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Abstract

This paper presents a novel deep learning-based camera localization method using iterative relative pose estimation to improve the
accuracy of pose estimation from a single RGB image. Although most existing deep learning-based camera localization methods are
more robust for textureless cases, illumination changes, and occlusions, they are less accurate than other non-deep learning-based
methods. The proposed method improved the localization accuracy by using the relative poses between the input image and the
training dataset images. It simultaneously trained the network for the absolute poses of the input images and their relative poses
using Siamese networks. In the inference stage, it estimated the absolute pose of a query image and iteratively updated the pose using
relative pose information. Real world examples with widely used camera localization datasets and our dataset were utilized to validate
the performance of the proposed method, which exhibited higher localization accuracy than the state-of-the-art deep learning-based
camera localization methods. In the end, the application of the proposed method to augmented reality was presented.
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1 Introduction
Camera localization, also known as camera pose estimation, esti-
mates the position and orientation of a camera based on various
types of data, such as RGB images, inertial sensor data, and 2.5-
dimensional (2.5D) or 3D scanned values. It computes the position
and orientation of camera coordinates relative to the reference
(world) coordinates.

Parallel to the rapid development of smart wearable and per-
sonal handheld devices, camera localization is adopted in several
applications, including autonomous navigation, robotics, games,
augmented reality (AR), and mixed reality. AR is regarded as the
most promising technology for industrial applications. It can as-
sist in equipment repair tasks or aid workers in verifying discrep-
ancies between actual products and their design by intuitively
providing on-site fabrication information. However, AR cannot be
successfully used in practice unless the physical geometric envi-
ronment is adequately recognized, to determine an appropriate
coordinate system to augment 2D or 3D content to the user on
the mobile device’s screen, which requires the exact location and
orientation of the camera.

The pose of the camera corresponds to the position and viewing
direction of the user in the reference coordinate system. There-
fore, additional information or intuitive visual expressions for
the location can be provided. A typical example is AR naviga-
tion, which can visually provide direction to the destination to the
user based on the current position and heading orientation on the
screen. In addition, position-based services or desired information
associated with the user’s position can be provided.

Camera localization is the problem of estimating camera pose
from an input image. The pose is a vector of six degrees of free-
dom (DoFs), where the three DoFs correspond to the location and
the others correspond to the orientation of the input image. The
approaches to solve this problem can be categorized into three
types. One is the feature-based method or handcrafted feature-
based approach. Lowe (2004) proposed a scale-invariant feature
transform (SIFT) method that extracts and matches the scale
and, rotation-invariant features of images. It is widely employed
to compare two images in terms of their similarity. The relative
location and orientation between the images can be estimated
using epipolar geometry constraints from 2D point correspon-
dences. Bay et al. (2008), Leutenegger et al. (2011), and Rublee et al.
(2011) proposed several variants of SIFT, that are currently widely
used. Simultaneous localization and mapping (SLAM) is the most
prevalent localization approach that adopts handcrafted features
(Mur-Artal et al., 2015, 2017). It computes the relative positions
and orientations between inter-frame images, and generates a 3D
map via feature matching. Structure from motion (SfM) is another
method that uses handcrafted features for camera localization.
It extracts image features and matches them between multiple
images using the perspective-n-point (PnP) solver in the random
sample consensus (RANSAC) loop (Wu, 2011). Unlike SLAM, which
compares inter-frame image sequences, SfM uses all images to es-
timate the poses. Furthermore, it can yield accurate poses; how-
ever, this requires extensive time. SfM is often used for scanning
3D models or constructing a training dataset for deep learning-
based camera localization when other sensory inputs are unavail-
able.
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The other class adopts 3D models for pose estimation. It com-
pares the geometry of a 3D model with the geometric features
of an image, such as lines or edges, and determines the location
and orientation of a scene using the PnP approach. Furthermore,
it performs 2D–3D matching during pose computation, unlike the
handcrafted feature-based method that performs 2D–2D match-
ing. Drummond and Cipolla (1999) proposed an edge-based inter-
frame camera-tracking method. In this method, sample points
were placed on the extracted edges and the edges of a 3D model.
The relative pose of the camera was estimated by minimizing the
average distance between the features of the 2D edges and pro-
jected 3D model edges. Kim et al. (2018) used line segments and a
model for camera pose estimation in an AR environment, and ap-
plied it to the shipbuilding fabrication process. Typically, a model-
based method requires a good initial pose to obtain the correspon-
dence between a 2D image and a 3D model, as described by Liu et
al. (2017) and Yu et al. (2020).

Deep learning is another class of methods to solve camera lo-
calization problems. It has been widely used to solve several com-
puter vision problems. It has demonstrated an overwhelming per-
formance for image classification (Krizhevsky et al., 2012), object
detection (Girshick, 2015), and semantic segmentation (Long et al.,
2015). In addition, there has been a growing number of applica-
tions in diverse areas, such as small object detection in a remote
sensing environment (Yuan et al., 2021), analysis and forecasting
of slope stability for geotechnical engineers (Mahmoodzadeh et
al., 2021), prediction of water inflow into tunnels (Mahmoodzadeh
et al., 2022), pneumonia detection on chest X-rays (Varshni et al.,
2019), and medical face mask detection in real-life images (Loey
et al., 2021).

