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We study the logarithmic correction to the scaling of the first Lee–Yang zero at the critical point in the classical XY
model on square lattices by using tensor renormalization group methods. In comparing the higher-order tensor
renormalization group (HOTRG) and the loop-optimized tensor network renormalization (LoopTNR), we find that the
entanglement filtering in LoopTNR is crucial to gaining high accuracy for the characterization of the logarithmic
correction, while HOTRG still proposes approximate upper and lower bounds for the zero location associated with two
different bond-merging algorithms of the higher-order singular value decomposition and the oblique projectors. Using
the LoopTNR data computed up to the system size of L = 1024 in the L × L lattices, we estimate the logarithmic
correction exponent r = −0.0643(9) from the extrapolation of the finite-size effective exponent, which is comparable to
the renormalization group prediction of r = −1=16.

1. Introduction

Multiplicative logarithmic corrections appear in the critical
behaviors of certain statistical physics models, introducing
another set of scaling exponents characterizing criticality.1–3)

In the Berezinskii–Kosterlitz–Thouless (BKT) transition,4–7)

the renormalization group (RG) equations predicted that the
correlation function GðRÞ at the critical point exhibits the
leading-order behavior7–9) of GðRÞ � R��ðlnRÞ�2r or more
generally GðRÞ � R��ðb þ lnRÞ�2r with exponents � ¼ 1=4
and r ¼ �1=16 at a large distance R. The logarithmic
correction factor essentially distinguishes the critical behav-
iors of the correlation function and susceptibility from those
of the Ising model undergoing the second-order transition.
On the other hand, it is numerically challenging to precisely
identify such multiplicative logarithmic correction with a
very small exponent. Much numerical effort has been devoted
to measuring r in the two-dimensional (2D) XY model and
related models undergoing the BKT transition.10–22) While
early estimates of r vary from positive to negative values (see
Table 4 in Ref. 23), later large-scale Monte Carlo (MC)
simulations showed improved agreement with the RG
prediction.

In previous MC studies of the 2D XY model, Kenna and
Irving10) firstly measured r ¼ �0:02ð1Þ from the finite-size-
scaling (FSS) analysis of the lowest lying (first) Lee–Yang
(LY) zero for system sizes up to L ¼ 256 in the L � L square
lattices. At the critical point, they found that the first LY zero
�1 should behave with increasing system size L as

�1 � L�ðlnLÞr; ð1Þ
which was derived from its relation to the leading-order
scaling behavior of the susceptibility,

� � L�d��21 � L2��ðlnLÞ�2r; ð2Þ
where d ¼ 2 for two dimensions and thus � ¼ �2 þ �=2.
Using the Villain formulation, Janke15) measured r ¼
�0:0270ð10Þ from the FSS analysis of the susceptibility in
the critical region for system sizes up to L ¼ 512. Later,
Hasenbusch20) examined an alternative scaling ansatz of the
susceptibility,

� � L2��ðC þ lnLÞ�2r; ð3Þ
reporting r ¼ �0:056ð7Þ from the FSS analysis with the MC
dataset of 256 � L � 2048 in the pure XY model. The high-
temperature expansion done by Arisue21) reported the similar
value of r ¼ �0:054ð10Þ from the calculation of the
moments of the correlation function. Most recently, Komura
and Okabe22) performed large-scale MC calculations for sizes
up to L ¼ 65536, reporting the best fit with r ¼ �0:064ð4Þ at
the fixed value of C ¼ ln 16 in the FSS analysis of the
susceptibility. The parameter C effectively includes sublead-
ing-order corrections that may decay rather slowly with
increasing L.20) Setting C ¼ 0 provided smaller values of
r ¼ �0:0406ð3Þ in Ref. 20 and r � �0:55 in Ref. 22 with
similar system sizes.

