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a b s t r a c t 

Background and Objective: Diffuse correlation spectroscopy (DCS) is an optical technique widely used to 

monitor blood flow. Recently, effort s have been made to derive new signal processing methods to mini- 

mize the systems used and shorten the signal processing time. Herein, we propose alternative approaches 

to obtain blood flow information via DCS by numerically integrating the temporal autocorrelation curves. 

Methods: We use the following methods: the inverse of K 2 (IK2)—based on the framework of diffuse 

speckle contrast analysis—and the inverse of the numerical integration of squared g 1 (INISg1) which, 

based on the normalized electric field autocorrelation curve, is more simplified than IK2. In addition, 

g 1 thresholding is introduced to further reduce computational time and make the suggested methods 

comparable to the conventional nonlinear fitting approach. To validate the feasibility of the suggested 

methods, studies using simulation, liquid phantom, and in vivo settings were performed. In the mean- 

time, the suggested methods were implemented and tested on three types of Arduino (Arduino Due, 

Arduino Nano 33 BLE Sense, and Portenta H7) to demonstrate the possibility of miniaturizing the DCS 

systems using microcotrollers for signal processing. 

Results: The simulation and experimental results confirm that both IK2 and INISg1 are sufficiently rel- 

evant to capture the changes in blood flow information. More interestingly, when g 1 thresholding was 

applied, our results showed that INISg1 outperformed IK2. It was further confirmed that INISg1 with g 1 
thresholding implemented on a PC and Portenta H7, an advanced Arduino board, performed faster than 

did the deep learning-based, state-of-the-art processing method. 

Conclusion: Our findings strongly indicate that INISg1 with g 1 thresholding could be an alternative ap- 

proach to derive relative blood flow information via DCS, which may contribute to the simplification of 

DCS methodologies. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

o

b

o

p

fl

g

n

n

i

B

t

p

c

h

0

. Introduction 

Blood flow in the human body is instrumental in transporting 

xygen throughout the body and discarding biowastes. Any distur- 

ance in the blood flow leads to a plethora of problems depending 

n the location at which it occurs, ranging from tissue ulceration, 

aralysis, to even death. To prevent such serious situations, blood 

ow monitoring is of utmost importance. Among various technolo- 
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ies, diffuse correlation spectroscopy (DCS) is an emerging tech- 

ique that monitors blood flow to a tissue in a noninvasive man- 

er. DCS, also known as diffusing-wave spectroscopy in the chem- 

stry, biology, and materials communities, was first proposed by 

oas and Yodh as a blood flow monitoring technique [1] . It utilizes 

he dynamic light scattering caused by the interaction between 

hotons and red blood cells to quantify blood flow. It has been 

ompared with multiple blood flow monitoring techniques such as 

enon-enhanced computed tomography [2] , laser Doppler flowme- 

ry [3] , and arterial spin labeling [4] , and has been established as 

 widely used technique for monitoring blood flow. DCS has been 

sed to investigate various types of tissues, including those of the 

uscle, breast, and brain [5] . Due to its noninvasive ability to mea- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ure deep blood flow information and its relatively low cost, it is 

xpected to have more applications in the future. 

Recently, DCS has experienced various technological advance- 

ents. Among them, two advancements that have garnered much 

ttention are the miniaturization/simplification of DCS-based blood 

ow monitoring systems [6–9] and the reduction of DCS sig- 

al processing time [10–15] . Conventionally, nonlinear fitting (NF) 

echniques, such as the Nelder–Mead simplex method (i.e., ‘ fmin- 

earch ’ function in MATLAB), are used to extract αD B and blood 

ow index (BFI) in DCS [ 12 , 16 , 17 ]. This NF is one of the bottlenecks

imiting the signal processing speed in DCS. 

To miniaturize and simplify the system, charge-coupled 

evices (or complementary metal-oxide-semiconductor)-sensor- 

ased methods have been introduced [ 7 , 9 , 18 ]. The miniaturization

f the system can make them more user-friendly in clinics or crit- 

cal care. To reduce the signal processing time and cost of the 

ystem, the modified Beer–Lambert law for blood flow [13] , soft- 

are autocorrelator [ 12 , 14 , 15 ], implementation of NF on a field-

rogrammable gate array (FPGA) [12] , and the use of the inverse 

f the delay time at the middle g 2 (normalized electric field auto- 

orrelation function) between the minimum and maximum values 

f g 2 ( τ 1/2 method) [8] were introduced. In addition, recent studies 

ave used artificial intelligence (AI) models such as deep learning 

DL) [10] and long short-term memory (LSTM) [17] as alternatives 

o reduce the signal processing time. Although these approaches 

re effective, they remain restricted by their limited probing depth 

 7 , 9 , 18 , 19 ], vulnerability to noise [ 8 , 13 ], having been tested under

n insufficient number of conditions [ 8 , 17 ], as well as the require-

ent of a large amount of training data and extended training time 

 10 , 17 ]. Moreover, as some of these approaches are computation- 

lly heavier, they may not be used to process fast flow signals in 

eal-time on low-cost microprocessors [ 7 , 10 ]. Hence, new methods 

hat can overcome these limitations must be developed for DCS. 

In this paper, we introduce two numerical-integration-based 

ethods for DCS to obtain the relative BFI, which we termed the 

K2 (the inverse of K 

2 ) and the INISg1 (the inverse of the numer-

cal integration of squared g 1 ); the latter is based on the g 1 (nor-

alized electric field autocorrelation function) of DCS. To validate 

hese methods, simulations, liquid phantoms, and in vivo arterial 

rm-cuff occlusion experiments were performed. Then, their fea- 

ibilities under fast-flow conditions and for enhancing signal pro- 

essing speeds were tested. Finally, the methods were ported and 

ested on three types of Arduino boards (Arduino Due, Arduino 

ano 33 BLE Sense, and Portenta H7) to demonstrate their po- 

ential for the development of low-cost, real-time blood flow mea- 

urement systems. 

. Materials and methods 

.1. Working principle of DCS 

For blood flow measurement, DCS detects the dynamic light 

cattering caused by the flow of red blood cells, which are the pri- 

ary dynamic scatterers in a living body. A long-coherence laser 

rradiates the tissue of interest and a detector placed away from it 

ollects the backscattered light, which contains information on dy- 

amic scattering. A hardware/software correlator uses these signals 

ollected in unit time to generate a normalized intensity autocor- 

elation function, g 2 ( τ ), according to (1) [ 3 , 5 , 14 , 16 , 17 , 20 ]: 

 2 ( τ ) = 〈 I ( t ) · I ( t + τ ) 〉 / 〈 I ( t ) 〉 2 . (1) 

Here, I ( t ) denotes the signal intensity as a function of time, 

 ���〉 is the time average of the signal, and τ is the delay time 

 3 , 5 , 14 , 16 , 17 , 20 ]. Next, g 2 ( τ ) is converted to an unnormalized elec-

ric field autocorrelation function, G 1 ( τ ) = 〈 E ( t ) • E ( t − τ ) 〉 , follow-

ng the Siegert relationship [ 3 , 5 , 9 , 10 , 12–14 , 16 , 17 , 19 , 20 ] as follows:
2 
 2 ( τ ) = 1 + β
| G 1 ( τ ) | 2 
〈 I ( τ ) 〉 2 . (2) 

Here, β is a factor determined by the detector geometry (i.e., 

umber of speckles detected) and polarization, and E ( t ) is the 

ime-dependent amplitude of the electric field. G 1 ( τ ) from the data 

s fitted to a Green’s function solution of the correlation diffusion 

quation to extract BFI [ 3 , 12 , 14 , 16 , 19 , 20 ] as follows: 

 1 ( τ ) = 

3 μ′ 
s 

4 π

(
exp ( −R D r 1 ) 

r 1 
− exp ( −R D r 2 ) 

r 2 

)
. (3) 

Here, R 2 D = 3 μ′ 
s μa + αμ′ 2 

s k 2 0 〈 � · r 2 (τ ) 〉 , r 1 = 

√ 

ρ2 + z 2 
0 
, 

 2 = 

√ 

ρ2 + ( z 0 + 2 z b ) 
2 
, μ′ 

s is the reduced scattering coeffi- 

ient, μa is the absorption coefficient, α is the ratio between the 

ynamic scatterers and all scatterers, k 0 ( = 

2 π/ λ ) is the source 

avenumber, λ is the wavelength of the source, 〈 � • r 2 ( τ ) 〉 is 

he mean-square displacement, ρ is the distance between the 

ource and the detector, z 0 = 

1 / μ′ 
s 
, z b = 

2( 1 + R e f f ) / 3 μ′ 
s ( 1 − R e f f ) 

, 

nd R eff = −1.440 n −2 + 0.710 n −1 + 0.668 + 0.0636 n , assuming

he refractive index of the tissue, n ≈ 1.37. The mean-square 

isplacement of Brownian motion, 〈 �r 2 ( τ ) 〉 = 6 D B τ , was assumed

n this work [ 3 , 5 , 12 , 14 , 16 , 20 ], where D B is the Brownian diffusion

oefficient. Because it is difficult to estimate α owing to the 

imitations of DCS, αD B is extracted as a single parameter and 

sed as the BFI of DCS [ 3 , 5 , 12 , 14 , 16 , 19 , 20 ]. 

