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Abstract: Quasi-bound state in the continuum (BIC) has significant potential because it supports
an ultra-high quality factor (Q-factor). Here, we propose a graphene-embedded subwavelength
grating that supports quasi-BIC for tuning very sharp Fano resonance transmission. The strongly
enhanced light-graphene interaction from the quasi-BIC enables fine variation of the transmission
at the resonant wavelength. The Q-factor of quasi-BIC significantly decreases as the Fermi level
of graphene increases. We also propose a low-energy consumption THz-wave modulator using
this scheme. The designed modulator shows approximately 100% modulation depth with a Fermi
level shift of only EF = 90 meV.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Bound states in the continuum (BICs) are special localized states in the continuum of the radiation
spectrum. They originate from geometrical symmetry or destructive interference between
radiating waves [1–3]. Therefore, a BIC is characterized as a non-radiating cavity mode. Since
the BIC mode supports an infinite quality factor (Q-factor), this mode cannot be coupled with
radiating waves. In contrast, the quasi-BIC mode is a resonant mode with a finite Q-factor and
can be excited by incident light close to the BIC wavelength by breaking the BIC condition [4].

Since the quasi-BIC mode induces Fano resonance with an ultra-high Q-factor, it has been
utilized in various applications, as the high Q-factor enhances light-matter interaction [5–9]. In
addition, the quasi-BIC mode can be realized in subwavelength gratings and one-dimensional
(1D) photonic crystal (PC) structures, and a high Q-factor is maintained even in the imperfect
structures due to fabrication errors, such as tiled, imperfectly etched, or bent structures [10–14].
Although many studies have been conducted on the BIC and quasi-BIC, there is a lack of the
research on tuning of Fano resonance by quasi-BIC in the terahertz (THz) band (0.1 ∼ 10THz),
which has unique potential applications in various fields, such as security imaging, spectroscopy,
radar, and wireless high-speed communications [15–17].

Here, we investigate the tuning of Fano resonance using graphene’s tunable property in the
THz range. In recent years, graphene has emerged as a promising active material for tuning
the resonance owing to its outstanding property of gate-tunable carrier concentration [18,19],
but its tuning range is very low due to the low light-graphene interaction. In the proposed
scheme, the high Q-factor of the quasi-BIC mode enhances the light-graphene interaction, and
the transmission at the resonant wavelength changes sharply with a small Fermi level shift.

We also propose a low-energy consumption graphene-based THz-wave modulator using the
quasi-BIC mode. Although THz modulators play a key role in THz communications, achieving
high-performance THz-wave modulators is challenging because finding an active material in
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the THz band is difficult [20,21]. To solve this problem, graphene-based modulators using
plasmonic resonances have been proposed such as inserting graphene into metamaterials, graphene
metasurfaces, and graphene antennas using graphene plasmons [22–26]. The resonances enhance
the light-graphene interaction, and high-performance modulation has been achieved.

However, the proposed structures are complicated and require a high Fermi level (EF > 0.4
eV) for a high modulation depth, which results in high-energy consumption and the breakdown
voltage issue [27]. In addition, since the Q-factor of graphene plasmon resonance decreases
with a decrease in mobility, high-quality graphene is required for a high modulation depth [28].
However, in the proposed scheme, we achieve a modulation depth of approximately 100% with
a very small Fermi level shift of only 50 meV. Quasi-BIC with a high Q-factor enhances the
light-graphene interaction and amplifies the tunable effect of graphene through the Fermi level
shift. All simulations were carried out using the finite-element-method (COMSOL Multiphysics
software).

2. Tuning of Fano resonance

Figure 1 shows a schematic of the proposed subwavelength grating for quasi-BIC. It consists of a
1D high-resistivity silicon-based grating, upon which double-layer graphene (DLG) with a 5 nm
gap (g) is placed. DLG is used for the electrical doping of graphene, and it is implemented by
applying a gate voltage between the two graphene layers. We assumed SiO2 as the background
material for the convenience of simulation. The refractive indices of Si and SiO2 are nSi = 3.4
and nSiO2 = 1.98, respectively [29,30]. The conductivity of graphene can be calculated by the
Kubo formula [31–33] as follows:
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where e is the electron’s charge, kB is Boltzmann’s constant, T is the temperature, ω is the
angular frequency, -h is Planck’s constant. From the conductivity of graphene, the permittivity of
graphene can be obtained by

εG = 1 +
iσ
ωε0dG

(2)

where ε0 is the vacuum permittivity, and dG is the thickness of graphene (dG = 0.34 nm).