In this paper, we revisit the FSS analysis of the first LY
zero in the 2D XY model by employing methods based on the
tensor renormalization group (TRG). Since the first MC
measurement of the LY zero,10) there have been no other
attempts to measure the logarithmic correction exponent
using the LY zero in the XY model. Most of other previous
estimates of r were based on the susceptibility that might
have been more straightforwardly measurable in cluster MC
simulations. The purpose of the present work is to examine
applicability of the TRG-based methods to the numerical
identification of the first LY zero and then to provide an
updated estimate of the logarithmic correction exponent.

The TRG methods provide a deterministic way of
evaluating the partition function of a classical spin model
in the tensor network representation.24) The higher-order
tensor renormalization group (HOTRG) method25) was
previously applied to the Fisher zero problem where the
partition function is evaluated at a complex temperature.26,27)

In the Ising and Potts models, the HOTRG method was also
used to obtain the density of the LY zeros from the
discontinuity of magnetization.28) While tensor network
methods have been actively applied to study phase transitions
in classical and quantum systems,29) including the BKT
transitions,30–37) the computation of the first LY zero in the
XY model has not been studied with TRG yet. It still remains
unclear whether or not a TRG-based method such as HOTRG
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allows enough accuracy to characterize such delicate
logarithmic correction with a small exponent predicted at
the BKT transition.

We compare HOTRG with the loop-optimized tensor
network renormalization (LoopTNR)38) in identifying the
location of the first LY zero at the critical point. It turns out
that HOTRG fails to give a converged estimate at a large
system, although it still proposes approximate bounds for the
zero location that are set by the estimates associated with two
different bond-merging algorithms based on the higher-order
singular value decomposition25) and the oblique projector
method.39) In contrast, the LoopTNR calculations show much
better convergence with increasing the bond dimension
cutoff, indicating the importance of removing the short-range
entanglement.40) We obtain the first LY zeros for system sizes
up to L ¼ 1024 in the XY model. In the analysis of the
alternative scaling ansatz with an undetermined constant as
being introduced in the susceptibility,20) we present that our
finite-size estimate of the logarithmic correction exponent
approaches closer to the RG prediction, providing the
updated estimate of r ¼ �0:0643ð9Þ from extrapolation.

This paper is organized as follows. In Sect. 2, we describe
the numerical procedures including a brief review of HOTRG
and the two bond-merging algorithms and the performance of
our initial state preparation for the loop optimization in the
LoopTNR calculations. In Sect. 3, we present the comparison
between the two bond-merging algorithms of HOTRG and
the estimate with LoopTNR in computing the first LY zero
and the analysis of the LoopTNR data of the LY zero to
measure the logarithmic correction exponent in the XY
model. Summary and conclusions are given in Sect. 4.

2. Numerical Procedures

2.1 XY model and Lee–Yang zeros
The classical XY model is described by the Hamiltonian,

H ¼ �J
X
hi; ji

cosð�i � �jÞ � h
X
i

cos�i; ð4Þ

where �i is a spin angle at site i, and h denotes a magnetic
field. The coupling strength J and the Boltzmann factor kB
are set to be unity, and thus the temperature unit J=kB and the
magnetic field unit J are omitted for brevity throughout this
paper. We consider the periodic boundary conditions.

The zeros of a partition function provide an alternative tool
to study phase transitions and critical phenomena (see, for
instance, Refs. 41 and 42 and references therein). The LY
zeros43,44) are defined in the plane of complex fugacity while
the Fisher zeros45) are defined in the plane of complex
temperature. Characterizing the BKT transition using parti-
tion function zeros has been interest of many previous
works.10–12,26,27,46–50) In the models that satisfy the Lee–Yang
theorem,44) including the XY model,51) the LY zeros are
exactly on the imaginary axis of the magnetic field. The first
LY zero is the one with the smallest magnitude, exhibiting a
characteristic scaling behavior with increasing system size at
the critical point.