.2. System configuration 

An 852-nm, single-frequency laser (DL-852–100-SO, Crysta- 

aser, ∼10 m coherence length) connected to a fiber attenuator 

BB-10 0–11–685–20 0/240-QM-35–33–3–1-SP, 200 μm core size, 

Z Optics) was used as the radiation source of the system, while a 

ingle-photon counting module (SPCM, SPCM-AQRH-12FC, Excelitas 

echnologies) connected to a single-mode fiber (SMF, P1–780A-FC- 

, Thorlabs) was used as the detector. The distance between the 

ource and the detector was set to 1 cm. The detector outputs a 

ransistor-transistor logic (TTL) signal when a photon is collected. 

he TTL pulse train generated by the SPCM was provided as the 

ounter input to a counter/timer board (PCIe-6612, National Instru- 

ents). The sampling frequency of this board was fixed at 1 MHz, 

ith a 1 μs bin time interval throughout the experiments. An in- 

ensity autocorrelation function of the collected TTL pulse trains 

as generated using a fast Fourier transform (FFT)-based software 

utocorrelator [14] : 

 2 ( τ ) = F −1 [ F { I ( t ) } F { I ( −t ) } ] / 〈 I ( t ) 〉 2 = 〈 I ( t ) · I ( t + τ ) 〉 / 〈 I ( t ) 〉 2 . 
(4) 

Here, F { ���} and F −1 [ ���] denote the FFT and inverse FFT of the

iven signal, respectively. Note that we use the FFT-based software 

utocorrelator because this approach can perform the calculation 

f g 2 in a fairly short time, compared to the calculation of g 2 using

q. (1) . 

A customized LabVIEW program was used to collect and 

ave data, generate an autocorrelation function, and change 

easurement options, including the sampling frequency of the 

ounter/timer board (LabVIEW 2016, National Instruments). 

.3. Numerical-integration-based estimation of blood flow 

As an alternative approach, we introduce two methods based 

n numerical integration to obtain relative BFI via DCS. They are 

ased on (5), which relates speckle fluctuation to the normalized 

lectric field autocorrelation function, g . Eq. ( 5 ) is the theoretical 
1 
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Fig. 1. (a) Comparison of conventional and suggested methods investigated for de- 

riving BFI; in this work, n and T are fixed as 1 μs and 2 ms, respectively, except 

for simulation. (b) Schematic of a liquid phantom test. (c) Schematic of an arterial 

arm-cuff occlusion test. 
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asis of diffuse speckle contrast analysis (DCSA), which is another 

ptical method used in blood-flow measurement [ 7 , 18 , 19 ]. 

 ( T ) 
2 = 

(
σt 

〈 I t 〉 
)2 

= 

2 β

T 

T 

∫ 
n 

(
1 − τ

T 

)
[ g 1 ( τ ) ] 

2 dτ. (5) 

Here, K ( T ) is the temporal speckle contrast, n is the minimum

elay time, T is the maximum delay time, and σ t and 〈 I t 〉 are the

tandard deviation (SD) and mean of intensity, respectively; β is 

 constant determined by the detector geometry and polarization, 

hile τ is the delay time. Eq. (6) , a simplified expression of the 

ight-hand side of (5) , is the first method that we explore in this

ork. In practice, in addition to BFI, β is extracted through NF 

 12 , 16 ]. However, to simplify our calculations, we removed T and

 β from the right side of ( 5 ), assuming them to be unchanging

onstants throughout the signal measurement. Although there are 

ubtle differences compared to the original form of K 

2 , this method 

s referred to as IK2 throughout the manuscript and denotes the 

nverse of K 

2 : 

K2 = 1 / 
T 

∫ 
n 

(
1 − τ

T 

)
[ g 1 ( τ ) ] 

2 dτ. (6) 

Additionally, a more simplified method, shown in ( 7 ), was ex- 

lored. Henceforth, ( 7 ) is referred to as INISg1 (the inverse of the

umerical integration of squared g 1 ). Compared to IK2, INISg1 is 

ot weighted for the delay time. 

 NI Sg1 = 1 / 
T 

∫ 
n 

[ g 1 ( τ ) ] 
2 dτ. (7) 

Fig. 1 (a) summarizes the three methods tested in this work: the 

onventional NF method for extracting BFI in DCS, and the IK2 and 

NISg1 methods, which are the numerical-integration-based meth- 

ds proposed in this work. 

From preliminary simulation experiments, we found that the 

ow estimated using either IK2 or INISg1 suffers from significant 

nderestimation relative to the designated flow. Attributing this 

o the accumulation of noise and non-relevant g 1 values, g 1 was 

hresholded within a certain value of g 1 (the threshold) by first 

electing the shortest delay time with g 1 closest to the threshold, 

nd then performing numerical integration from the shortest delay 

ime of the system to the selected delay time. 

.4. Bland–altman analysis (BAA) 

For the comparison of different methods, BAA, which visu- 

lizes the discrepancy or similarity of two different methods, 

as used in this work [ 7 , 21 ]. In this analysis, a thick black

ine indicates the mean of the differences between the meth- 

ds ( mean = ( method A + method B )/2), while the red dotted

ines indicate the upper and lower limits of agreement ( mean ±
 × std ( method A − method B )). The smaller the mean difference 

nd the narrower the range of these limits, the less discrepancies 

here are between these two tested methods. 

.5. Simulation 

To confirm the feasibility of the suggested methods and deter- 

ine an appropriate value for g 1 thresholding, a set of autocor- 

elation functions were generated using (3) by varying αD B from 

 × 10 −10 to 5.005 × 10 −8 cm 

2 /s (with a step size of 0.5 × 10 −10 

m 

2 /s), assuming μ′ 
s = 11 . 134 cm 

−1 and μa = 0.0449 cm 

−1 at 

52 nm, a 1 cm source-detector separation, β = 0.45 ( β of (2) for 

onverting g 2 to g 1 ) and a 1 MHz sampling frequency. To make 

he simulation data more realistic, a DCS noise model was em- 

loyed [ 13 , 15 , 16 , 22 ], in which the bin time interval was set to 1 μs

nd the photon count rate was set to 100 kcps. These noise-added 

 ( τ ) values were directly numerically integrated via the IK2 and 
1 

3 
NISg1 methods. The integration time was set to 1 s, and the value 

f g 1 for thresholding was varied from 0 (no thresholding) to 0.35, 

n increments of 0.05. The results of normalized NF, normalized 

K2 with and without g 1 thresholding, and normalized INISg1 with 

nd without g 1 thresholding were compared with the normalized 

ssigned flow values using BAA. 

.6. Phantom experiment 

A phantom experiment was performed to validate the proposed 

ethods. A simple liquid phantom was constructed by mixing dis- 

illed water and 20% intravenous fat emulsion (Lipision 20%, JW 

harm.) that resulted in μ′ 
s = 11 . 134 cm 

−1 and μa = 0.0449 cm 

−1 

t 852 nm [ 23 , 24 ]. Note that a similar liquid phantom has been

sed to evaluate other optical systems, including optoacoustic to- 

ography, interferometric diffusing wave spectroscopy, and NIR- 

I fluorescence imaging system [25–27] . Its temperature was var- 

ed from 25 to 45 °C (in increments of 5 ºC) using a hot plate
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Table 1 

Linear regression results of (Assigned blood flow) = A ∗(IK2) + B. A : slope, B : intercept, T : maximum time delay, G : the value of g 1 for thresholding, No: no g 1 thresholding, 

and E : error. A, B , and E of the condition ( T : 2 ms and G : 0.2) used in the manuscript are presented as red text. 

