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ABSTRACT A great amount of data is being created these days, which is kept in massive datasets with
different irrelevant attributes that are unrelated to the goal notion. Feature selection deals with the selection of
the most pertinent features that also aid to increase the classification accuracy. The topic of feature selection
is viewed as a multiobjective optimization problem with two goals: improving the classification accuracy
and reducing the number of features used. Drone Squadron Optimization (DSO) is one of the most recent
artifact-inspired optimization algorithms; having two key components: semi-autonomous drones that hover
over a terrain and a command center that manages the drones. In this paper, two binary variants of the DSO
are proposed to deal with the feature selection problem. The proposed binary algorithms are applied on
21 different benchmark datasets with five state-of-the-art algorithms, i.e., Grey Wolf Optimizer (GWO),
Particle Swarm Optimization (PSO), Flower Pollination Algorithm (FPA), Genetic Algorithm (GA) and
Ant Lion Optimization (ALO). Different assessment indicators are used to assess the diversification and
intensification of the optimization algorithms. When compared to current state-of-the-art wrapper-based
algorithms, the suggested binary techniques are more efficient in scanning the dimension space and picking
the most useful characteristics for categorization tasks, resulting in the lowest classification error rate.

INDEX TERMS Binary drone squadron optimization, drone squadron optimization, feature selection,
wrapper algorithm, artifact inspired evolutionary algorithm.

I. INTRODUCTION
In computer science, a dataset includes significant, insignif-
icant, or superfluous features that critically affect the
performance of the classification due to a large number of
features [1]. Choosing the important qualities or properties of
the data is a perplexing issue. Feature selection is a technique
which aims to eliminate superfluous variables within a dataset
to better understand the data. The goal of feature selection
approaches is to improve classifier performance and achieve
a classification error rate that is almost comparable to, if not
identical to, that of using the entire feature set. [2]. Wrappers

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

and filters are the two basic categories of feature selection
methods [3]. The filter-based algorithms utilize statistical
methods [4] to evaluate a feature subset, whereas learning
algorithms are used in wrapper-based algorithms to search
through the universe of potential solutions to find the best
feature subset [5].

Filter basedmethods generally demonstrate quicker perfor-
mance in comparison to wrapper-based methods since they
calculate the distance between features, information gain and
feature dependency, which is computationally less expensive
than estimating a classifier precision [3]. Nevertheless, wrap-
pers have been shown to be useful in locating the best feature
subsets for a given classifier, hence they are commonly inves-
tigated for classification error rate [6]. When using a wrapper
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feature selection technique, three factors should be decided:
classifier, feature subset evaluation criteria, and a searching
algorithm to find the best subset of features [4].

Finding a near optimum subset from the original set is a
difficult task. Moreover, the search space size will increase
exponentially with the amplification of the number of dimen-
sions in a data set. Practically speaking, the exhaustive
search techniques are not able to achieve the desired opti-
mal solution and still experience the ill effects of stagna-
tion in local optima [7]. In recent decades, metaheuristic
algorithms inspired by nature have grown in prominence
because of their ability to deal with complex real-world
situations in a powerful and effective manner [8]. These
algorithms are capable of utilizing the population’s relevant
knowledge in order to identify the best solutions. These
resilient and efficient methods are used to solve a wide range
of optimization problems, including financial time series
prediction [9], economic dispatch optimization [10], neural
networks [11], [12], wireless sensor networks [13] and engi-
neering design problems [14], [15]. Many researchers have
proposed metaheuristic based wrapper techniques for feature
selection problem where metaheuristics are used to make
subsets of features [16]. In practice, for the dataset with n
number of attributes, the number of possible subsets are 2n,
which makes it impossible for the exhaustive search methods
to evaluate all possible combinations due to time consump-
tion [17]–[19]. Therefore, metaheuristic based wrapper tech-
niques have shown better performance in comparison to the
exhaustive search methods [1].

The feature subset generation stage of the metaheuristic
algorithm produces the random solution primarily, and the
fitness of the random solutions is assessed using some fitness
function by means of a subset assessment stage for every
solution corresponding to which the dataset is partitioned
into training and testing sets. The classification algorithm is
trained by means of the training set and evaluated using the
testing set, and the fitness is calculated to get the best solution
in each iteration. The best solution in turn is used in the con-
sequent iterations for updating the solutions. The training and
testing set is divided using a fivefold cross-validation proce-
dure. This rudimentary process of feature selection is identi-
cal for the entire metaheuristic algorithm. Figure 1 shows the
feature selection process. The remaining sections of the paper
are organized as follows: Next section presents the related
work while the proposed DSO algorithm for feature selection
problem is described in Section 3. Section 4 discusses how
DSO is used for feature selection, and Section 5 reports the
findings and comments. Section 6 concludes with findings
and recommendations for further work.