Recently, it has been used for camera pose estimation. Kendall
et al. (2015) proposed the PoseNet. They applied a convolu-
tional neural network (CNN) to the camera localization problem,
which modified the object classification architecture, GoogLeNet
(Szegedy et al., 2015), to estimate the camera’s location and orien-
tation. Additional fully connected layers (FCLs) replacing the soft-
max classifier of GoogLeNet were have being introduced to regress
the location and orientation. SfM was used to generate a labelled
training dataset. PoseNet is an absolute pose regressor, which is
also known as learned absolute pose (LAP) estimation. It estimates
the location and orientation of a single input image. Usually, a
feature extractor or an encoder is used to extract high-level fea-
tures of an image. The extracted features are fed to the regres-
sor to estimate the pose. Here, the estimated pose is the absolute
pose of an image because its reference coordinates are based on
world coordinates. PoseNet used a novel loss function that com-
bines location and orientation, and transfer learning was applied
in this approach to reduce the training time and achieve high lo-
calization accuracy. It yields robust results for textureless cases,
significant illumination changes, and occlusions compared with
feature-based methods. However, it may yield larger errors than
feature-based and model-based methods. Hence, extensive stud-
ies have been conducted to improve the localization accuracy of
deep learning-based camera localization approaches. Melekhov et
al. (2017a) proposed Hourglass-Pose, which is an encoder–decoder
used to regress the absolute pose of an input image. Naseer et al.
(2017) proposed SVS-Pose, which utilizes the VGG-16 (Simonyan
& Zisserman, 2014) architecture to replace GoogLeNet in PoseNet.
In addition, studies have been conducted to improve the regres-
sor, which is also known as the localizer in deep pose regression.
For example, Walch et al. (2017) used long short-term memory
(Hochreiter & Schmidhuber, 1997) and Zhang et al. (2018) used
the Georgia Tech smoothing and mapping library (Carlone et al.,

2014) for PoseNet++. In addition, a novel type of loss function has
being adopted to regress the absolute pose. Kendall and Cipolla
(2017) proposed a geometric re-projection error that adopts the 3D
points of an input scene. Brahmbhatt et al. (2018) proposed Map-
Net, which uses sensory inputs, such as GPS and visual odometry,
and fused them for camera localization. Geometric constraints
were formulated using bundle adjustment (Lourakis et al., 2009)
and pose-graph optimization (Grisetti et al., 2010). An additional
self-supervised video update was applied to improve the local-
ization accuracy. VLocNet (Valada et al., 2018) used learning with
visual odometry, and VLocNet++ (Radwan et al., 2018) applied
an absolute pose regressor with semantic segmentation. Shavit
et al. (2021) proposed attention-based camera localization, called
TransPoseNet. It localizes the best position for corner-like image
features and the best orientation for edge-like image features. IPR-
Net (Shavit & Ferens, 2021) used a pre-trained encoder that was
trained for visual similarity instead of a pose encoder trained for
pose regression. It only trains the regressor part of the network,
leading to a shorter training time and lighter storage space. Li et
al. (2021) proposed VNLSTM-PoseNet, which directly adopts an in-
put image without cropping to increase the receptive field of the
training image, whereas other methods used the cropped image
for training and test.

The learned relative pose (LRP) is another type of deep learning-
based camera localization. It estimates the relative pose of the
two images using two pose regressors. It uses two encoders to
extract the high-level features of two images, and combines the
feature maps generated by the two encoders into a single regres-
sor. Finally, it estimates a six DoFs relative pose between the two
images. Melekhov et al. (2017b) proposed relative camera local-
ization using a CNN and obtained robust relative poses between
the two images, the poses of which the existing methods failed
to estimate. LRP has exhibited robust results for textureless sur-
faces, significant illumination changes, and occlusions compared
with feature-based methods, which is similar to LAP. In addition,
Siamese network architecture using RelocNet (Balntas et al., 2018)
and PairwiseNet (Laskar et al., 2017) were used to estimate the rel-
ative pose of an image. Deep learning-based camera localization
methods work robustly and exhibit faster inference speeds than
other feature-based and model-based methods. However, they re-
main limited by their low localization accuracy, which is a signif-
icant drawback to these methods.

In this paper, a novel deep learning-based camera localiza-
tion method is proposed. It uses a Siamese neural network archi-
tecture with iterative relative pose estimation. It comprises two
stages: training and inference. During training, correlated image
pairs in the training dataset are identified, and the pairs are used
to train the relative poses. Next, a novel Siamese network archi-
tecture is utilized to train the two absolute poses of the two input
images and the relative pose between them simultaneously. In ad-
dition, a novel loss function is introduced to train the network for
absolute and relative poses. After the training is completed, the
camera pose of an input image is estimated using the proposed
method as follows. First, the absolute location and orientation
of an input RGB image are estimated using the trained absolute
pose regressor. Next, an image with minimum loss is selected as
a correlated image from the training dataset. Subsequently, the
relative pose between the input and selected images is estimated
using the relative pose regressor. The absolute pose of the input
image is then updated using the estimated relative pose. This up-
date sequence is repeated until the sequence converges. The pro-
posed correlated image pair selection (CIPS) step provides efficient
relative pose training between the images in the training stage.
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Figure 1: Illustration of the proposed method.

The proposed method exhibited higher localization accuracy than
other methods that estimate an absolute pose directly, using rela-
tive pose estimation during the inference stage. The experimental
results of the proposed method are presented and compared with
the results of other state-of-the-art camera localization studies
involving deep learning. The experiments are conducted using the
Cambridge Landmarks dataset, which is widely used for evaluat-
ing camera localization tasks. Furthermore, the proposed method

adopted in AR applications was demonstrated using a thermal ob-
servation device (TOD) dataset.

2 Methodology
The objective of the proposed method is to estimate the location
and orientation of the camera from a monocular RGB image. The
overall structure of the proposed method is illustrated in Fig. 1.
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2.1 Training stage
The training comprised two stages. In the first stage, a correlated
image pair with an overlapping region was selected, where the im-
ages share the same pixels. In the second stage, a network was
used to train the two absolute poses of the two correlated im-
ages and one relative pose between them using their ground-truth
poses. Siamese networks were utilized to extract the features of
two images with shared weights.

i Correlated image pair selection
In this stage, several correlated image pairs, called batch images,
were selected during training. Two images were considered corre-
lated if they had the same world coordinate points or shared a re-
gion between them. The correlated image pairs with the absolute
and relative poses of each pair were used to train the network.