T 1 s 100 ms 10 ms 5 ms 2 ms 1 ms 

G a b e a b e a b e a b e a b e a b e 

No 2348 −2454 106.5 219.8 −311.5 92.75 19.74 −71.70 10.55 10.55 −48.74 39.19 5.973 −28.27 23.29 5.169 −18.06 17.94 

0.05 1.008 0.698 12.59 1.014 0.692 12.59 1.079 0.627 12.54 1.162 0.553 12.48 1.503 0.323 12.31 2.172 −0.091 12.02 

0.1 0.994 0.792 11.14 1.000 0.786 11.14 1.061 0.726 11.13 1.138 0.659 11.11 1.454 0.447 11.08 2.102 0.067 11.04 

0.15 1.000 0.938 10.13 1.005 0.933 10.13 1.062 0.876 10.13 1.133 0.812 10.12 1.420 0.612 10.11 2.052 0.252 10.10 

0.2 0.995 0.895 9.140 1.001 0.890 9.139 1.055 0.836 9.133 1.123 0.775 9.127 2.006 0.251 9.094 

0.25 0.987 0.989 10.67 0.992 0.984 10.66 1.043 0.934 10.66 1.106 0.878 10.65 1.350 0.704 10.63 1.936 0.393 10.61 

0.3 1.011 1.120 10.18 1.015 1.115 10.18 1.060 1.069 10.18 1.115 1.018 10.17 1.322 0.859 10.16 1.851 0.577 10.14 

0.35 0.975 1.117 10.96 0.979 1.113 10.96 1.021 1.072 10.96 1.073 1.025 10.95 1.266 0.881 10.95 1.762 0.627 10.93 
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Fig. 2. Pseudocodes of the implemented algorithms of IK2 and INISg1 with and 

without g 1 thresholding on the Arduino boards. FOR : the beginning of for loop; 

IF : the beginning of if structure; END : end of for loop or if structure; tauArr : array 

of delay times from 1 μs to 2 ms, in increments of 1 μs; abs : absolute value; β: 

parameter of Siegert relationship (determined by detector geometry — i.e. number 

of speckles detected — and polarization); K2: K 2 ; NISg1 : numerical integration of 

squared g 1 ; IK2 : the inverse of K 2 ; INISg1 : the inverse of numerical integration of 

squared g 1 ; threshold : the value for g 1 thresholding. 

(

t

e  

i

s

c

r

nd monitored using a thermistor (TH10K, Thorlabs) connected to 

n Arduino (Arduino Uno, Arduino). While varying temperature, 

0 raw data points (5 (steps) × 60 (s) × 10 0 0,0 0 0 data points)

ere acquired and saved for post-processing. Fig. 1 (b) shows a 

chematic of the phantom measurements. The results of normal- 

zed IK2 and normalized INISg1 with and without g 1 thresholding 

ere compared with those of normalized NF using BAA. 

.7. In vivo arm-cuff occlusion 

To test the in vivo applicability of the suggested methods, an ar- 

erial arm-cuff occlusion paradigm with 220 mmHg pressure was 

pplied, as shown in Fig. 1 (c). A healthy subject was recruited for 

easurement, and the cuff occlusion protocol was reviewed and 

pproved by the Institutional Review Board of the Gwangju Insti- 

ute of Science and Technology (IRB 20,140,319-HR-10–01–02). An 

rm cuff was placed on the subject’s upper arm, and DCS signals 

ere obtained from their lower arm. The measurement times in- 

luded a baseline of 60 s, cuff occlusion of 180 s, and another 180 s 

fter cuff deflation. Laser power was set to 10.6 mW to ensure 

hat the tissue was not damaged. Raw data (420 (s) × 10 0 0,0 0 0

ata points) were acquired and saved for post-processing. For NF, 
′ 
s = 6 . 02 cm 

−1 and μa = 0.139 cm 

−1 were assumed [28] . The

esults of normalized IK2 with and without g 1 thresholding and 

hose of normalized INISg1 with and without g 1 thresholding were 

ompared with those of normalized NF using BAA. 

.8. Implementation of IK2 and INISg1 in arduino 

To demonstrate the utility of the suggested methods in DCS 

implification, we implemented IK2 and INISg1 with and with- 

ut g 1 thresholding for three different Arduino boards: Arduino 

ue (microcontroller: AT91SAM3 ×8E, clock speed: 84 MHz, SRAM: 

6 kB, Arduino), Arduino Nano 33 BLE Sense (microcontroller: 

RF52840, clock speed: 64 MHz, SRAM: 256 kB, Arduino), and Por- 

enta H7 (microcontroller: STM32H747XI, clock speed: 480 MHz 

nd 240 MHz (dual-core), SRAM: 1 MB, SDRAM: 8 MB, Arduino). 

owever, the implemented algorithms could not be uploaded 

o the Arduino Uno (microcontroller: ATmega328P, clock speed: 

6 MHz, SRAM: 2 kB, Arduino Uno, Arduino) due to its SRAM lim- 

tation. Fig. 2 shows the pseudocodes of IK2 and INISg1 with and 

ithout g 1 thresholding, as implemented on the Arduino boards. 

. Results 

.1. Optimization of maximum delay time and g 1 thresholding 

Table 1 shows the linear regression results between the as- 

igned flows and the results of IK2 with and without g 1 threshold- 

ng. Table 2 shows the corresponding results between the assigned 

ows and the results of INISg1 with and without g 1 thresholding. 

inear regression between the assigned flows and NF resulted in a 
4 
slope) = 1.014, b (intercept) = 0.147, and e (error) = 8.158. Note 

hat, e is the maximum absolute deviation, which is calculated via 

 = max (| estimated data − assigned data |) [29] . When g 1 threshold-

ng was not applied, e of the linear regression between the as- 

igned flow and IK2 decreased as T (the maximum delay time) de- 

reased till 10 ms, suggesting an improvement in the regression 

esults ( Table 1 ). A similar trend was observed as T decreased till 
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Table 2 

Linear regression results of (Assigned blood flow) = A ∗(INISg1) + B. A : slope, B : intercept, T : maximum time delay, G : the value of g 1 for thresholding, No: no g 1 thresholding, 

and E : error. A, B , and E of the condition ( T : 2 ms and G : 0.2) used in the manuscript are presented as red text. 

T 1 s 100 ms 10 ms 5 ms 2 ms 1 ms 

G a b e a b e a b e a b e a b e a b e 

No 4688 −4793 106.7 449.9 −547.0 98.16 38.48 −104.7 67.20 18.33 −70.42 53.09 7.763 −41.67 34.91 5.257 −26.93 22.67 

0.05 1.007 0.699 12.59 1.007 0.699 12.59 1.007 0.699 12.59 1.007 0.699 12.59 1.045 0.699 12.59 1.340 0.689 12.59 

0.1 0.994 0.793 11.14 0.994 0.793 11.14 0.994 0.793 11.14 0.994 0.793 11.14 1.011 0.793 11.14 1.296 0.785 11.14 

0.15 0.999 0.939 10.13 0.999 0.939 10.13 0.999 0.939 10.13 0.999 0.939 10.13 0.999 0.939 10.13 1.265 0.933 10.14 

0.2 0.995 0.895 9.140 0.995 0.895 9.140 0.995 0.895 9.140 0.995 0.895 9.140 1.237 0.891 9.143 

0.25 0.987 0.990 10.67 0.987 0.990 10.67 0.987 0.990 10.67 0.987 0.990 10.67 0.987 0.990 10.67 1.194 0.987 10.67 

0.3 1.010 1.120 10.18 1.010 1.120 10.18 1.010 1.120 10.18 1.010 1.120 10.18 1.010 1.120 10.18 1.141 1.119 10.18 

0.35 0.974 1.118 10.96 0.974 1.118 10.96 0.974 1.118 10.96 0.974 1.118 10.96 0.974 1.118 10.96 1.086 1.117 10.96 
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Fig. 3. (a) Comparison of assigned blood flow vs. estimated flow of NF, IK2 and IN- 

ISg1 with (not explicitly indicated) and without g 1 thresholding (indicated with ‘(no 

thresholding)’). BAA of: (b) assigned blood flow and NF, (c) assigned blood flow and 

IK2 with g 1 thresholding, and (d) assigned blood flow and INISg1 with g 1 thresh- 

olding. 

t

t

B  

r

a

a

a

o

t

t

t

I

u

m

3

A

I

B  

s

i

 ms in the linear regression results of INISg1 without g 1 thresh- 

lding ( Table 2 ). This may be due to the reduction in the contribu-

ion of the noise signals to the numerical integration in both IK2 

nd INISg1. Meanwhile, when g 1 thresholding was not used, the 

inear regression errors of IK2 were always smaller than those of 

NISg1 throughout all of the T tested. 