II. RELATED WORK
Emary et al. [20] used the Grey Wolf Optimization (GWO)
strategy to tackle the feature selection problem. To deter-
mine the location of the grey wolf, the approach employed
a stochastic crossover. Recently, Ant Lion Optimizer
(ALO) [21] and Flower Pollination Algorithm (FPA) based

technique were employed to tackle the feature selection chal-
lenge [22]. In the realm of medical diagnostics, an enhanced
GWO method with ELM has recently been presented to
discover the best feature subset [23]. In the realm of text clas-
sification, a genetic algorithm combined with chaos theory
for dimension reduction has been developed [24]. To deter-
mine the optimal feature subset, Xue et al. [25] presented
novel starting strategies in the Particle Swarm Optimization.
Gu et al. [26] addressed the feature selection problem by
employing a competitive swarm optimizer, a variation of
the PSO. Recently, a hybrid approach based on ABC and
the differential evolution technique for picking an optimal
collection of features for the classification issue has been
developed [27].

Simulated annealing has recently been combined with a
whale optimization approach to improve the exploitation of
simulated annealing [28]. To increase the efficiency of the
native crow search for feature selection, Sayed et al. [29]
added chaotic maps into the crow search algorithm. As a
method of feature selection for classification, a binary ant
lion optimizer has also been presented in [21]. In ant lion
optimization, Zawbaa et al. [30] used chaotic maps to min-
imize the attributes in high-dimensional data sets. In wrapper
mode, another solution based on the whale optimization algo-
rithm was developed to handle the feature selection prob-
lem [18]. A strategy for finding the best feature set was
successfully implemented using a grasshopper optimization
algorithm [31] and evolutionary population dynamics [32]
in [33].

Hans and Kaur [34] proposed a binary multi verse opti-
mization method for selecting the optimal feature set by
incorporating the use of various transfer functions for position
updation. Hu et al. [35] proposed an improved grey wolf
optimizer so that the problem of discretization can easily
be solved. Zhang et al. [36] integrated salp swarm algo-
rithm (SSA) into the Harris Hawk Optimizer so that a bal-
ance between exploration and exploitation can bemaintained.
Neggaz et al. [37] proposed the used of sine cosine algorithm
boosted by salp swarm algorithm. The method improves the
exploration and avoids local minima. Emine and Ülker [38]
proposed the use of social spider algorithm by using a transfer
function which can be utilized for mapping from a continuous
to a binary search space. Agrawal et al. [39] proposed the
use of quantum concepts and the whale optimization algo-
rithm to increase exploration and exploitation. The individual
solutions can be represented in the form of bits and modified
mutation and crossover operators have been introduced.

In spite of the many metaheuristic methodologies sug-
gested for the feature selection problems, still, many dif-
ficulties remain unanswered, such as reduced accuracy in
the case of datasets with higher number of attributes, high
processing time, and solution subsets with inappropriate
attributes. To address these issues, this study explores the
use of DSO algorithm for feature selection as this is claimed
to be robust, adaptive, and flexible and has powerful explo-
ration and exploitation capabilities. In this context, this study
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FIGURE 1. Feature selection process.

aims to propose two variants of the binary DSO algorithm
for selecting a minimal number of features and acquiring a
comparable or perhaps lower classification error rates than
traditional feature selection methods.

III. PRELIMINARIES
The Drone Squadron Optimization is a non-nature-
motivated evolutionary metaheuristic that imitates the
drones’ behaviour which fly over a geographical area to
explore and these drones are controlled by a command cen-
ter [40]. Figure 2 shows the important terms used in the DSO
and Figure 3 shows the characteristics of DSO.