Training the relative pose between uncorrelated images is al-
most meaningless, and adversely affects the training process. The
proposed network required two correlated images for training.
The network extracted high-dimensional features and matched
them using CNNs. It always attempts to extract correspondences
between two images based on quantitative measures and esti-
mates the relative pose between them. However, this computation
was performed even though the features do not match spatially.
In this case, the relative pose between such images was incorrect,
which adversely affected the network training. Therefore, provid-
ing correlated images as input to the training step is critical for the
prediction performance of the network. The importance of corre-
lated image selection is discussed in the experimental results and
in Section 3.2.

The correlation between two images can be verified using one
of two simple methods. The first method uses sequential coher-
ence of the dataset. Most datasets used for camera localization are
created from videos. When selecting an image with a random in-
dex k from the training image dataset and the training image sam-
pling gap threshold d, the images with indices of (k − d) to (k + d)
in a video sequence are highly likely to be correlated because two
consecutive inter-frame images must overlap unless a significant
abrupt change occurs in the camera motion between the frames.
Threshold d was empirically selected as 30, which yielded good
experimental results.

In the second method, two images are regarded as uncorrelated
if the orientation difference between them is greater than the field
of view (FoV) of the camera. This difference can be computed us-
ing Equation (1), in which the orientation information of each im-
age is defined as a quaternion.

cos
(

θ

2

)
= q1 · q−1

2 , (1)

where q and θ denote the unit quaternion and angle between two
quaternions, respectively. If the angular difference between two
images is greater than the FoV, then the two images do not share
the same scene or world coordinate points. If the images share at
least one pixel, the two view-frustums intersect. The maximum
angle difference between the two images is the angle of the ori-
entations of the two images in which the view-frustums in each
orientation intersect only at the corners. Half of the maximum
angular difference was set as the threshold, to determine whether
the two images are correlated. The correlated images were used
for training because several matching image features can be ex-
tracted from the images to relate them to the relative poses when
training the network using relative pose information.

However, it cannot be verified that the two images share the
same scene, even though the view-frustums intersect. In this case,
the positional difference between the two images could be prob-
lematic. If obstacles exist in front of the camera or if occlusion ex-
ists that obstructs the view of the camera in one orientation, then
the images may not overlap, and pose computation fails. Hence,
the overlap must contain the correspondence information. If a
dataset with 3D point clouds or a depth map is available, it is easy
to confirm whether the two images share the same scene. A point
cloud is projected onto each image using the ground-truth poses
with the camera intrinsic matrix K. By comparing the number of
2D points projected inside the two images, it can be determined
whether the images share the same 3D points. If the number of
projected 2D points is sufficiently large, it is assumed that the im-
ages are correlated. In the case of RGB-D images, one depth point
can be projected onto another image. If the projected point is in-
side the image, then the two images share the same pixel. How-
ever, when the dataset had no point cloud or depth, the correlation
was indirectly estimated. If only RGB images were provided, the
correlation between the two images cannot be determined. Hence,
another method must be used to determine whether two images
share the same view. In this case, handcrafted feature matching
was used to verify image correspondence. The ORB (Oriented FAST
and Rotated BRIEF) feature (Rublee et al. 2011) was adopted to
identify overlap. As mentioned in Section 1, handcrafted features
were used to detect and match the rotation and scale-invariant
features in the images. The percentage of matched features with
a small distance over the number of detected features was used
to determine whether two images were correlated. Algorithm 1
presents a pseudocode for determining whether two images are
correlated and for generating a correlated image-pair matrix C.
After the correlated image-pair matrix C was constructed, the net-
work was trained.

Algorithm 1. Pre-processing: CIPS.

Number o f input training images : n
Input RGB image sequence : I = {I1, I2 . . . , In}
Ground truth poses o f image sequence : P = {P1, P2 . . . , Pn} =
{R1|t1, R2|t2 . . . , Rn|tn}
Inter-frame index threshold number: d
(optional) Input depth image sequence : D = {D1, D2 . . . , Dn}
(optional) 3D model points or point cloud : X
Correlated image pair matrix C(n × n) in Boolean with false initialization
for i = 1 : n do
for j = i − d : i + d do // automatically exclude index exceeding (1 ∼ n)

θ = angle between (Pi, Pj )
i f θ < θthres :

Ci j = true, Cji = true
for k, ∀Ci j (Ci j is true)

image Ii, image Ij = k
i f 3D model or point cloud is provided

Ci j = Point cloud projection test (X, Ii, I j, P1, P2 )
i f depth map is provided

Ci j = Depth map projection test (Di, Dj, P1, P2 )
else

Ci j = Hand cra fted overlap test (Ii, I j )
for k, ∀Ci j (Ci j is true)

generate batch images of index i, j = k

ii Network architecture
The proposed network architecture, illustrated in Fig. 2a, com-
prises two Siamese absolute pose regressors and one relative pose
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Figure 2: Illustration of the proposed network architecture.

Figure 3: Flowchart of the proposed network: Inference (Equations 9–13).

regressor. The two absolute pose regressors were trained with
two input images, Ii and I j, and the absolute ground-truth poses,
(xi, qi ) and (xj, qj ). Simultaneously, the relative pose regressor
was trained with the input image features and the relative pose
between them.

One of the absolute pose regressors (absolute pose regressor 1)
uses the following structure: ResNet-50 (He et al., 2016) was se-
lected as the backbone network that extracts the features of an
image using a CNN. It comprises five blocks with multiple resid-
ual blocks and includes [1 × 1], [3 × 3], and [1 × 1] convolutions,
as illustrated in Fig. 2b. Each convolution was followed by batch
normalization and a rectified linear unit (ReLU). ResNet was de-

signed to solve one of the bottlenecks of VGGNet, convolutional
layer stacking. Stacking convolutional layers increases the num-
ber of training parameters in the network and causes a gradient
vanishing problem. ResNet addressed this problem by introducing
a residual block to directly bypass the input tensor to the output
tensor. It exhibited a good performance in object classification,
which means that it worked as a good feature extractor. Three
FCLs were added to the end of the final residual block (Res 5 in
Fig. 2a) to regress the absolute pose of the image. Here, f c1 is a re-
gressor of feature size 2048, f c2 is a regressor of feature size 3 that
regresses the absolute location of an image, and f c3 is a regres-
sor of feature size 3 that regresses the absolute orientation of an
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Figure 4: Flowchart of the inference procedure.

image. The pre-trained weights of ResNet-50 were used for feature
extraction.