Finding the location of the LY zero requires the evaluation
of the partition function Z ¼ P

f�ig expð��HÞ at an imagi-
nary magnetic field h ¼ i�. In the XY model, we fix the
inverse temperature β at the critical point �c ¼ 1:1199 that is
agreed between the previous large-scale Monte Carlo,20,22)

high-temperature expansion,21) and tensor network renorm-
alization37) studies. To identify the first LY zero �1, we first
graphically locate an approximate location of �1 and then
numerically minimize jZð�c; �Þj to refine the estimate of �1.

In the TRG formulation,24) the partition function of a
classical spin model with local interactions is written in the
square lattices as

Zð�c; �Þ ¼ Tr
Y
i

Txix 0i yiy
0
i
; ð5Þ

where T is a local tensor, and its four legs are associated with
the bonds in the x and y directions. In the XY model, the local
tensor is given as30,52)

Txx 0yy 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ixð�cÞIx 0 ð�cÞIyð�cÞIy 0 ð�cÞ

p
Ixþy�x 0�y 0 ði�c�Þ; ð6Þ

where In is the modified Bessel function of the first kind.
While the exact enumeration of the tensor product in Eq. (5)
is numerically impossible unless the system is very small,
TRG provides a controlled way to compute Z by coarse-
graining the tensor network with bond dimension truncation.
Below we briefly describe the procedures of the two TRG-
based methods that we employ to evaluate the partition
function.

2.2 HOTRG and bond-merging methods
An essential part of the HOTRG procedures is the step of

merging a pair of parallel bonds into a one bond in the
contraction of two neighboring tensors. In the square lattices
of 2N � 2N sites, with translation invariance being imposed,
the final coarse-grained tensor is obtained by performing 2N
contractions alternatively along the x and y directions. For
instance, as shown in Fig. 1(a), one can write down the
contraction of two neighboring tensors along the y direction as

Mxx 0yy 0 ¼
X
i

Tx1x 01yiTx2x 02iy
0 ; ð7Þ

x1

x2 x2

x1

y

y

xx
M M1 M2P1 P2

≈=

2

f = −

χ

χ2
χ

χ

χ
χ

(a) (b)

(c)

Fig. 1. (Color online) Schematic diagram of (a) the combine tensor M in
HOTRG, (b) the oblique projectors, and (c) the initial tensor preparation for
the loop optimization in LoopTNR. In (c), thicker bonds have dimension as
large as �2 that is to be truncated by the projectors of the entanglement
filtering.
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where the bond dimension of x � x1 � x2 and x0 � x01 � x02
increases to �2 if each leg of T has dimension χ. The crucial
part of HOTRG is to keep the dimension of x and x0 below a
numerically manageable cutoff χ. The truncation error is due
to the finite cutoff limited by available computing resources.

The original HOTRG paper25) proposed the higher-order
singular value decomposition (HOSVD) for the truncation as

T 0
xx 0yy 0 ¼

X
ij

UixMijyy 0U
	
jx 0 ; ð8Þ

where the matrix U is determined by solving an eigenpro-
blem of MMy. To preserve the symmetry of the local tensor
at an imaginary magnetic field, we perform the orthogonal
transformation by diagonalizing the real part of MMy in the
same way that was used in Refs. 26 and 27 for the Fisher
zero problem.

The other bond-merging algorithm39) considers a pair of
the oblique projectors P1 and P2 inserted between the
neighboring combined tensors M1 and M2, as sketched in
Fig. 1(b), minimizing kM1M2 �M1P1P2M2k at a given
cutoff χ of the bond dimension between them. While details
of the algorithm can be found in the literature,39,53,54) let us
briefly review the numerical procedures. The projectors are
given as