When g 1 thresholding was applied, the linear regression results 

f IK2 and INISg1 showed different tendencies. When it comes to 

 = 1 s, both IK2 and INISg1 exhibit very similar regression out- 

omes, with only minor differences. In the case of IK2, however, 

or every G (the value for g 1 thresholding), a increases as T de- 

reases, which implies that the results of IK2 become less relevant 

o the assigned flow ( Table 1 ). On the other hand, the linear re-

ression results of INISg1 do not change as T varies from 1 s to 

 ms, whereas a becomes larger when T = 1 ms ( Table 2 ). Overall,

hen g 1 thresholding was applied, INISg1 was more robust than 

K2. 

Considering a, e , and calculation speed (larger T leads to longer 

alculation time), parametric values of T = 2 ms and G = 0.2 are

sed in the later sections for processing simulation and experi- 

ental data. While this condition is not optimal for IK2, it is used 

or IK2 as well to enable a fair comparison of signal processing 

ime. 

.2. Simulation 

Fig. 3 shows the simulation results. Based on the results from 

ection 3.1 , the maximum delay time and a g 1 thresholding value 

ere set to 2 ms and 0.2, respectively. As shown in Fig. 3 (a), IK2

nd INISg1 significantly underestimated the flow information when 

 1 thresholding was not applied. In addition, until the assigned 

ow reached 1.32 × 10 −8 cm 

2 /s, INISg1 was closer to the assigned 

ow than was IK2; this situation was reversed when the assigned 

ow exceeded 1.32 × 10 −8 cm 

2 /s. Based on this observation, this 

ow rate is defined as the transition value (TV) in this study. 

Similar to the results in Section 3.1 , g 1 thresholding led to more 

ccuracy in both IK2 and INISg1, compared to the cases without g 1 
hresholding. More importantly, when g 1 thresholding was applied, 

s shown in Fig. 3 (c) and (d), INISg1, a simplified numerical inte- 

ration method, showed less discrepancy than IK2 when compared 

ith the assigned blood flow. Comparing Fig. 3 (b) and (d), IN- 

Sg1 performed comparably to NF, with a similar mean difference 

0.09 vs. 0.51) and a similar range of limits of agreement (7.42 vs. 

.98). In the meantime, with g 1 thresholding, INISg1 always per- 

ormed better than IK2, showing minor discrepancies from the as- 

igned blood flow. 

.3. Phantom experiment 

Fig. 4 shows the results of the phantom experiments. As shown 

n Fig. 4 (a), without g 1 thresholding, both IK2 and INISg1 led to 

ore underestimated flow properties than did conventional NF, as 
5 
he temperature increased. In addition, the higher the phantom 

emperature, the more significant was this underestimation. The 

AA of NF vs. IK2 ( Fig. 4 (c)) and that of NF vs. INISg1 ( Fig. 4 (e))

eveal quite large mean differences and a wide range of limits of 

greement. As shown in Fig. 4 (b), the discrepancy between the NF 

nd the suggested methods decreased when g 1 thresholding was 

pplied. In the case of the BAA of NF and IK2, the introduction 

f g 1 thresholding ( Fig. 4 (d)) changed the mean difference and 

he range of limit of agreements from 9.13 and 28.09 (i.e., non- 

hresolded values) to 1.35 and 9.01 (thresholded values), respec- 

ively. By contrast, the corresponding values of the BAA of NF and 

NISg1 ( Fig. 4 (f)) changed from 13.58 and 42 (non-thresholded val- 

es) to 0.67 and 8.84 (thresholded values), respectively, showing 

ore significant improvement than IK2 with g 1 thresholding. 

.4. In vivo arm-cuff occlusion 

Fig. 5 shows the results of the arm-cuff occlusion experiment. 

s shown in Fig. 5 (a), without g 1 thresholding, both IK2 and IN- 

Sg1 underestimated the flow compared to the NF methods. The 

AA of NF vs. IK2 ( Fig. 5 (c)) and that of NF vs. INISg1 ( Fig. 5 (e))

how markedly large mean differences and a wide range of lim- 

ts of agreements. In addition, the underestimation becomes more 
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Fig. 4. Relative flow changes of NF, IK2, and INISg1 without (a) and with (b) g 1 
thresholding as the temperature rises in the liquid phantom experiment. BAA of NF 

vs. IK2 without (c) and with (e) g 1 thresholding, and BAA of NF vs. INISg1 without 

(d) and with (f) g 1 thresholding. 
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Fig. 5. Relative flow changes (1 Hz) of NF, IK2, and INISg1 without (a) and with (b) 

g 1 thresholding in the arm-cuff occlusion experiment. BAA of NF vs. IK2 without (c) 

and with (e) g 1 thresholding, and BAA of NF vs. INISg1 without (d) and with (f) g 1 
thresholding. 
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ignificant at higher flows. As shown in Fig. 5 (b), the discrepancy 

etween the NF and the suggested methods became smaller when 

 1 thresholding was applied. In the case of BAA of NF and IK2, the 

ntroduction of g 1 thresholding ( Fig. 5 (d)) changed the mean dif- 

erence and the range of limit of agreements from 26.80 and 171.11 

i.e., the non-thresholded values) to 16.74 and 124.22 (thresholded 

alues), respectively. On the other hand, for the BAA of NF and 

NISg1, the introduction of g 1 thresholding ( Fig. 5 (f)) changed the 

ean difference and the range of limit of agreements from 20.06 

nd 125.03 (non-thresholded values) to 2.43 and 51.07 (thresh- 

lded values), respectively, showing a more pronounced improve- 

ent than the case of IK2 with g 1 thresholding. 

.5. Comparison of signal processing speed 

As previously described, one of the purposes of the suggested 

pproach is to reduce the signal processing time. Therefore, their 

rocessing speeds were compared with NF using the timeit func- 

ion in MATLAB (MATLAB R2018b, Mathworks) on a PC (i7–10,700, 

-core, Intel CPU) with 32 GB RAM. As described in Section 3.1 , 

 = 2 ms and a threshold of 0.2 for g 1 thresholding were used.

ince the processing times of IK2 and INISg1 with g 1 threshold- 

ng decrease as the flow of g 2 increases, noise-added g 2 curves 

ere tested for ten different assigned flows. For each condition, 

he mean and SD values of the processing times were calculated 

rom 50 trials performed. Tables 3 –5 show the mean and SD of 

he processing times of NF, IK2 with and without g 1 thresholding, 

nd INISg1 with and without g thresholding when processing one, 
1 

6

en, and 10 0 0 g 2 curves (including a procedure for converting g 2 
o g 1 using the Siegert relationship). Processing a single g 2 took 

.96 ms (grand mean of the processing time of g 2 with the dif- 

erent assigned flows) for NF. Among the assigned flows, NF took 

he shortest time (3.31 ms) when processing g 2 with 1.05 × 10 −8 

m 

2 /s, since the initial value of the flow for NF was 1.00 × 10 −8 

m 

2 /s. This trend continued during the processing of 10 and 10 0 0 

 2 curves . 

The grand means of the processing times of IK2 and INISg1 

ithout g 1 thresholding were 29.21 and 26.43 μs, respectively. 

ompared to NF, IK2 and INISg1 were approximately 170 and 188 

imes faster, respectively. As expected, due to reduced calculations, 

NISg1 was approximately 1.1 times faster than IK2. On the other 

and, with g 1 thresholding, IK2 (12.58 μs) and INISg1 (12.20 μs) 

ere approximately 394 and 407 times faster than NF, respectively. 

NISg1 with g 1 thresholding was approximately 1.03 times faster 

han IK2 with g 1 thresholding. Based on the grand mean of pro- 

essing time, IK2 with g 1 thresholding and INISg1 with g 1 thresh- 

lding perform approximately 2.3 and 2.2 times faster than those 

ithout g 1 thresholding, owing to the reduced calculations. The 

ime reduction becomes more significant as the flow increases. 

This tendency continues as more curves are processed. For pro- 

essing 10 0 0 g 1 , NF took 5172.90 ms, while non-thresholded IK2 

nd INISg1 took 35.54 and 33.72 ms, performing approximately 

46 and 153 times faster than NF, respectively. When g 1 threshold- 

ng was applied, IK2 and INISg1 took 10.09 and 9.91 ms, perform- 

ng nearly 513 and 522 times faster than NF, respectively. Overall, 
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Table 3 

Processing time and estimated flow of one g 2 curve of assigned flows of NF, and IK2 and INISg1 without (not explicitly indicated in the table) and with g 1 thresholding. 