A. DRONE SQUADRON OPTIMIZATION
1) INSPIRATION
DSO is inspired by the movement of drones, which are
entities that make movements to explore the geographical

search space area, to locate something, or to complete a
particular task. There are different teams of drones which
are being controlled by the command centers. A drone tries
to move closer to the destination location. The command
center performs two tasks: manage the search operations of
the drones partially and control the drones by making new
firmware which contains the modules to explore the search
space. The drones are divided into certain groups where each
group is controlled by the firmware to control the movement
of the drones. Each team is controlled by its own firmware.
There are perturbation functions that are used to create the
trial solution locations for the movement of the drones. The
perturbation scheme is used to generate the new firmware
using the following equations:

P = Departure+ offset(), (1)

TC = calculate (P), (2)
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FIGURE 2. Important terms of DSO.

FIGURE 3. Characteristics of DSO.

where departure is a coordinate, offset() represents the pertur-
bationmovement, and Equation 1 and 2 show the formulas for
finding the trial coordinates TC.

2) MOVEMENT OF DRONES
The drones move to the target positions calculated by the
perturbation step and return the information to the command
center. To calculate the target locations, the DSOmay use any
of the methods used in various optimization techniques. For
example, consider the two following perturbations for team1
and team2:

P1 :
−−→
GBC + (C1 × (

−−→
GBC −

−−−−−→
CBCdrone)) (3)

P2 :
−−−−−→
CBCdrone + (G(0, 1)

×

√
U (0, 1)D −

−−−−−→
CBCdrone)) (4)

where G(0, 1) are the values generated from Gaussian distri-
bution, C1 is a constant whose value is defined by the user,
and U (0, 1)D represents an array generated from a uniform
distribution ranging from 0 to 1.

It’s worthwhile to mention that
−−→
GBC represents the global

best coordinates and
−−−−−→
CBCdrone represents the current best

coordinates.

Each drone performs the recombination with the best
solution coordinates after the perturbation step, where all
recombination methods have an equal probability of getting
selected. The drones are permitted to move only in a certain
search space region. If the calculated position of the drone
comes out to be outside this region, then it is considered as a
violationwhich needs to be corrected. The following equation
is used to correct the violations:

violationteam =
∑n

drone=1

∑D

j=1

{∣∣TmCteam,drone,j − UBj∣∣
+
∣∣LBj − TmCteam,drone,j∣∣ (5)

The number of drones in each team is represented by N, D
represents the dimension, and the upper bounds array is UB,
while the lower bounds array is LB. This calculation takes
care of the violation cases where TmCteam,drone,j > UBj or
Tm,Cteam,drone,j < LBj.
The symbol TmCteam,drone denotes the target position of

each drone of the team. The quality of teams is measured by
using the number of solutions generated out of bounds and
the distance from the objective function. The corrections of
the teams are performed at every iteration. The firmware is
updated when a criterion set in the beginning is reached and in
that process, the firmwares of the team with the worst results
are replaced by the firmwares of the best performing team.
The command center and drones are depicted in Figure 4.
Figure 5 shows the pseudocode of DSO.

IV. THE PROPOSED BINARY DRONE SQUADRON
OPTIMIZATION (BDSO)
A. BINARY DRONE SQUADRON
OPTIMIZATION -METHOD 1 (S-BDSO)
As previously stated, because the new drone locations are
values in continuous form, the continuous values must be
translated to binary values that correspond to each other.
A Sigmoidal (S-shaped) transfer function is used to accom-
plish this task of compressing continuous solutions in each
dimension [41], which forces the drones to discretize their
movement. The S-shaped function, as seen in Eq. (6) and
Figure 6, is a typical transfer function.

S
(
Pki (t)

)
=

1

1+ e−p
k
i (t)

(6)

where Pki is the continuous-valued perturbation of the ith
drone in k th dimension at iteration t .

The Eq. (7) is used to convert the S- shape function output
into a binary values in the case of sigmoidal function.

xki (t + 1) =

 o, if rand < S
(
Pki (t)

)
1, if rand > S

(
Pki (t)

) (7)

where xki (t) and P
k
i (t) indicate the position and perturbation

of the ith drone at iteration t in the kth dimension.
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FIGURE 4. Depiction of the command center and drones in DSO.

FIGURE 5. Pseudo-code of DSO.

B. BINARY DRONE SQUADRON OPTIMIZATION -
METHOD 2 (V-BDSO)
This approach presents a V-shaped transfer function rather
than an S-shaped transfer function and Eqs. (8) and (10) are

used to achieve so. The transfer functions of force drones to
travel in a discrete search space are shown in Figure 7.