P1 ¼ R2
~Vt
~�
�1=2
t ; ð9Þ

P2 ¼ ~�
�1=2
t

~U
y
t R1; ð10Þ

where R1 and R2 are from the QR and RQ factorization ofM1

and M2, respectively, and the other tensors are from the
truncated singular value decomposition (SVD) of R1R2 �
~Ut
~�t
~V
y
t that keeps the largest χ singular values. The R tensors

can be computed using matrix diagonalization as
R1 ¼ �

1=2
1 U1; ð11Þ

R2 ¼ Uy
2�

1=2
2 ; ð12Þ

where My
1M1 ¼ Uy

1�1U1 and M2M
y
2 ¼ Uy

2�2U2. Finally, the
contraction along the y direction is done as

T 0
xx 0yy 0 ¼

X
ij

½P2
xiMijyy 0 ½P1
jx 0 : ð13Þ

While the symmetry of the local tensor in Eq. (6) is not
explicitly preserved with the oblique projectors at a complex
field, the first LY zero computed using the projectors shows
accuracy comparable to the symmetry-preserved HOSVD.
These two bond-merging algorithms play complementary
roles in the search for the LY zero location. It turns out that
they provides approximate upper and lower bounds for the
true zero location, which we will demonstrate later in Sect. 3.

2.3 Loop optimization of tensor network renormalization
A known issue of TRG is that it does not make an isolated

RG flow because of the survival of the short-range
entanglement.40) HOTRG is much more accurate than the
original TRG at a non-critical region, but it also suffers from
the same issue of the original TRG at a critical point, which
may cause inaccuracy in finding the LY zero especially at a
large system. Several methods38,40,55–58) have been proposed
to remove the short-range entanglement and demonstrated
that a correct fixed point tensor is recovered with much
higher accuracy at a critical point. So far, the effect of the

entanglement filtering remains untested in the plane of a
complex field or temperature for a partition function zero
problem. In Sect. 3, we will show that removing the short-
range entanglement is crucial particularly to the identification
of the multiplication logarithmic correction in the XY model.

We adopt the LoopTNR method38) that extends the TRG
scheme by adding the entanglement filtering step to remove
the corner double line tensors and replacing the truncated
SVD of the original TRG with the loop optimization. We
have implemented our code by faithfully following the
original paper38) yet with extra care of preparing an initial
tensor for the loop optimization. It was already pointed out in
the original paper that choosing a good initial tensor could
considerably speed up the convergence of iterations in the
loop optimization.

The simplest way of preparing an initial octagonal tensor
ring for the loop optimization is to perform the truncated
SVD as done in the original TRG scheme. Instead, as
sketched in Fig. 1(c), we use the entanglement filtering
algorithm to generate projectors to truncate the bond
dimension. We first apply SVD to the local tensors with all
singular values being kept and then perform the entanglement
filtering on the eight-tensor ring. In the final step, the
projectors are constructed by choosing the largest χ singular
values. During the loop optimization, the entanglement
filtering is performed every ten sweeps for better stability.
The maximum number of sweep is limited to 200. Figure 2
presents comparison between two choices of the initial
tensors, showing that the entanglement filtering projectors
gains order-of-magnitude improvement over the simple
truncated SVD in the minimization of the cost function.

3. Results and Discussion

3.1 Comparison between HOTRG and LoopTNR
We compare the cutoff dimension dependence of the LY

zero estimates computed using HOTRG and LoopTNR. Our
findings in the following are based on common observations
in the Ising and XY models. First, in the HOTRG
calculations, two bond-merging algorithms approach each
other from the opposite sides as the cutoff χ increases. While
it fails to converge, the comparison between the estimates
associated with the two bond-merging algorithms proposes
the upper and lower bounds for the zero location. Second,
LoopTNR converges much faster than HOTRG and thus
provides a more reliable estimate of the zero location. The
comparison between HOTRG and LoopTNR shows the
importance of the entanglement filtering to the precise
identification of the LY zeros in the XY model.