Time: (mean) ± (SD). Grand mean of processing time of NF: 4.96 ms; grand mean of processing time of IK2 without g 1 thresholding: 29.21 μs; grand mean of processing 

time of INISg1 without g 1 thresholding: 26.43 μs; grand mean of processing time of IK2 with g 1 thresholding: 12.58 μs; grand mean of processing time of INISg1 with g 1 
thresholding: 12.20 μs. 

Assigned 

flow (cm 

2 /s) 

5.00 × 10 −10 5.45 × 10 −9 1.05 × 10 −8 1.55 × 10 −8 2.05 × 10 −8 2.55 × 10 −8 3.05 × 10 −8 3.54 × 10 −8 4.04 × 10 −8 4.54 × 10 −8 

Relative 1 10.90 20.90 30.90 40.90 50.90 60.90 70.90 80.90 90.90 

NF 1 10.69 20.38 30.69 39.98 50.30 61.17 66.67 76.79 90.18 

Time 

(ms) 

6.60 

±0.05 

4.67 

±0.31 

3.31 

±0.03 

4.32 

±0.04 

4.87 

±0.04 

5.08 

±0.05 

5.52 

±0.11 

5.09 

±0.06 

5.03 

±0.03 

5.11 

±0.04 

IK2 1 5.89 9.27 11.65 12.96 14.28 15.64 16.42 17.01 18.01 

Time 

(μs) 

30.00 

±2.04 

29.15 

±0.23 

29.20 

±0.31 

29.14 

±0.30 

29.15 

±0.25 

29.24 

±0.60 

29.12 

±0.24 

28.97 

±0.37 

29.03 

±0.39 

29.08 

±0.35 

INISg1 1 6.65 9.64 11.24 12.07 12.67 13.73 14.12 14.13 15.04 

Time 

(μs) 

27.68 

±4.16 

26.36 

±0.18 

26.47 

±0.78 

26.30 

±0.30 

26.29 

±0.31 

26.32 

±0.30 

26.30 

±0.30 

26.18 

±0.34 

26.20 

±0.37 

26.22 

±0.26 

IK2 with g 1 
thresholding 

1 7.72 14.59 21.08 28.76 34.97 44.65 50.10 59.05 65.55 

Time 

(μs) 

29.81 

±4.75 

11.88 

±0.63 

11.02 

±0.11 

10.79 

±0.14 

10.48 

±0.10 

10.48 

±0.09 

10.39 

±0.15 

10.30 

±0.14 

10.33 

±0.13 

10.30 

±0.12 

INISg1 with g 1 
thresholding 

1 10.48 20.08 29.14 39.92 48.56 62.12 69.73 82.22 91.30 

Time 

(μs) 

27.24 

±4.20 

11.46 

±0.08 

10.81 

±0.10 

10.62 

±0.12 

10.32 

±0.11 

10.47 

±0.67 

10.38 

±0.68 

10.22 

±0.14 

10.22 

±0.14 

10.22 

±0.12 

Table 4 

Processing time and estimated flow of ten g 2 curves of assigned flows of NF, and IK2 and INISg1 without (not explicitly indicated in the table) and with g 1 thresholding. 

Time: (mean) ± (SD). Grand mean of processing time of NF: 51.44 ms; grand mean of processing time of IK2 without g 1 thresholding: 279.36 μs; grand mean of processing 

time of INISg1 without g 1 thresholding: 261.49 μs; grand mean of processing time of IK2 with g 1 thresholding: 106.20 μs; grand mean of processing time of INISg1 with 

g 1 thresholding: 103.37 μs. 

Assigned 

flow (cm 

2 /s) 

5.00 × 10 −10 5.45 × 10 −9 1.05 × 10 −8 1.55 × 10 −8 2.05 × 10 −8 2.55 × 10 −8 3.05 × 10 −8 3.54 × 10 −8 4.04 × 10 −8 4.54 × 10 −8 

Relative 1 10.90 20.90 30.90 40.90 50.90 60.90 70.90 80.90 90.90 

NF 1 10.69 20.38 30.69 39.98 50.30 61.17 66.67 76.79 90.18 

Time 

(ms) 

68.77 

±1.36 

47.75 

±0.71 

33.67 

±0.63 

44.56 

±0.69 

50.60 

±0.68 

52.82 

±0.62 

57.51 

±0.58 

52.92 

±0.60 

52.47 

±0.61 

53.30 

±0.62 

IK2 1 5.89 9.27 11.65 12.96 14.28 15.64 16.42 17.01 18.01 

Time 

(μs) 

285.35 

±35.45 

280.10 

±5.66 

278.62 

±3.13 

279.49 

±2.48 

278.14 

±2.13 

279.00 

±2.49 

278.36 

±3.43 

278.82 

±2.68 

278.25 

±3.31 

277.51 

±3.15 

INISg1 1 6.65 9.64 11.24 12.07 12.67 13.73 14.12 14.13 15.04 

Time 

(μs) 

264.96 

±36.15 

261.89 

±2.15 

261.61 

±5.72 

260.95 

±3.17 

261.55 

±2.64 

261.01 

±3.10 

260.95 

±3.03 

261.30 

±2.95 

260.43 

±3.22 

260.21 

±3.38 

IK2 with g 1 
thresholding 

1 7.72 14.59 21.08 28.76 34.97 44.65 50.10 59.05 65.55 

Time 

(μs) 

275.88 

±50.95 

99.40 

±4.64 

89.69 

±1.05 

89.01 

±2.02 

85.65 

±0.74 

85.83 

±0.83 

84.56 

±1.08 

84.28 

±1.01 

83.99 

±1.14 

83.71 

±1.12 

INISg1 with g 1 
thresholding 

1 10.48 20.08 29.14 39.92 48.56 62.12 69.73 82.22 91.30 

Time 

(μs) 

250.28 

±13.61 

97.82 

±4.81 

89.76 

±5.41 

88.51 

±3.21 

86.06 

±4.78 

85.45 

±0.78 

84.24 

±1.10 

84.15 

±0.87 

83.80 

±1.12 

83.60 

±1.08 
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hese results prove IK2 and INISg1 to be preferable for the offline 

rocessing of DCS signals. 

.6. Fast flow measurement during arm-cuff occlusion 

To further test the suitability of the suggested methods in quan- 

ifying fast flow, raw data from the in vivo arm-cuff occlusion ex- 

eriment were used again. To balance signal quality with measure- 

ent speed, each 1 s pulse train was divided into 25 chunks (i.e., 

5 Hz), resulting in 40 ms as the maximum delay time of g 2 . Pul-

atile fluctuation due to heart rate, which is ∼1 Hz, can be resolved 

y monitoring fast flow [ 9 , 15 , 17 , 30 ]. A one-dimensional scalogram

MATLAB R2018b, Mathworks), based on continuous wavelet trans- 

orm (CWT) for which the Morse wavelet was used as the mother 

avelet, was implemented. 

Fig. 6 shows the flow changes and the scalogram of NF, IK2 

ith and without g 1 thresholding, and INISg1 with and without 

 1 thresholding. The gray region outside the dashed white line in 

ig. 6 (c)–(g) indicates the region excluded from analysis owing to 

he edge effect. As shown in Fig. 6 (a) and (b), flow underestimation 
7 
y IK2 and INISg1 is reduced as g 1 thresholding is applied, as dis- 

ussed in Sections 3.3 and 3.4 . Fig. 6 (c) shows a CWT-based scalo- 

ram of the NF. In the scalogram, before and after cuff occlusion 

before 60 s and after 240 s), ∼1 Hz and its harmonics exist, while 

requency components mostly disappear during cuff occlusion (be- 

ween 60 s and 240 s). Meanwhile, compared to the NF shown in 

ig. 6 (c), (d)–(g) represent almost the same frequency components 

ncluding ∼1 Hz heart rate, its harmonics, and the disappearance 

f amplitude during cuff occlusion but with lower intensity (am- 

litude becomes stronger on moving from (d) to (g)). In short, re- 

ardless of using g 1 thresholding, both IK2 and INISg1 can be used 

o monitor heart rate as well. 

.7. IK2 and INISg1 in arduino 

Tables 6 –8 summarize the results of IK2 with and without g 1 
hresholding, and INISg1 with and without g 1 thresholding on the 

rduino Due, Arduino Nano 33 BLE Sense, and the Portenta H7 

oards, respectively. In Arduino, INISg1 with g 1 thresholding still 

erforms the fastest, followed by IK2 with g thresholding, INISg1 
1 
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Table 5 

Processing time and estimated flow of 10 0 0 g 2 curves of assigned flows of NF, and IK2 and INISg1 without (not explicitly indicated in the table) and with g 1 thresholding. 

