal modes from high T to intermediate T . DE in figure 11(c) is made by
the collision between D and E. EF in figure 11(e) is made by the collision between E and F .

From intermediate T to low T : based on the previous paragraph, we have the repre-
sentative result of intermediate T in figure 10(b). Comparing figure 10(b) and figure 10(c),
now one can see that Z is important for the low T result. For instance, interacting with C
(green), Z (yellow) results in two major consequences:

• Splitting effect: Z is splitting C into two parts (C1, C2).

• Appearance of new line: while splitting, Z makes a new line CZ (black dots).

Similar behavior also occurs in the interaction between D (blue) and Z (yellow), i.e., D is
separated into two parts (D1, D2) and DZ appears.

The splitting effect is important for the IR modes (A.10) (e.g., for the first non-
hydrodynamic mode, one needs not only B, but also C2) and the appearance of new
line has its significance for the hydrodynamic mode (2.7) (e.g., at lower T , CZ and DZ

will be matched with (2.7)). Therefore, Z in high T plays an important role for the low T

result.
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