Figure 3 displays the first LY zeros computed in the 2D
Ising model. The LoopTNR calculations verify the exact
scaling behavior �1ðLÞ / L� with the critical exponent
� ¼ �15=8 at a relatively low cutoff � ¼ 14. On the other
hand, the HOTRG calculations converge rather slowly with
increasing χ, which gets worse as it goes to larger systems.
Interestingly in the HOTRG calculations, the direction of the
LY zeros moving toward the exact scaling line with
increasing χ depends on which bond-merging algorithm is
used. While the one with HOSVD approaches the exact
scaling line of the first LY zero from above, the other with the
oblique projectors lies below the exact line, proposing an area
where the exact LY zero should be located. Although our
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observation is purely empirical, testing the different bond-
merging algorithms may help judging the absolute con-
vergence of the LY zero estimate. In the Ising model, one can
simply increase χ to see that the two HOTRG estimates
indeed meet each other on the exact scaling line for the
system sizes shown in Fig. 3.

Figure 4 shows the same tendency with the bond-merging
algorithms of the HOTRG estimates in the XY model. The
zero estimate moves with increasing χ from the opposite

directions associated with the two bond-merging algorithms.
The situation in the XY model is in fact much worse than
in the Ising model. We fail to make these two HOTRG
estimates meet together for L � 16 even at the largest cutoff
that we have examined. Thus, it is not practically possible to
study the multiplicative logarithmic correction to the scaling
of the LY zero by using the HOTRG calculations.

In contrast, the estimates of the LY zeros from the
LoopTNR calculations with the cutoffs of � ¼ 60; 70; 80
graphically overlap onto each other. All are well within the

Fig. 3. (Color online) Comparison between HOTRG and LoopTNR in
finding the first LY zero of the 2D Ising model at the critical point. Different
cutoff values of the bond dimension (� ¼ 8; 10; 14) are examined with the
HOSVD and oblique projector methods in the bond-merging step of
HOTRG. The exponent λ is fixed at �15=8. The dotted line indicates the
exact scaling behavior.

Fig. 4. (Color online) First LY zero of the 2D XY model at the critical
point �c ¼ 1:1199. The LoopTNR results are compared with the HOTRG
estimates based on the HOSVD and oblique projector methods. The
exponent λ is fixed at �15=8. The dotted line of L�0:0082 is given for
comparison with a pure power law.

Fig. 2. (Color online) Convergence of the loop optimization. The cost function f is plotted as a function of the number of sweeps in the loop optimization
tested at the n-th coarse-graining step in the 2D XY model. The marker with “projector” represents our initial tensor preparation method where the truncation
occurs with the entanglement filtering. The other marker represents the initial tensor prepared by the truncated SVD of the TRG scheme. The calculations are
done at � ¼ �c and h ¼ i with the bond dimension cutoff � ¼ 40.
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bounds proposed by the HOTRG estimates. While the
convergence with different χ’s is not perfect for the largest
L as seen in the numeric data of the LY zeros listed in
Table I, the larger bond dimension makes the less truncation
error in building a coarse-grained tensor and should provide
the more accurate data. Our measurements of the exponent
r of the multiplicative logarithmic correction to the scaling
presented below are mainly based on the data of the largest
cutoff � ¼ 80 that we have managed to reach in our
LoopTNR calculations.

3.2 Logarithmic correction exponent
We measure the logarithmic correction exponent r by

examining two possible forms of the FSS ansatz. First we
examine the ansatz of the asymptotic scaling behavior,

�1ðLÞ � L�ðlnLÞr; ð14Þ
which is the same one considered in the previous MC study
of the LY zero in the XY model.10) In finite-size systems,
there must be an influence from non-universal subleading-
order terms that decay with increasing L. This finite-size
effect is expected to be particularly problematic when trying
to identify the logarithmic correction exponent because its
base is the logarithm of the system size. An ideal FSS
analysis to determine the exponent r would need a dataset
of very large system sizes, such as a series of log2 L ¼ 2n,
to perform a conventional log–log fit. However, the sizes
allowed in our calculations are l � log2 L ¼ 3; 4; 5; . . . ; 10,
implying that a significant finite-size effect could appear in
the evaluation of the exponent.