Time: (mean) ± (SD). Grand mean of processing time of NF: 5172.90 ms; grand mean of processing time of IK2 without g 1 thresholding: 35.54 ms; grand mean of 

processing time of INISg1 without g 1 thresholding: 33.72 ms; grand mean of processing time of IK2 with g 1 thresholding: 10.09 ms; grand mean of processing time of 

INISg1 with g 1 thresholding: 9.91 ms. 

Assigned 

flow (cm 

2 /s) 

5.00 × 10 −10 5.45 × 10 −9 1.05 × 10 −8 1.55 × 10 −8 2.05 × 10 −8 2.55 × 10 −8 3.05 × 10 −8 3.54 × 10 −8 4.04 × 10 −8 4.54 × 10 −8 

Relative 1 10.90 20.90 30.90 40.90 50.90 60.90 70.90 80.90 90.90 

NF 1 10.69 20.38 30.69 39.98 50.30 61.17 66.67 76.79 90.18 

Time 

(ms) 

6949.90 

±6.30 

4809.68 

±6.48 

3399.75 

±4.70 

4481.50 

±12.44 

5086.35 

±61.54 

5307.78 

±14.30 

5771.65 

±12.04 

5312.16 

±10.34 

5258.89 

±4.96 

5351.34 

±6.83 

IK2 1 5.89 9.27 11.65 12.96 14.28 15.64 16.42 17.01 18.01 

Time 

(ms) 

35.56 

±0.14 

35.49 

±0.16 

35.54 

±0.11 

35.48 

±0.17 

35.56 

±0.14 

35.57 

±0.16 

35.56 

±0.17 

35.55 

±0.20 

35.54 

±0.17 

35.57 

±0.19 

INISg1 1 6.65 9.64 11.24 12.07 12.67 13.73 14.12 14.13 15.04 

Time 

(ms) 

33.76 

±0.11 

33.67 

±0.11 

33.73 

±0.12 

33.62 

±0.14 

33.81 

±0.87 

33.71 

±0.13 

33.72 

±0.14 

33.73 

±0.16 

33.72 

±0.13 

33.70 

±0.15 

IK2 with g 1 
thresholding 

1 7.72 14.59 21.08 28.76 34.97 44.65 50.10 59.05 65.55 

Time 

(ms) 

26.01 

±0.09 

9.38 

±0.10 

8.66 

±0.06 

8.42 

±0.09 

8.16 

±0.05 

8.17 

±0.06 

8.04 

±0.06 

8.02 

±0.06 

7.99 

±0.06 

8.01 

±0.05 

INISg1 with g 1 
thresholding 

1 10.48 20.08 29.14 39.92 48.56 62.12 69.73 82.22 91.30 

Time 

(ms) 

24.70 

±0.09 

9.27 

±0.31 

8.57 

±0.06 

8.36 

±0.10 

8.20 

±0.45 

8.12 

±0.05 

8.00 

±0.06 

7.99 

±0.06 

7.96 

±0.07 

7.97 

±0.07 

Fig. 6. Relative fast flow index changes (25 Hz) of NF, IK2, and INISg1 without (a) and with (b) g 1 thresholding in the arm cuff occlusion experiment, continuous wavelet 

transform-based scalogram of NF (c), IK2 (d), and INISg1 (e) without g 1 thresholding (e), and IK2 (f) and INISg1 (g) with g 1 thresholding. (c)-(g) share the same color bar. 

The region indicated by the white dashed line and gray color in (c)–(g) presents regions with significant edge effects, which is not considered in the analysis. 

8 
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Table 6 

Summary of assigned flows for g 2 curves, and estimated flow and calculation time of IK2 and INISg1 without (not explicitly indicated in the table) and with g 1 thresholding 

performed on Arduino Due. Except for assigned flows, only relative values are shown for estimated flows through IK2 and INISg1. Time: (mean) ± (SD). Grand mean of 

processing time of IK2 without g 1 thresholding: 71.97 ms; grand mean of processing time of INISg1 without g 1 thresholding: 63.90 ms; grand mean of processing time of 

IK2 with g 1 thresholding: 8973.40 μs; grand mean of processing time of INISg1 with g 1 thresholding: 7547.82 μs. 

Assigned 

flow (cm 

2 /s) 

5.00 × 10 −10 5.45 × 10 −9 1.05 × 10 −8 1.55 × 10 −8 2.05 × 10 −8 2.55 × 10 −8 3.05 × 10 −8 3.54 × 10 −8 4.04 × 10 −8 4.54 × 10 −8 

Relative 1 10.90 20.90 30.90 40.90 50.90 60.90 70.90 80.90 90.90 

IK2 1.00 2.11 2.42 2.56 2.63 2.68 2.71 2.74 2.76 2.77 

Time 

(ms) 

72.01 

±0.01 

71.97 

±0.00 

72.02 

±0.01 

71.97 

±0.01 

71.94 

±0.01 

71.98 

±0.01 

71.90 

±0.01 

71.94 

±0.01 

72.01 

±0.01 

71.94 

±0.00 

INISg1 1 1.72 1.86 1.92 1.94 1.96 1.98 1.99 1.99 2 

Time 

(ms) 

63.94 

±0.01 

63.90 

±0.01 

63.95 

±0.01 

63.90 

±0.01 

63.87 

±0.01 

63.91 

±0.01 

63.83 

±0.01 

63.87 

±0.01 

63.94 

±0.01 

63.86 

±0.01 

IK2 with g 1 
thresholding 

1 7.72 14.57 21.06 28.7 34.91 44.49 49.89 58.80 65.51 

Time 

(μs) 

67,154.76 

±9.76 

7376.24 

±3.80 

3962.36 

±2.38 

3143.68 

±2.57 

1808.96 

±1.91 

1803.04 

±2.22 

1245.44 

±1.94 

1129.36 

±1.91 

1061.68 

±1.99 

1048.48 

±1.31 

INISg1 with g 1 
thresholding 

1.00 10.48 20.06 29.11 39.84 48.48 61.90 69.43 81.88 91.25 

Time 

(μs) 

56,442.88 

±9.93 

6221.76 

±3.80 

3336.48 

±2.87 

2662.80 

±2.02 

1524.88 

±2.03 

1516.96 

±2.07 

1041.44 

±1.94 

948.40 

±2.18 

901.52 

±1.96 

881.12 

±1.81 

Table 7 

Summary of assigned flows for g 2 curves, and estimated flow and calculation time of IK2 and INISg1 without (not explicitly indicated in the table) and with g 1 thresholding 

performed on Arduino Nano 33 BLE Sense. Except for assigned flows, only relative values are shown for estimated flows through IK2 and INISg1. Time: (mean) ± (SD). 

Grand mean of processing time of IK2 without g 1 thresholding: 3503.09 μs; grand mean of processing time of INISg1 without g 1 thresholding: 2855.16 μs; grand mean of 

processing time of IK2 with g 1 thresholding: 701.03 μs; grand mean of processing time of INISg1 with g 1 thresholding: 366.74 μs. 

Assigned 

flow (cm 

2 /s) 

5.00 × 10 −10 5.45 × 10 −9 1.05 × 10 −8 1.55 × 10 −8 2.05 × 10 −8 2.55 × 10 −8 3.05 × 10 −8 3.54 × 10 −8 4.04 × 10 −8 4.54 × 10 −8 

Relative 1 10.90 20.90 30.90 40.90 50.90 60.90 70.90 80.90 90.90 

IK2 1.00 2.11 2.42 2.56 2.63 2.68 2.71 2.74 2.76 2.77 

Time 

(μs) 

3502.08 

±15.72 

3504.32 

±22.51 

3504.00 

±19.12 

3502.24 

±21.46 

3502.24 

±21.76 

3503.68 

±18.98 

3504.64 

±21.00 

3501.12 

±20.17 

3502.56 

±21.91 

3504.00 

±17.93 

INISg1 1.00 1.72 1.86 1.92 1.94 1.96 1.98 1.99 1.99 2.00 

Time 

(μs) 

2853.00 

±14.58 

2856.16 

±21.77 

2853.44 

±15.00 

2855.44 

±18.57 

2854.68 

±18.99 

2856.76 

±19.56 

2852.76 

±14.92 

2856.24 

±17.65 

2857.56 

±20.14 

2855.52 

±17.60 

IK2 with g 1 
thresholding 

1 7.72 14.57 21.06 28.70 34.91 44.49 49.89 58.80 65.51 

Time 

(μs) 