In this paper, the Siamese network concept for absolute pose
estimation is proposed. The same architecture as that of absolute
pose regressor 1 was used for the second absolute pose regressor,
as shown in Fig. 2a. In addition, the same weights were used for
the feature extractor of the second regressor because the estima-
tion results were not affected by the feature extractor. Conceptu-
ally, it is possible to employ different kinds of network architecture
for the absolute pose regressors. However, using the same archi-
tecture is recommended to make the relative pose regressor work
consistently by minimizing any unanticipated effects that may be
caused by the use of different network structures.

Using the Siamese network architecture, the absolute poses of
the two input images were simultaneously trained (absolute pose
regressors 1 and 2). The regressor of the second network has the
same structure as that of the first network. However, this results

in a different set of weights, because the input images and their
poses assigned to the first and second regressors are different.

The Siamese network architecture was proposed to train the
absolute poses of two images and the relative pose between them
during the training stage. The relative pose regressor was designed
as follows. The features extracted by each absolute pose regres-
sor were concatenated along a specified dimension (in our case,
the depth of the feature maps). The two extracted feature maps
exhibited the same dimensions, because the same network struc-
tures were used in the absolute pose regressors. Three FCLs were
added to the relative pose regressor to train the relative location
and orientation between the two input images. All FCLs were fol-
lowed by the ReLU, except for the final FCLs that were connected
directly to the location and orientation.

Novel loss functions were designed for the proposed net-
work. Equation (2) that PoseNet proposed expresses the ordinary
loss function Lβ,ABS(Ii ) and was used to regress the single absolute
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Figure 4: Continued.

pose of an input image, where γ refers to Lγ−norm. γ = 2 was ap-
plied, which is the Euclidean norm between the two vectors. It has
a user-selected hyperparameter β that balances its location and
orientation. In this paper, two absolute pose regressors and one
relative pose regressor were used. Therefore, more hyperparam-
eters are required to operate them appropriately; however, using
many hyperparameters is inefficient. Hence, a loss function with
trainable parameters was selected for the entire network. Kendall
and Cipolla (2017) proposed a loss function for an absolute pose
regressor with trainable parameters that balance location and ori-
entation, as expressed in Equation (3). For a single absolute pose
regression, Equation (3) can be used instead of Equation (2), where
sx and sq are learnable/trainable parameters, beginning from the
initial values selected by the user. The learnable parameters were
optimized during the training stage to balance location and ori-
entation.

Lβ,ABS (Ii ) = ∥∥x − x′∥∥
γ + β

∥∥∥∥∥q − q′∥∥q′∥∥
∥∥∥∥∥

γ

= Lx (Ii ) + βLq (Ii ) (2)

Ls,ABS (Ii ) = e−sx
∥∥x − x′∥∥

γ
+ sx + e−sq

∥∥∥∥∥q − q′∥∥q′∥∥
∥∥∥∥∥

γ

+ sq

= e−sx Lx (Ii ) + sx + e−sq Lq (Ii ) + sq (3)

Ls,REL
(
Ii, I j

) = e−sx
∥∥�x − �x′∥∥

γ
+ sx + e−sq

∥∥�q − �q′∥∥
γ

+ sq

= e−sx Lx
(
Ii, I j

) + sx + e−sq Lq
(
Ii, I j

) + sq (4)

where �x = xi − xj, �q = qi∥∥qi

∥∥ − qj∥∥qj

∥∥
L = Ls,ABS (Ii ) + Ls,ABS

(
I j

) + Ls,REL
(
Ii, I j

)
. (5)

Equation (4) expresses the loss function used to train the rela-
tive pose between Ii and I j . LABS and LREL were integrated to train
two absolute poses and one relative pose between two images, as
shown in Equation (5), which is the final loss function used during
the training. The orientation is represented by the logarithm of a
unit quaternion, which is a 3D vector. Because unit quaternion ex-
presses orientation in four DoFs, it is overparametrized compared

to Euler angles that express orientation in three DoFs. The loga-
rithm of a unit quaternion is applied to the loss function of Equa-
tions (2)–(5) (Brahmbhatt et al., 2018). A quaternion is defined as a
tuple of scalar component u and 3D vector v as shown in Equa-
tion (6). The unit quaternion q was converted into the logarithm
of q, as shown in Equation (7). Conversely, the exponential of w
becomes q as expressed in Equation (8). Using Equation (7), the
rotation can be regressed using a 3D vector that is parametrized
well to represent the orientation in three DoFs, such as Euler an-
gles. In this paper, for all expressions associated with orientation
in implementation, the logarithm of a unit quaternion w was used
instead of unit quaternion q.

q (u, x, y, z) = (u, v) (6)

w = log q =
⎧⎨
⎩

v
‖v‖ cos−1 u, i f ‖v‖ �= 0

0, otherwise
(7)

exp (w) =
(

cos ‖w‖ ,
w

‖w‖ sin ‖w‖
)

= q. (8)

2.2 Inference stage
In the proposed method, the absolute pose (initial guess) of an in-
put image was first estimated, followed by iterative compensation
of the estimated pose using a relative pose regressor, as illustrated
in Fig. 3. The inference process is illustrated in Figs 3 and 4. From
a single-input query test image Itest, the absolute pose of an im-
age pABS

test was estimated using the absolute pose regressor, which is
based on ResNet-50 as a backbone attached to the FCLs to regress
the location and orientation (absolute pose regressor 1), as illus-
trated in Fig. 4a. Subsequently, one image was selected as the net-
work input (Fig. 4b) to estimate the relative pose. The images were
obtained from the training dataset. Here, the loss function for rel-
ative pose estimation was used to obtain a correlated image from
the training dataset, as expressed in Equation (4). After training
was performed, the trainable parameters sx and sq were set to spe-
cific numerical values, to minimize the loss function.
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Figure 5: Sample images from Cambridge Landmarks (King’s College) and TOD datasets.

p̂train =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 z1

...

wx1 wy1 wz1

...
xk yk zk

...
xn yn zn

wxk wyk wzk

...
wxn wyn zzn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

p̂ABS
test =

⎡
⎢⎢⎣

xABS
test yABS

test zABS
test

...
xABS

test yABS
test zABS

test

wABS
x,test wABS

y,test wABS
z,test

...
wABS

x,test wABS
y,test wABS

z,test

⎤
⎥⎥⎦ (10)

�p = p̂train − p̂ABS
test (11)

k = argmin
{(√

(�p o�p) T
)

es
}

(12)

where (A oB)i j = (A)i j (B)i j

T =
[

1 1 1 0 0 0
0 0 0 1 1 1

]T

es =
[

eSx eSq

]T
.