V
(
Pki (t)

)
=

∣∣∣∣erf(√π2 Pki (t))

∣∣∣∣ (8)
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FIGURE 6. Sigmoid transfer function.

FIGURE 7. V-shaped transfer function.

V
(
Pki (t)

)
=

∣∣∣∣∣∣
√
π

2

∫ √
π
2 Pki (t)

0
e−t

2
dt)

∣∣∣∣∣∣ (9)

The Eq. (9) can be rewritten as:

xki (t + 1) =

 (xki (t))
−1
, if rand < V

(
Pki (t)

)
xki (t), if rand > V

(
Pki (t)

) (10)

where xki (t) and P
k
i (t) specify the location and perturbation

of the ith drone in the kth dimension at iteration t , and xki (t)
−1

represents the complement of xki (t).
A large Pki (t) indicates a high likelihood of shifting site,

which means the search agent is significantly away from the
best solution, therefore it should change the position vector to
hit possible search space regions on the road. Lesser values
of Pki (t) on the other hand, imply that a search agent should
stay put and try to find anything close [44].

C. FITNESS FUNCTION
As mentioned earlier, the DSO algorithm is employed to
search through the large subset of features to find the best
subset which should have a minimal number of features and
maximum accuracy. To evaluate the subset of features, the

following fitness function is used:

Fitness = αγR (D)+ β
|R|
|N |

(11)

where γR(D) is the KNN classifier’s classification error rate.
In addition, R denotes the cardinality of the chosen fea-
ture subset, whereas N is the total number of features in
the original dataset. The parameters α ∈ [0, 1] and β =
(1 − α) are taken from [21], [28] and relate to the relevance
of classification quality and subset length, respectively.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA DESCRIPTION
The experimental analysis has been performed on twenty-one
datasets shown in Table 1 and are retrieved from UCI reposi-
tory [42]. The datasets were chosen to reflect a wide range of
characteristics and tuples on which the suggested technique
must be evaluated [20], [21]. Especially, the chosen datasets
offer a large amount of search space, allowing for a proper
optimization method’s testing. Every dataset is partitioned in
the same way as done in cross-validation procedures [43].

TABLE 1. Data sets that were utilized.

The training is done using K-1 folds, while the validation
is done on the kth fold as in K fold cross-validation. For each
dataset, the evaluation is repeated K×M times. The dataset’s
training section is used to teach the classifier, and then its per-
formance is evaluated using the dataset’s validation section.
Finally, the testing dataset is used to evaluate the characteris-
tics that have been chosen. Each drone is relocated during the
training process to choose a feature subset. PSO, FPA, GA,
ALO, and GWO were used to compare the suggested feature
selection methods.

Before employing these methods for feature selection, cer-
tain parameters must be preset. Table 2 shows the parameters
values used in this investigation. These parameter values were
chosen based on the values found in the literature [20], [21].
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TABLE 2. Experimental parameters.

B. EVALUATION CRITERIA
In each run of the individual optimization method, the follow-
ing metrics are applied to the data:

1) CLASSIFICATION ACCURACY
It is the average of classification accuracy values obtained
from N runs. It can be defined as the fraction of tuples that
are erroneously categorized.

accuracy =
1
N

∑N

j=1

1
M

∑M

i=1
match(Ci,Li) (12)

The number of optimization algorithm runs is N , and the
number of tuples in the testing data set is M. Ci is the data
point i′s classifier output label, and Li is the tuple i′s reference
class label. When two separate labels are the same, the match
match returns 0; when they are different, the match returns 1.

2) STATISTICAL MEAN
This value represents the average of the fitness values
obtained when all runs of the optimization method are
exhausted, as shown in the equation below.

Mean =
1
M

∑M

i=1
g∗i (13)

here g∗
i
is the best value obtained during the ith run.

3) STATISTICAL BEST
This value represents the smallest of all fitness values accu-
mulated across the iterations. The formula can be stated as:

min1<i≤M {gi} (14)

4) STATISTICAL WORST
It is the maximum (worst) value obtained from all fitness
values obtained throughout the iterations, as shown in the

following equation:

max1<i≤M {gi} (15)

5) STATISTICAL STANDARD DEVIATION
The standard deviation indicates the variation between the
best answers found throughout the model’s major iterations.
It describes the stability and robustness of an optimization
technique and may be expressed as follows.

std .dev. =

√
1

M − 1

∑
(gi −Means)2 (16)

6) AVERAGE SELECTION SIZE
It is calculated by dividing the total number of features by
the average number of picked features after each run. The
formula is given as follows:

Mean =
1
M

∑M

i=1
size(g∗) (17)

Here, the number of features in the testing data set that were
chosen represented by size().