5177.72 

±11.76 

577.48 

±11.83 

315.36 

±11.82 

251.40 

±11.89 

150.28 

±11.04 

149.56 

±10.57 

107.00 

±9.94 

97.88 

±9.37 

92.12 

±9.29 

91.52 

±9.09 

INISg1 with g 1 
thresholding 

1.00 10.48 20.06 29.11 39.84 48.48 61.90 69.43 81.88 91.25 

Time 

(μs) 

5089.84 

±21.17 

566.80 

±15.25 

308.32 

±13.03 

246.00 

±12.10 

146.48 

±10.53 

146.64 

±10.86 

103.04 

±9.06 

95.60 

±8.82 

89.12 

±8.78 

89.44 

±9.35 

Table 8 

Summary of assigned flows for g 2 curves, and estimated flow and calculation time of IK2 and INISg1 without (not explicitly indicated in the table) and with g 1 thresholding 

performed on Portenta H7. Except for assigned flows, only relative values are shown for estimated flows through IK2 and INISg1. Time: (mean) ± (SD). Grand mean of 

processing time of IK2 without g 1 thresholding: 605.67 μs; grand mean of processing time of INISg1 without g 1 thresholding: 494.95 μs; grand mean of processing time 

of IK2 with g 1 thresholding: 80.77 μs; grand mean of processing time of INISg1 with g 1 thresholding: 67.29 μs. 

Assigned 

flow (cm 

2 /s) 

5.00 × 10 −10 5.45 × 10 −9 1.05 × 10 −8 1.55 × 10 −8 2.05 × 10 −8 2.55 × 10 −8 3.05 × 10 −8 3.54 × 10 −8 4.04 × 10 −8 4.54 × 10 −8 

Relative 1 10.90 20.90 30.90 40.90 50.90 60.90 70.90 80.90 90.90 

IK2 1.00 2.11 2.42 2.56 2.63 2.68 2.71 2.74 2.76 2.77 

Time 

(μs) 

605.80 

±3.53 

605.60 

±3.38 

605.72 

±3.61 

605.72 

±3.75 

605.64 

±3.67 

605.64 

±3.25 

605.84 

±3.45 

605.56 

±3.41 

605.40 

±3.86 

605.76 

±3.44 

INISg1 1.00 1.72 1.86 1.92 1.94 1.96 1.98 1.99 1.99 2.00 

Time 

(μs) 

494.86 

±3.06 

495.00 

±3.66 

494.90 

±3.56 

494.94 

±3.62 

495.04 

±3.59 

494.88 

±3.65 

494.96 

±2.57 

494.86 

±3.63 

495.06 

±2.25 

495.04 

±3.49 

IK2 with g 1 
thresholding 

1 7.72 14.57 21.06 28.70 34.91 44.49 49.89 58.80 65.51 

Time 

(μs) 

597.92 

±3.90 

65.44 

±3.10 

35.84 

±4.35 

28.48 

±4.01 

17.12 

±2.80 

17.44 

±3.10 

12.32 

±4.03 

11.36 

±3.99 

10.56 

±3.77 

11.20 

±3.96 

INISg1 with g 1 
thresholding 

1.00 10.48 20.06 29.11 39.84 48.48 61.90 69.43 81.88 91.25 

Time 

(μs) 

494.64 

±3.27 

55.68 

±1.78 

30.32 

±2.11 

24.24 

±1.60 

14.72 

±1.84 

14.88 

±1.62 

10.36 

±1.44 

9.64 

±1.60 

9.08 

±1.29 

9.32 

±1.70 

9 
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ithout g 1 thresholding, and IK2 without g 1 thresholding, as dis- 

ussed in Section 3.5 . Among the three Arduino boards, Arduino 

ue showed the slowest performance, resulting in grand mean 

rocessing times of 7547.82 μs, 8973.40 μs, 63.90 ms, and 71.97 ms 

or INISg1 with g 1 thresholding, IK2 with g 1 thresholding, INISg1 

ithout g 1 thresholding, and IK2 without g 1 thresholding, respec- 

ively. The Arduino Nano 33 BLE Sense board performed moder- 

tely, resulting in grand mean processing times of 366.74, 701.03, 

855.16, and 3503.09 μs for INISg1 with g 1 thresholding, IK2 with 

 1 thresholding, INISg1 without g 1 thresholding, and IK2 without 

 1 thresholding, respectively. Note that, despite a lower clock speed 

64 MHz vs. 84 MHz), Arduino Nano 33 BLE Sense performed bet- 

er than Arduino Due because the microprocessor of the former 

as a floating-point unit (FPU), which is absent from the latter. In 

he meantime, due to high clock speed (480 MHz) and the exis- 

ence of FPU, Portenta H7 showed the best performance, result- 

ng in grand mean processing times of 67.29, 80.77, 494.95, and 

05.67 μs for INISg1 with g 1 thresholding, IK2 with g 1 threshold- 

ng, INISg1 without g 1 thresholding, and IK2 without g 1 thresh- 

lding, respectively. Overall, the results show that the suggested 

ethods can be used to process even high-speed flow data on low- 

ost microcontrollers. 

. Discussion 

Among the suggested approaches, INISg1 with g 1 thresholding 

ay offer various advantages, such as: 

i) reduced signal processing time on a PC ( Section 3.5 ), 

ii) outcomes comparable to those of NF ( Sections 3.1 to 3.4 , and 

3.6 ), 

ii) fast signal processing on low-cost microprocessors ( Section 3.7 ), 

and 

v) system cost reduction. 

Such advantages will expand the utilization of DCS techniques 

y allowing for real-time, normal, and fast flow measurement, and 

he implementation of more miniaturized, low-cost DCS systems 

y replacing PC or more bulky hardware with small, low-cost mi- 

rocontrollers such as Arduino or Raspberry Pi. A previous research 

as utilized an electric-circuit-based integrator to directly integrate 

nalog amplitude signals detected using a photodiode [11] . How- 

ver, the flow information acquired in that work was not robust 

nd may require additional work to make the concept more ma- 

ure. 

When g 1 thresholding was not applied, INISg1 performed bet- 

er than IK2 in the in vivo experiment ( Section 3.4 ), while it was

he opposite in the phantom experiment ( Section 3.3 ). This is be- 

ause of the difference in the range of flows in the two experi- 

ents. In particular, the flow in the phantom experiment ranged 

rom 1.17 × 10 −8 cm 

2 /s to 2.04 × 10 −8 cm 

2 /s, which was around or

igher than the TV. Conversely, the range of flow in the in vivo ex- 

eriment was from 8.10 × 10 −11 cm 

2 /s to 6.87 × 10 −9 cm 

2 /s, which 

as below the TV. As shown in the simulation, without g 1 thresh- 

lding, INISg1 performed better than IK2 until TV, and IK2 per- 

ormed better than INISg1 after TV. Thus, this discrepancy is as 

xpected. For simplicity, the TV from the simulation was used to 

nalyze the discrepancy between the IK2 and INISg1 results before 

pplying g 1 thresholding. However, TV may vary based on the op- 

ical properties of the medium of interest. 

Before thoroughly testing IK2 and INISg1, several preliminary 

ests were performed. First, the same calculation methods of IK2 

nd INISg1 were tested on g 2 curves. However, the g 2 curve-based 

stimation of blood flow was not as robust as that of IK2 and IN-

Sg1 (data not shown). Second, β other than 0.45 were tested (data 

ot shown). A few-mode fiber (FMF) is used in some cases to in- 

rease the light collection for deep tissue measurements, such as 
10 
rain measurement [31] . Because β is inversely proportional to the 

umber of modes propagated through an optical fiber, using FMF 

esults in a smaller β than using SMF by allowing more modes 

o propagate through an optical fiber. Moreover, because IK2 and 

NISg1 perform well with g 1 with different β as well, the wide 

pplicability of IK2 and INISg1 can be guaranteed. Third, in ad- 

ition to IK2 and INISg1, the inverse of the numerical integration 

f g 1 (INIg1) was also tested, which resulted in significant under- 

stimation of flow that could not be recovered even after apply- 

ng g 1 thresholding (data not shown). Thus, INIg1 was not tested 

n this study. However, INIg1 may still be useful in applications 

hat require simplified calculation and monitoring of qualitative 

ow changes. Finally, different source-detector separations were 

lso tested, and it was confirmed that IK2 and INISg1 still work 

ith source-detector separations other than 1 cm (shown in ap- 

endix). Overall, it was confirmed that IK2 and INISg1 work under 

arious conditions, guaranteeing their versatility. 