The differences between the test image and the ground-truth
poses of all the training images were calculated using Equations
(9)–(12). In addition, using the trainable parameters sx and sq

and Equation (12), an image in the training dataset that had the
minimum loss between the test images was selected as the in-
put to the relative pose estimation. Equation (12) determined the
index of the matrix that represents the relative losses between
the images using Equation (4), where each row corresponds to
Ls,REL(ITest, Ii ) − sx − sq, i ∈ (1, 2, . . . , n). The addition of sx and sq was
not calculated from Ls,REL(ITest, Ii ) in Equation (12) because sx and
sq are constant after the training was completed. Hence, it is not
necessary to add the same values to each row.

A total of n relative losses were calculated, and the image Ik
that had the minimum loss value was selected. Subsequently, Ik
and Itest were set as inputs to the entire network, and the relative
pose pREL

(test,k) between them was obtained. Thus far, only absolute
pose regressor 1, front feature extractor of absolute pose regressor
2, and relative pose regressor have been used. The pose of image
Ik was not estimated iteratively because its ground-truth pose pk

was already known. After estimating pREL
(test,k), the absolute pose of

the test image was replaced and updated as follows:

pABS
test ← pk + pREL

(test, k). (13)

This is illustrated in Fig. 4c. Here, not all training dataset im-
ages were used to infer the relative pose of all images as input
to the CNN. Considering all training images is time consuming.

Therefore, one relative pose was estimated between the query in-
put image and the image with minimum loss value. Searching for
an image with minimum loss requires a simple matrix calcula-
tion, and such an image can be identified easily.

Finally, the relative pose estimation was repeated to compen-
sate for the inference result, as illustrated in Fig. 4d, until the esti-
mation reached the maximum number of iterations or converged.
Using a query input test image, absolute pose regressor 1 was used
to estimate the initial absolute pose of the input query image. Af-
ter estimating the absolute pose of the test image pABS

test , the mini-
mum loss image Ik was searched using the final fixed trainable pa-
rameters sx and sq from the pose list of the training dataset p̂train.
In addition, the relative pose pREL

(test,k) was estimated using images

Itest and Ik. Subsequently, pABS
test was updated to pk + pREL

(test,k). This
process was repeated, except for the absolute pose estimation.
The absolute pose estimation was not performed twice because
it always exhibits the same absolute pose if the input image Itest

remains not changed. Using the updated pABS
test , a new minimum-

loss image and the relative pose between the two images can be
obtained. This iterative relative pose estimation process can be
repeated until the correlated image was selected in advance or
the number of iterations exceeded the maximum threshold. It is
unnecessary to estimate the relative pose between an already se-
lected training image with minimum loss and an input query test
image, because the relative pose between them is already known.
The pose was updated after several iterations, and it was assumed
that the final compensated absolute pose of the input query image
was pABS

test , which was the pose obtained from the final iteration.

3 Experimental Results and Discussion
3.1 Dataset
The Cambridge Landmarks dataset that Kendall et al. (2015) used
to validate the localization accuracy of PoseNet contains outdoor
images with ground-truth locations and orientations. The im-
ages were captured using a smartphone, and SfM was applied
to generate the ground-truth labels (location and orientation) of
the images. Urban clutter, such as pedestrians and vehicles, were
present; in addition, occlusions, rapid changes in motion, and
changes in illumination and weather were included. They were
classified into the training and test set. Five datasets were ob-
tained from different locations. The number of training dataset
images varied between [231−1487] and [103−2923]. The images
exhibited a full HD resolution [1920 px × 1080 px].

The second dataset, called the TOD dataset, contains indoor
images of a camera device, as illustrated in Fig. 5. RGB images

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/9/4/1482/6650218 by G

w
angju Institute of Science & Technology user on 03 January 2023



1490 | Journal of Computational Design and Engineering, 2022, Vol. 9, No. 4

Table 1: Details of Cambridge Landmarks and TOD datasets.

Dataset Scene # of frames Spatial extent (m)

Train Test

Cambridge Landmark King’s College 1220 343 140 × 40
Old Hospital 895 182 50 × 40
Shop Facade 231 103 35 × 25

St Mary’s Church 1487 530 80 × 60
TOD Scene1 (3:1) 1677 559 5 × 5

Scene2 (2:1) 1490 746
Scene3 (1:1) 1118 1118
Scene4 (1:2) 746 1490
Scene5 (1:3) 559 1677

Table 2: Localization error comparison between Cambridge Landmarks dataset to state-of-the-arts.