7) PROCESSING TIME
It is described as the optimization algorithm’s running time
averaged on all runs. The processing time can be determined
using:

Mean =
1
M

∑M

i=1
RunTimeo,i (18)

where M specifies the iterations for optimization method o,
and RunTimeo,i,, the optimization algorithm o’s real calcula-
tion time at run number i.

8) NON-PARAMETRIC TESTING
This study uses Wilcoxon’s signed rank test that seeks to
discover substantial differences between the means of two
samples. The test produces a p-value parameter, which checks
the significance level of the two algorithms.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) COMPARITIVE ANALYSIS OF DSO, S-BDSO, AND V-BDSO
Table 3 demonstrates the comparison between the proposed
binary DSOs approaches in the context of error rate in clas-
sification. It is evident from Table 3 that V-BDSO method
outperforms the native one. Over all datasets utilized in this
investigation, the native DSO does not outperform any binary
DSO.On the other side, S-BDSOoutperforms the nativeDSO
across all datasets.

On all datasets, the suggested V-BDSO surpassed the
native DSO in terms of average selection size, and the per-
formance of S-BDSO is likewise competitive with V-BDSO,
as shown in Table 4. The V-BDSO performed statistically
better on almost all datasets in comparison to S-BDSO and
in the penglungEW dataset, S-BDSO outperformed V-BDSO
by providing 163.73 average selection size whereas V-BDSO
demonstrates 167.60 average selection size.
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TABLE 3. Classification accuracy obtained from DSO, S-BDSO, and
V-BDSO on different data sets.

TABLE 4. Average selection size of DSO, S-BDSO, and V-BDSO on all data
sets.

Tables 5-8 provide the results of execution on all data
sets and these results are normalized in the range 0 and 1.
According to the results shown in Table 5, DSO demonstrated
superior performance on 7 datasets on the mean fitness mea-
sure, while V-BDSO outperformed DSO and S-BDSO on
14 datasets. As may be seen from the statistical best fitness
results in Table 6, DSO has the best results on 13 datasets,

TABLE 5. For the different runs for DSO, S-BDSO, and V-BDSO, Statistical
mean fitness on the different data sets.

TABLE 6. Statistical best fitness for DSO, S-BDSO, and V-BDSO on
different data sets.

whereas V-BDSO performed better on 8 datasets. The results
on the statistical worst fitness measures are shown in Table 7,
where it can be analyzed that V-BDSO performed signifi-
cantly better than S-BDSO and DSO on 13 datasets, whereas
S-BDSO outperformed other algorithms on 6 datasets only.
Table 8 illustrates the statistical standard deviation fitness
measure. As it can be seen from these results, V-BDSO
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TABLE 7. Statistical worst for DSO, S-BDSO, and V-BDSO on different data
sets.

TABLE 8. Statistical standard deviation measures for DSO, S-BDSO, and
V-BDSO on different data sets.

outperformed S-BDSO and DSO on 16 datasets, whereas
S-BDSO performed better on 2 datasets only.

Table 9 shows the average computing time of DSOs’ tech-
nique, which is the time it takes to arrive at a near-optimal
solution. The results of this table demonstrate that the com-
putational speed of S-BDSO is competitive to DSO, whereas
compared to DSO, V-BDSO takes longer to compute than
S-BDSO.

TABLE 9. Average computational time of DSO, S-BDSO and V-BDSO.

FIGURE 8. Average of the number of features selected on all datasets.

2) COMPARATIVE ANALYSIS OF RESULTS WITH STANDARD
METHODOLOGIES
From the last section, it can be observed that V- BDSO
provided the lowest classification error rate as well as the
average selection size in comparison to DSO and S-BDSO.
In this section, the performance of the best strategy, V-BDSO,
is compared to the performance of several state-of-the-art
ways that are frequently used to tackle the feature selection
issue in the literature [18], [21], [28]. In terms of classification
error rate, table 10 shows the findings of V-BDSO, ALO,
FPA, GA, GWO, and PSO. As it may be observed in this
table, V-BDSO outperforms ALO, FPA, PSO, GWO, and GA
in terms of classification error rate on all datasets. This higher
performance demonstrates the suggested approach’s ability to
efficiently discover the search space’s optima.
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TABLE 10. Comparison of V-BDSO’s classification accuracy with standard methods on different datas sets.