The LoopTNR calculation is deterministic at a given bond
dimension cutoff χ and free from a stochastic uncertainty. If
the LoopTNR data of the first LY zero is precise enough, a
good way to get an exponent can be extrapolating the finite-
size exponents that are computed by equating r in Eq. (14)
with two different system sizes. Which is extrapolated toward
the wanted exponent r in the thermodynamic limit. This
method is sensitive to the accuracy of the raw data and thus
typically used for numerically exact data at small systems.
We write the finite-size exponent reff by choosing two
consecutive system sizes of l and l þ 1 as

reffðlÞ ¼ log2
�1ðl þ 1Þ
�1ðlÞ � �

� ��
log2 1 þ 1

l

� �
; ð15Þ

where λ is fixed at �15=8. Supposed no numerical error
existing in �1ðlÞ, the finite-size behavior of reffðlÞ is solely
due to the subleading-order contributions that decrease with
increasing l, implying that reff monotonically approaches the
exact value of the exponent r as l increases.

Figure 5 presents reffðlÞ obtained from the two-point
estimate of Eq. (15). It turns out that the data with the
largest cutoff available ( � ¼ 80) shows a smooth monotonic
curve expected in this method while the less accurate ones
with the lower cutoffs indicate deviations from the one with
the largest cutoff at L ¼ 512 and 1024. We perform the
extrapolation with the data of � ¼ 80 along the model line of

reffðlÞ ¼ r	1 þ aol
�!; ð16Þ

finding r	1 ¼ �0:0674ð16Þ. Although this number is close to
the RG prediction rRG ¼ �0:0625, we must point out the
risks of such extrapolation. This extrapolation model assumes
decay in the form of l�!, which lacks a theoretical ground. In
addition, the available data points are quite far from the
intercept at 1=l ¼ 0 on the extrapolation line, implying that
the intercept r may significantly vary with a choice of the
model. While this issue is fundamental, we argue that it
is less severe if we take the alternative ansatz with an
undetermined constant.

In the FSS analysis of the BKT transition, the logarithmic
correction is often described by (C þ lnL) with an unde-
termined constant C instead of lnL.20,59) Similarly, we may
write the system-size scaling ansatz of the first LY zero
as

�1ðLÞ � L�ðC þ lnLÞr; ð17Þ
where the constant C may help us to include some of
subleading-order contributions within the ansatz. To deter-
mine the two unknowns of reff and C, we need to consider
three system sizes ðl; l þ 1; l þ 2Þ. The equation for c �
C=ln 2 is then written as

log2
�1ðl þ 1Þ
�1ðlÞ

� �

log2
�1ðl þ 2Þ
�1ðl þ 1Þ � �

¼ log2½1 þ ðc þ lÞ�1

log2½1 þ ðc þ l þ 1Þ�1
 ; ð18Þ

Table I. Numeric data of the first LY zero computed using the LoopTNR
method with the bond dimension cutoff � ¼ 60; 70; 80 in the 2D XY model.

L � ¼ 60 � ¼ 70 � ¼ 80

8 0.043152022481 0.043152341820 0.043152516125
16 0.011697992784 0.011698219091 0.011698141443
32 0.003171206193 0.003171237666 0.003171264869
64 0.000859814590 0.000859847214 0.000859849347

128 0.000233203560 0.000233203767 0.000233206505
256 0.000063265430 0.000063270187 0.000063270583
512 0.000017175547 0.000017171787 0.000017171295