Models King’s College Shop Facade Old Hospital St Mary’s Church Average

PoseNet (Kendall et al., 2015) 1.92 m, 5.40◦ 1.46 m, 8.08◦ 2.31 m, 5.38◦ 2.65 m, 8.48◦ 2.08 m, 6.83◦

PoseNet++ (Zhang et al., 2018) 1.58 m, 2.38◦ 1.10 m, 5.61◦ 1.34 m, 3.99◦

Bayesian PoseNet (Kendall & Cipolla, 2016) 1.74 m, 4.06◦ 1.25 m, 7.54◦ 2.57 m, 5.14◦ 2.11 m, 8.38◦ 1.91 m, 6.28◦

PoseNet Spatial LSTM (Walch et al., 2017) 0.99 m, 3.65◦ 1.18 m, 7.44◦ 1.51 m, 4.29◦ 1.52 m, 6.68◦ 1.30 m, 5.51◦

GeoPoseNet (Kendall & Cipolla, 2017) 0.99 m, 1.06◦ 1.05 m, 3.97◦ 2.17 m, 2.94◦ 1.49 m, 3.43◦ 1.42 m, 2.85◦

MapNet (Brahmbhatt et al., 2018) 1.07 m, 1.89◦ 1.49 m, 4.22◦ 1.94 m, 3.91◦ 2.00 m, 4.53◦ 1.62 m, 3.63◦

TransPoseNet (Shavit et al., 2021) 0.60 m, 2.43◦ 0.55 m, 3.49◦ 1.45 m, 3.08◦ 1.09 m, 4.99◦ 0.92 m, 3.49◦

VNLSTM PoseNet (Li et al., 2021) 1.71 m, 4.77◦ 0.89 m, 3.83◦ 1.30 m, 4.30◦

IPRNet (Shavit & Ferens, 2021) 1.18 m, 2.19◦ 0.72 m, 3.47◦ 1.87 m, 3.38◦ 1.87 m, 4.94◦ 1.42 m, 3.45◦

Proposed 0.45 m, 2.22◦ 0.37 m, 3.53◦ 1.12 m, 3.38◦ 0.58 m, 5.17◦ 0.63 m, 3.58◦

were captured using a Galaxy S20+ smartphone in video form,
and the images were extracted from each frame. SfM was used
to generate ground-truth labels, similar to the Cambridge Land-
marks dataset. The entire images were classified into the training
and test datasets. The training dataset was used to train the pro-
posed architecture, and the test dataset was used for validation.
A summary of the datasets is presented in Table 1. Each dataset
was classified into several scenes. The scenes had completely dif-
ferent training and test images. The spatial extent indicates the
ranges of the x and y directions of the datasets. Here, the range of
the z values of the datasets is negligible compared to those of the
x and y directions.

3.2 Implementation
The input images were scaled such that the shorter side of each
image had 256 pixels, while the width and height ratios of the orig-
inal input images were maintained. Images of [224 px × 224 px]
pixels cropped randomly from the scaled input images were pro-
vided as input to the network for training. Images cropped at the
centre of the scaled images were utilized for inference. The mean
image of the cropped images was computed with the standard de-
viation. The mean image was subtracted from each cropped im-
age to obtain intermediate images, which were then divided by
standard deviation. The final images were used for training and
inference. This process is known as regularization or normaliza-
tion and is widely applied in neural network applications. PyTorch
(Paszke et al., 2019) was used to implement the proposed network
architecture. An Adam optimizer (Kingma & Ba, 2014) was used to
train the proposed network with β1 = 0.9, β2 = 0.999, ε = 10−8,
and learning rate lr = 10−3. A mini-batch size of 30 and a dropout
probability of 0.5 were used. In addition, sx and sq were initialized
to 0 and −3, respectively. The network was trained for 300 epochs

for every scene and a single NVIDIA GeForce 2080Ti graphics card
was used for training and inference.

3.3 Experimental results
A summary of the localization results for the Cambridge Land-
marks dataset is provided in Table 2. The best localization results
for the location and orientation are presented in bold for clar-
ity. The training dataset was used to train the proposed network,
which was subsequently validated using a test dataset that was
not included in the training dataset. The location error was calcu-
lated using the root-mean-square error, and the orientation error
was calculated by averaging the angular difference between the
estimated and ground-truth quaternions using Equation (1). The
proposed method provided a high localization accuracy for posi-
tion and a comparable accuracy for orientation compared to other
state-of-the-art approaches.

Figures 6 and 7 present the localization results for the train-
ing and test datasets of the King’s College scene in the Cambridge
Landmarks dataset, respectively. Because only a small number
of changes existed in the z values of the Cambridge Landmarks
dataset, the top-view images in the xy plane were used to visu-
alize the results. Each axis corresponds to the positional range of
the scene on the x- and y-axes. The test results indicate that the
proposed method yielded high localization results, particularly for
the training dataset.

Figure 8 presents the localization errors for position and orien-
tation as a cumulative histogram for the test dataset of the King’s
College scene. The x-axes of the figures represent the positional
and angular errors of the localization results. The y-axis repre-
sents the number of images as a percentage. The more the graph
is skewed to the upper-left side, the more images have small er-
rors, leading to better localization accuracy. The proposed method
yielded the best localization results.
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(a) (b)

(c) (d)

Figure 6: Localization results for King’s College scene in Cambridge Landmarks training dataset.

Figure 9 illustrates the cumulative histograms of the localiza-
tion errors for the training dataset of the King’s College scene. The
localization performance was evaluated for cases with and with-
out CIPS during the training stage. If the CIPS was applied during
the training stage, an image in the training dataset was selected
first, and one of its correlated images was chosen as the input
to the proposed network architecture. The total n training images
Itrain = {I1, I2, ..., In} exists and the correlated images of the test im-
age are IC = {I1

b , I2
b , . . . , ICb } ⊆ Itrain, where the number of correlated

images is C for Itest. One of the correlated images was chosen as a
batch image out of C. Thus, for a test image Itest, there are C cases
to select as batch image pairs for the proposed Siamese network
{(Itest, I1

b ), (Itest, I2
b ), . . . , (Itest, ICb )}. If the CIPS was not applied during

training, a random image in the training dataset was selected as
the batch image. There are n cases {(Itest, I1), (Itest, I2), . . . , (Itest, In )}.
Obviously, C 
 n, if the proposed network was trained with CIPS,
the correlated image pairs were trained intensively. If CIPS was
not applied, random image pairs were trained sparsely compared
to the case of training without applying CIPS. Thus, to obtain sim-
ilar training results for the correlated image pairs, more training
epochs are required if the CIPS is not applied. Figure 9 shows the
effect of applying the CIPS in training. If the CIPS is not applied
during training, relative pose training with correlated image pairs
is not sufficiently performed, and the inference localization re-
sults are adversely affected.