For simplicity, except for NF, β was assumed to be constant in 

ow estimation. While this assumption worked seamlessly in this 

tudy, unexpected situations, including the change of ambient light 

r probe contact to the tissue, may be able to cause significant 

hange of β so that the assumption of constant β may not be able 

o work properly. In such cases, β can be extracted using a single 

tep β fitting. If an application still requires relatively fast signal 

rocessing, subtraction of g 2 ( τ end ) from g 2 ( τ 1 ) can be performed 

s an alternative shortcut for calculating β . 

In the Arduino calculation, compared with the results from the 

C, without g 1 thresholding, IK2 and INISg1 had a more significant 

nderestimation of the flow. This is mainly due to the limited pre- 

ision of floating-point (‘ single ’ data type in MATLAB: 32-bit preci- 

ion floating-point vs. ‘ float ’ data type in Arduino: 6–7 decimal dig- 

ts precision floating point). In advanced Arduino products like the 

nes used in this study, ‘ double ’ data type offers more precision in 

oating-point, but it slows down signal processing time. When g 1 
hresholding was applied to IK2 and INISg1, the relative flows from 

he three types of Arduino became more comparable to the ones 

rom the PC (e.g., When assigned flow is 5.45 × 10 −9 cm 

2 /s, INISg1 

ithout g 1 thresholding → INISg1 with g 1 thresholding: 6.65 → 10.48 

rom the PC and 1.72 → 10.48 from Arduino). Thus, g 1 thresholding 

ombined with INISg1 allows the use of such microprocessors for 

igh-speed DCS signal processing with satisfactory accuracy with- 

ut using complicated, expensive signal processing hardware such 

s a graphics processing unit (GPU). 

While direct comparison of processing with other literature is 

ot straightforward due to the use of different processing units 

nd experimental conditions, IK2 with g 1 thresholding and IN- 

Sg1 with g 1 thresholding on the PC (12.58 μs and 12.20 μs) per- 

ormed approximately 37 and 38 times faster than a DL-based ap- 

roach (0.46 ms) [10] , respectively, which was one of the fastest 

mong the previous works. Meanwhile, on Portenta H7 IK2 with g 1 
hresholding (80.77 μs) and INISg1 with g 1 thresholding (67.29 μs) 

erformed approximately 6 and 7 times faster, respectively, than 

he DL-based approach. Moreover, based on our results, the higher 

he flow of g 2 curves being processed, the faster the suggested 

pproaches process the data. It is noteworthy that the DL-based 

pproach uses a GPU that allows parallel computing. If our meth- 

ds were to be implemented on a GPU, we would expect a much 

aster processing speed than that of the CPU or Arduino by virtue 

f parallel processing. Ultimately, with g 1 thresholding, IK2 and IN- 

Sg1 can be useful in reducing the signal processing time in DCS. 

lthough the suggested technique was not tested for applications 

hat require faster signal processing time, g 2 with a shorter maxi- 

um delay time (e.g., T = 1 ms) can also be considered. 

When processing a g 2 with a flow higher than 3.05 × 10 −8 

m 

2 /s by using INISg1 with g 1 thresholding, Portenta H7 (dual-core 

ith 480 MHz and 240 MHz clock speed) and the PC (octa-core 
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ith 2.90 GHz base clock speed and 4.80 GHz turbo clock speed 

hen the octa-core is used as a single-core) showed a large dif- 

erence in their performances, with Portenta H7 showing superior 

esults, even though the PC is equipped with a better processing 

nit. This is primarily because Portenta H7 is solely dedicated to 

umerical integration, while the CPU of the PC is not [12] . When 

oftware that can utilize the turbo clock speed of the CPU is used, 

he performance of the PC may be significantly improved. Still, if 

he size, cost, and energy usage are the most important factors 

onsidered, Portenta H7 will be more advantageous than the PC. 

epending on the application, Arduino Nano 33 BLE Sense (or Ar- 

uino Nano 33 BLE) can be used considering the cost of the system 

the cheapest among Arduino products tested in this work) and its 

oderate signal processing speed. 

Recently, a group introduced a mathematical method based 

n the Volterra integral equation (VIE) to recover g 1 from multi- 

xposure diffuse speckle contrast signals measured using camera- 

ased low-cost deep and shallow blood flow measurement systems 

 32 , 33 ]. In the meantime, our integration-based approach is pro- 

osed to reduce the computational burden of quantifying blood 

ow from g 1 of DCS. Although our method and VIE-based method 

im different goals, both methods are helpful in reducing the cost 

f DCS-derived systems. The recovered g 1 from the VIE-method is 

nown to have ripples in long delay times, and can be used to ex- 

ract blood flow using various approaches. Thus, we expect that 

ur approach can not only be used in conventional DCS but also in 

CS-derived systems, including systems that utilize the VIE-based 

ethod to recover g 1 data. 

Cerebral autoregulation (CA) is a widely known mechanism that 

aintains the cerebral blood flow during the variation of the blood 

ressure within a certain range [34–38] . Impairment of CA hap- 

ens in various types of brain diseases, including traumatic brain 

njury, stroke, and subarachnoid hemorrhage, and may be able to 

ause secondary brain damage [ 35 , 36 , 38 ], thus monitoring of CA is

f highly importance. Due to multiple advantages, including nonin- 

asiveness and relatively high temporal resolution, DCS combined 

ith either invasive (e.g., thermal diffusion invasive probe) [35] or 

oninvasive (e.g., finger plethysmography) [ 36 , 38 ] blood pressure 

easurement device is frequently used to monitor dynamic CA. 

hile the process of CA itself is not a fast mechanism, to mon- 

tor dynamic CA, fast CBF and blood pressure measurements are 

sed to see the change of a phase relationship between the pul- 

atile CBF and blood pressure. However, the relatively high cost of 

CS system and the requirement of postprocessing may be able 

o limit the usage of DCS in CA monitoring. As demonstrated in 

ection 3.6 , the suggested algorithms can be used to process fast 

lood flow data. The capability of processing fast flow can allow 

ide applications of the suggested algorithms, including real-time 

ata processing and display during monitoring of CA. By reducing 

he size and cost of DCS system, and allowing real-time flow data 

isplay, we believe that our algorithms will be able to reduce the 

indrance of DCS in dynamic CA monitoring, especially when used 

n regions with relatively limited resources. 

While we thoroughly evaluated the suggested methods, there 

re some limitations in this study. First, we did not compare the 

utcomes of the suggested approach when using different numer- 

cal integration methods such as Riemann sum and trapezoid rule. 

omparison of different numerical integration methods for IK2 and 

NISg1 will be rigorously performed in a follow-up study. Second, 

ven though we showed that with g 1 thresholding, INISg1 per- 

orms better than IK2, we could not identify the underlying rea- 

ons. In practice, as the flow varies, the values of g 1 with longer 

elay times vary more dynamically than those with shorter delay 

imes. Therefore, the existence of the delay time-weighted calcula- 

ion using ( 1 − τ
T ) in IK2 could weaken the effect of g 1 values of

ong delay times. In future, a follow-up study will be performed to 
11
omprehensively investigate the reasons for INISg1 with g 1 thresh- 

lding performing better than IK2 with g 1 thresholding. 

. Conclusion 

In conclusion, IK2 and INISg1, numerical integration-based ap- 

roaches, were proposed for estimating the flow information in 

CS. In preliminary experiments (data not shown), both IK2 and 

NISg1 suffered from a significant underestimation of the flows. 

o overcome the underestimation found in the preliminary exper- 

ments, we further introduced g 1 thresholding, which dramatically 

ecovered the flow information estimated by IK2 and INISg1. In- 

erestingly, INISg1, a more simplified method than IK2, performed 

uch better than IK2 when g 1 thresholding was applied. In addi- 

ion, INISg1 with g 1 thresholding showed the fastest performance 

n processing a g 2 curve by effectively reducing the calculation bur- 

en. Moreover, INISg1 with g 1 thing was even faster than the DL- 

ased signal processing approach, which is one of the fastest meth- 

ds, and is also applicable to quantification of the flow on a PC and 

rduino ( Sections 3.5 and 3.7 ). Thus, we believe that INISg1 with 

 1 thresholding, one of the newly suggested approaches, can con- 

ribute to the further development of DCS technologies in terms 

f reducing signal processing time and system miniaturization be- 

ause it is computationally light, offering comparable flow estima- 

ion as NF. 
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