1024 0.000004660332 0.000004663680 0.000004661544

Fig. 5. (Color online) Logarithmic correction exponent estimate based on
the scaling ansatz of �1 / L�ðlnLÞr. The exponent λ is fixed at �15=8. The
finite-size exponent reff is computed for every consecutive sizes of ðL; 2LÞ
using the LoopTNR data of � ¼ 60; 70; 80. The extrapolation along the line
of reffðLÞ ¼ r	1 þ aðlnLÞ�! is shown at the parameter ! ¼ 0:541 obtained
from a fit to the data points of � ¼ 80 with L ¼ 8 being excluded.
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which is to be solved numerically. The right-hand side is a
bounded and monotonic function of c, indicating that there
exists a single solution or no solution. Once c is determined,
the finite-size exponent reff can be computed as

reffðlÞ ¼ log2
�1ðl þ 1Þ
�1ðlÞ � �

� ��
log2 1 þ 1

c þ l

� �
: ð19Þ

Figure 6 shows reff obtained from the three-point analysis of
Eqs. (18) and (19). As one may have expected already in the
two-point analysis, the datasets of � ¼ 60; 70 having larger
truncation errors do not give a solution of c at large L’s. In
contrast, the dataset of � ¼ 80 provides a solution for c at
all l’s examined. The three-point estimate of reff seems to
saturate faster as l increases than the two-point estimate
without C, which may be seen from the value of ! ¼ 5:7 in
the extrapolation along the line of Eq. (16), while it was
! ¼ 0:541 in the case of the two-point analysis. The intercept
r	1 ¼ �0:0643ð9Þ is close to the data of reff ¼ �0:0665
obtained at the largest l and is also well compared to the
RG prediction.

Finally, it is also worth to note that our dataset proposes a
possible range of r without extrapolation being attempted. As
displayed in Figs. 5 and 6, the two-point estimate of reff
monotonically decreases with increasing l while the three-
point estimate increases with l. The two curves have to meet
at a true value of r in the limit of infinite l. Therefore, these
monotonic yet contrasting behaviors of reffðlÞ observed in the
two different analysis indicate that the exact r must be in the
range of �0:0665 < r < �0:0403, where the numbers are
given by reff at the largest l available in Figs. 5 and 6. This
range is probably the most conservative measure of r that we
can provide, although the power-law extrapolation suggests
that the true r is likely to be much closer to the lower bound
of the range.

4. Summary and Conclusions

We have investigated the applicability of the TRG-based
methods of HOTRG and LoopTNR to the calculation of the
first LY zero, with a particular focus on the multiplicative
logarithmic correction to the scaling at the critical point in the
2D XY model. It turns out that while LoopTNR exhibits
graphical convergence in the LY zero location, HOTRG fails
to provide a reliable estimate within our accessible bond
dimension cutoffs, assuring the importance of the entangle-
ment filtering in LoopTNR. Despite the failure of HOTRG,
we have found that the opposite convergence directions
associated with the two different bond-merging algorithms of
HOSVD and the oblique projectors can propose the bounds
for the zero location between which the LoopTNR estimate
indeed resides.

By using the LoopTNR dataset of the first LY zeros, we
have measured the logarithmic correction exponent r in the
XY model. We have considered the finite-size effective
exponent reff that is computed from a adjacent set of of the
LY zero data. In the two- and three-point analysis of reff
based on the two types of a scaling ansatz, we have identified
the range of �0:0665 < r < �0:0403 at the largest system
size examined for the measure of the exponent. The
extrapolation with the three-point estimates provides r	1 ¼
�0:0643ð9Þ that is well compared to the RG-predicted value
of r ¼ �0:0625.

Our estimates of r are based on the LoopTNR dataset
of � ¼ 80 that is the largest cutoff accessible within our
computing resources. The irregularity observed at the lower
values of the cutoff implies that � ¼ 80 may be the minimum
bond dimension cutoff for LoopTNR to achieve enough
accuracy required to the proper characterization of the
multiplicative logarithmic correction. While it is computa-
tionally challenging to increase χ further larger in the present
study, our three-point analysis method of computing reff
based on the ansatz of Eq. (17) can be a benchmark for
future tensor network calculations at larger values of χ to
pursue a more precise measurement of the logarithmic
correction exponent in the XY model and other systems
undergoing the BKT transition.
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