TABLE 11. On different datas sets, the average selection size of V-BDSO in comparison to the standard methods.

Table 11 shows the average selection size using V-BDSO
and other approaches. In comparison to the other techniques
used in this study, V-BDSO performs substantially better by
picking a smaller number of features. V-BDSO performed
better on all datasets, according to the findings provided
in this table except penglungEW and spectEW, where GA

showed better performance by selecting less number of
attributes. The suggested strength of V-BDSO resides in
its increased exploration and exploitation capability, which
enables it to reduce redundant characteristics before intensely
searching the high-performance regions of the feature
space.
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TABLE 12. In comparison with state-of-the-art approaches on different datas sets, statistical mean fitness was measured for the proposed approaches.

TABLE 13. Statistical best fitness measure for the proposed approach on different data sets.

In Tables 12-15, the statistical measurements acquired
from several runs of the algorithms on all data sets
are shown, and these results are standardized in the
range 0 to 1. It can be observed from Tables 12 and 14 that
V-BDSO outperformed ALO, FPA, PSO, GWO, and GA
in the mean and worst fitness measure on all datasets
whereas in the best fitness criteria, V-BDSO outperformed

other algorithms on most (eighteen out of twenty-one)
of the datasets as shown in Table 13. Table 15 shows
an overview of the statistical standard deviation measure
findings obtained for all datasets. The performance of
V-BDSO is competitive in comparison to state-of-the-art
techniques (ALO, FPA, GA, GWO, and PSO), as seen in this
table.
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TABLE 14. Statistical worst fitness for the proposed approach in comparison with other approaches on different data sets.

TABLE 15. Statistical standard deviation measures for the proposed approach in comparison with the standard approaches on different data sets.

The results of V-BDSO and other algorithms in terms of
computing time are shown in Table 16. On thirteen datasets,
FPA has the fastest computational time, whereas GA and

GWO each have the fastest computational time on four
datasets. In compared to the other techniques, V-BDSO needs
much more processing time because of the V-shaped transfer
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FIGURE 9. Accuracy to feature selected ratio for all 21 datasets.
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FIGURE 9. (Continued.) Accuracy to feature selected ratio for all 21 datasets.

TABLE 16. Comparison of computational time on different data sets.

function, which allows V-BDSO to map continuous values to
binary values and requires considerable computational time.
Table 17 shows the p values at 5% significance level found in
most cases; the results are significant at p ≤ 0.05 in the vast
majority of cases.

Figure 8 shows the average number of features selected
from all datasets. It can be clearly observed that V-DSO
selects the lowest number of features. Figure 9 depicts the
accuracy to feature selection ratio on individual data sets, the
results clearly indicate that the proposed V-BDSO algorithm
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TABLE 17. Wilcoxon test for the average fitness.

has achieved higher accuracy on feature selected ratio value
on all datasets.

VI. CONCLUSION
In this research, binary variations of the Drone Squadron
Optimization (DSO) are suggested and used to choose fea-
tures in wrapper mode. The continuous version of DSO is
transformed into its binary variant utilising V-shaped and
S- shaped transfer functions. The new binary techniques
were tested against well-known nature-inspired algorithms
such as Ant Lion Optimization (ALO), Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Flower Pollina-
tion Algorithm (FPA), and Grey Wolf Optimizer (GWO) on
21 benchmark datasets from the UCI library. To examine
different areas of performance, the evaluation uses a set of
assessment criteria. The presented findings suggest that the
proposed binary DSO technique can optimally explore the
space of features and converge to the best solution faster than
other algorithms. Moreover, the results prove that the binary
algorithm proposed based on V-shaped function achieves
an average classification accuracy of 91.5% and an average
selection size of 26.4, whereas the binary algorithm proposed
based on S-shaped function achieves an average classification
accuracy of 88.5% and an average selection size of 32.4.
Hence, V shaped function performs better than the S-shaped
one.

It might be interesting to combine the DSO method
with another population-based metaheuristic algorithm in
future investigations. Furthermore, examining the perfor-
mance of the DSO approach when used on considerably
higher-dimensional datasets will be a great contribution.
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