The proposed method was compared to other approaches us-
ing the TOD dataset. The localization errors are summarized in

Table 3, which demonstrates that the proposed method yields the
best localization results. Figure 10 presents AR examples of the
TOD dataset. Equation (14) was used to augment the 3D point
cloud for the captured image, where the point cloud was obtained
from SfM. It was used to project world coordinate-based 3D points
onto 2D images with a specific camera pose. In addition, it was
used to calculate the re-projection error (Kendall & Cipolla, 2017).
The estimated orientation of an input image expressed in the
quaternion was converted to a rotation matrix, an extrinsic ma-
trix E; constructed, and Equation (14) was obtained.

⎡
⎢⎣u

v
w

⎤
⎥⎦ = KEX =

⎡
⎢⎣ fx 0 cx

0 fy cy

0 0 1

⎤
⎥⎦

⎡
⎢⎣r00 r01 r02

r10 r11 r12

r20 r21 r22

tx

ty

tz

⎤
⎥⎦

⎡
⎢⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎥⎦

(14)

Because the intrinsic camera matrix K was provided, only the
extrinsic matrix E was required to augment the point cloud. Be-
cause the proposed approach provided better localization results
than the other methods, it also achieved better augmentation re-
sults. The proposed method yielded higher accuracy localization
results for different dataset spacings, as presented in Table 3. The
performance of the proposed method was evaluated using differ-
ent numbers of training images. Our experimental results indicate
that the proposed method performed best when a large number
of training images were used, i.e. Scene1 (3:1), where the number
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(a) (b)

(c) (d)

Figure 7: Localization results for the King’s College scene in the Cambridge Landmarks test dataset.

(a) (b)

Figure 8: Cumulative histograms of the location and orientation errors of the King’s College scene in the Cambridge Landmarks test dataset.

(a) (b)

Figure 9: Cumulative histograms of the location and orientation errors of the King’s College scene in the Cambridge Landmarks training dataset.
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Table 3: Localization error comparison of TOD dataset.

Models Scene1 (3:1) Scene2 (2:1) Scene3 (1:1) Scene4 (1:2) Scene5 (1:3) Average

PoseNet (Kendall et al., 2015) 0.097 m, 1.554◦ 0.105 m, 2.250◦ 0.061 m, 1.253◦ 0.084 m, 1.412◦ 0.095 m, 1.311◦ 0.088 m, 1.550◦

PoseNet++ (Zhang et al.,
2018)

0.077 m, 1.234◦ 0.084 m, 1.469◦ 0.067 m, 0.781◦ 0.069 m, 1.015◦ 0.081 m, 1.705◦ 0.075 m, 1.240◦

Proposed (absolute) 0.073 m, 1.206◦ 0.077 m, 6.850◦ 0.071 m, 0.840◦ 0.042 m, 1.212◦ 0.717 m, 5.881◦ 0.196 m, 3.428◦

Proposed (iteration) 0.040 m, 0.962◦ 0.044 m, 1.239◦ 0.059 m, 0.671◦ 0.038 m, 0.984◦ 0.076 m, 1.401◦ 0.051 m, 1.167◦

(a) (b)

(c) (d)

(e) (f)

Figure 10: AR results of projecting point clouds onto image using estimated localization results for TOD dataset.

of training images was three times larger than that of the test im-
ages.

The convergence of the iterative relative pose estimation for
pose inference and the performance of the iterative relative pose
estimation for inference were validated using the TOD dataset.
As presented in Table 4, inferences were performed while chang-
ing the number of maximum iterations using Scene 1 of the
TOD dataset up to five. In the case of Scene 1, convergence was

achieved within five iterations for 99% of the test images. Less
than 1% of the test images required more than five iterations for
convergence.

The possibility of reducing the localization error was in-
vestigated using relative and absolute poses for training. Pose
inference using only the absolute pose regressor is equiva-
lent to setting the number of maximum iterations to zero,
which is presented by ‘Proposed (absolute)’ in Table 4, while
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Table 4: Convergence validation of iterative relative pose estimation (Scene1).

Method Maximum # of iteration # of iteration(converged) : # of images/percentage Average error

1 2 3 4 5

PoseNet 0.097 m, 1.554◦

PoseNet++ 0.077 m, 1.234◦

Proposed (absolute) (0) 0.073 m, 1.206◦

Proposed (iteration) 1 559 (100%) 0.047 m, 0.967◦

2 498 (89%) 61 (11%) 0.041 m, 0.966◦

3 498 (89%) 34 (6%) 27 (5%) 0.041 m, 0.963◦

4 498 (89%) 34 (6%) 17 (3%) 10 (2%) 0.040 m, 0.963◦

5 498 (89%) 34 (6%) 17 (3%) 4 (1%) 6 (1%) 0.040 m, 0.962◦

using both the absolute and relative poses during training.
In this case, only the absolute pose was used for infer-
ence, which indicates a localization error of (0.073 m, 1.206◦),
and is smaller than that reported in previous studies that
used only the absolute pose for training. Next, the perfor-
mance of the relative pose estimation during both training and
inference was validated, and the results are shown in Fig. 4c. Both
the absolute and relative poses for training were used, and the
relative pose estimation during inference was used once. This
is equivalent to setting the maximum number of iterations to
one. Absolute and relative pose regressors were used once for all
test images (559). They provided a more accurate result (0.047 m,
0.967◦) than when only the absolute pose regressor was used dur-
ing the inference (0.073 m, 1.206◦). This indicates that using rel-
ative pose estimation for inference yields better results than us-
ing it only for training. Finally, iterative relative pose estimation
for inference was evaluated. While changing the number of max-
imum iterations to five, the number of test images that converged
was counted, which corresponds to Fig. 4d. For most test images
(89%), the proposed method converged in only one relative pose
estimation. For the other images (11%), more accurate localization
results were obtained by increasing the number of maximum it-
erations for inference. Finally, the proposed method obtained the
best localization results of 0.040 m and 0.962◦ via iterations. The
test results confirmed that the relative pose estimation for both
the training and inference in the iteration loop provided more ac-
curate localization results than when it was not used.

The proposed method yielded better localization results than
existing methods for the Cambridge Landmarks and TOD datasets
used to validate the proposed method. This is because deep
learning-based camera localization is based on image-retrieval.
Image-retrieval measures the similarity between two images and
expresses the similarity as a value. However, image-retrieval-
based methods require images and their features to store the en-
tire dataset. In addition, the nearest neighbour or the most sim-
ilar image must be identified. Accordingly, handcrafted features
are used, and the images must be captured under similar condi-
tions. However, deep learning-based camera localization methods
circumvent these limitations by applying high-dimensional fea-
ture extraction and matching them using a CNN, and then evad-
ing the nearest search process by modelling the image to pose
mapping directly, which implies image-retrieval. In pose estima-
tion methods, the absolute pose regressor is used to perform this
process automatically, using an encoder (CNN) as the feature ex-
tractor and FCLs (regressors) to perform the nearest search pro-
cess. Because it does not use two image pairs as inputs, it is an
indirect image-retrieval method. Relative pose estimation using
two image pairs is exactly the same as image-retrieval because
it employs one query image and one of the dataset images, and

presents the similarity between them as values (poses). Hence, the
deep learning-based relative camera pose estimation method can
be regarded as a direct image-retrieval approach. The proposed
method employs image-retrieval using deep learning-based rela-
tive pose estimation during both training and inference.

An ordinary deep-pose regressor utilizes only one image.
Brahmbhatt et al. (2018) and Valada and Burgard (2018) added ad-
ditional regressors to the backbone network to estimate the rel-
ative pose between two images, thereby increasing the effect of
image-retrieval during the training. However, these methods are
indirect image-retrieval methods. During inference, only the ab-
solute pose regressor was used, and the image-retrieval was not
activated directly. Although this intensifies the effect of image-
retrieval during training, only one image is required to estimate
its pose during inference. During inference, it did not significantly
different from that of the absolute pose regressors. Compared
with the ordinary deep pose regressor, the proposed method uses
two images as inputs to the network, directly utilizes the image-
retrieval effect, and provides more accurate localization results
during training and inference.

However, this was limited to location estimation only in our ex-
periments for the Cambridge Landmarks dataset. Although the
proposed method offers stable location estimation, it does not
demonstrate the best performance in terms of orientation estima-
tion. To improve the orientation accuracy, various sets of images
must be used. Each set should contain images captured at posi-
tions with different orientations. Because the Cambridge Land-
marks dataset was constructed along the route by changing the
orientation of the camera, it provided insufficient training images
for the proposed method, which showed the same position for dif-
ferent orientations.

The proposed method provides more reliable results for the
TOD dataset than for the Cambridge Landmarks dataset. The TOD
dataset provides sequential images as input data for a deep neu-
ral network (sharing a similar route). Hence, correlated images
that are the most similar in the dataset can be obtained easily
using the proposed method. However, the Cambridge Landmarks
dataset does not provide sequential data as an input. It provides
only partial regions of the routes and cannot easily identify the
image most similar to the query input image.

A summary of the average computational times for pose infer-
ence using the various methods is presented in Table 5. PoseNet,
which used GoogLeNet consisting of 23 convolutional layers with
4M trainable parameters, showed the fastest inference speed.
Compared to PoseNet, PoseNet++ used VGG-16 with 138M train-
able parameters. Owing to the increased number of parameters,
it exhibited a slower speed than PoseNet. The proposed network
uses ResNet-50 as a backbone network consisting of 50 convolu-
tional layers. Owing to the existence of a residual block, a smaller
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Table 5: Backbone network comparisons with the computational times for single image inference.

PoseNet PoseNet++ Proposed (absolute) Proposed (iteration)

Backbone network GoogLeNet VGG-16 ResNet-50 Siamese ResNet-50
The number of convolution layers 23 13 50 50
The number of trainable parameters 4M 138M 23M 46M
Average computational time 4 ms 45 ms 26 ms 109 ms

Figure 11: Examples of AR application.

number of trainable parameters was required. Thus, the proposed
network inferred the absolute pose faster than PoseNet++ did.
However, it ran slower than PoseNet owing to the iterative use of
the Siamese network architecture.

4 Conclusions and Future Works
In this paper, a deep learning-based camera localization method
using iterative relative pose estimation was proposed. The pro-
posed method applies a CNN to regress the poses of images and
adopts two Siamese encoders to estimate their absolute poses. In
addition, one relative pose regressor is concatenated to the feature
maps of the two absolute pose regressors to train the relative pose
between the two input images. The proposed network architecture
simultaneously uses the absolute poses of the training dataset im-
ages and the relative poses of the correlated image pairs. For in-
ference, absolute pose estimation was performed on the test im-
age, and relative pose estimation was applied to update the es-
timated pose iteratively. The proposed method achieved higher
localization accuracy than other state-of-the-art deep learn-
ing camera localization methods for the Cambridge Landmarks
and TOD datasets. Correlated image-pair selection and relative
pose estimation for the inference stage improved localization
accuracy.

The proposed method adopted an iterative approach and ex-
hibited a slower inference speed than other methods. However,
its computational speed can be improved by applying the concept
of a mini-batch during the inference stage, to obtain the relative
poses and avoid iterations. Moreover, several relative poses be-
tween the images can be estimated simultaneously using a paral-
lel computation scheme. A future endeavour is to refine the abso-
lute pose from the initial guess using the estimated relative poses.
The proposed method iteratively performs the refining process,
it is possible to apply an average relative pose to refine an abso-
lute pose. RANSAC can be used to exclude outliers. In addition,
it is possible to convert the iteration into a one-time inference.
Furthermore, the proposed localization method can be applied to
AR glasses as illustrated in Fig. 11. A 3D model was augmented

on the display of the AR glass using the camera of the AR glass,
which demonstrates the potential of the proposed method for use
in various AR applications.
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