Fig. 1. Schematic diagram of a 1D Si grating with DGL. DLG is placed on the Si grating.
The background material is SiO2.

Figure 2 shows the transmission spectrum of the 1D Si grating structure (without DLG) as
a function of the incident angle for transverse magnetic (TM) polarization. The relation of
wavelength and incident angle can be easily transformed to the dispersion relation of frequency
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and wave vector of the 1D Si grating. The following parameters are used: period, a= 137
µm, height of Si, h= 0.5a, and fill factor, f = 0.3. In subwavelength grating structures, BICs
appear when the radiation channel vanishes due to the simultaneous destructive interference
of all radiating waves in the direction of the radiation channel. In the designed structure, the
BIC phenomenon occurs accidentally near λ of ∼ 355 µm and θ of ∼ 14°, and the transmission
resonance disappears in this region due to the infinite Q-factor.

Fig. 2. Transmission spectrum as a function of the incident angle. The period is a = 137
µm, the height of the grating is h = 0.5a, and the fill factor is f = 0.3.

Figure 3(a) shows the transmission spectra of the designed grating with DLG for the Fermi
level variation from EF = 0 to 50 meV. The same parameters employed in the previous calculation
are used, and the incident angle is assumed to be θ = 12.5°, which is chosen for the quasi-BIC
mode to support a high Q-factor. The resonant transmission is attributed to the interference
between the incident wave and quasi-BIC, that is, Fano resonance transmission. Since the chosen
incident angle for the quasi-BIC is very close to the incident angle for the BIC with the infinite
Q-factor, the very sharp Fano resonance transmission is observed when EF = 0 eV. As the Fermi
level increases, the transmission at the resonant wavelength, Tdip, significantly increases. The
ultra-high Q-factor enhances the light-graphene interaction, resulting in very high transmission
variation. The Q-factor is inversely proportional to the material loss. When EF increases, the

Fig. 3. Transmission spectra for Fermi level variation from EF = 0 meV to 50 meV. The
incident angle is θ = 12.5° (b) α (the ratio of the variation of Q-factor and the variation of
EF) as a function of EF. The inset shows Tdip as a function of EF.
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loss of the doped graphene notably increases. Thus, it is easily expected that the values of
transmission dip and the full half width maximum (FHWM) increase when EF increases, that is,
the Q-factors decrease when EF increases. Figure to show the dependence of the Q-factor on EF
was provided in the supplement material (Fig. S1). The Q-factors for EF = 0, 10, 20, and 50 meV
are Q= 2.09×104, 2.56×103, 935, and 0 (no resonance), respectively.

The Q-factor significantly decreases, even though EF increases very little. It is worthy to
investigate in quantity the ratio of the variation of Q-factor and the variation of EF, α=∆Q/∆EF.
α is about 103/meV as shown in Fig. 3(b). This means that the shapes of Fano resonance
transmission spectra are extremely sensitive to EF below 10 meV. The inset of Fig. 3(b) shows
the values of Tdip as a function of EF. It increases rapidly from 0.095 to 0.802 for the very small
variation of EF from 0 to 10 meV. For EF > 30 meV, Tdip decreases as EF increases because the
loss of graphene is the dominant.

3. THz-wave modulator

Using this tunable property, we designed a THz-wave modulator. Figure 4(a) shows the
transmission spectra of the designed modulator for the Fermi level variation from EF = 0 eV to 50
meV. The same parameters employed in the previous calculation are used, and the incident angle
is only changed from θ = 12.5° to 1.4° to achieve zero transmission. As shown in Fig. 4, for
EF = 0 eV, the transmission dip occurs at λ= 300 µm, and Tdip is almost zero at this wavelength.
The minimum value of Tdip is determined by the ratio of the loss and coupling coefficient, and
the critical coupling condition for zero transmission is satisfied at the chosen parameters. The
Q-factors for EF = 0, 10, 20, and 50 meV are Q= 968, 667, 469, and 160, respectively.

Fig. 4. Transmission spectra for Fermi level variation from EF = 0 to 50 meV. The incident
angle is θ = 1.4°. (b) Tdip (solid black line) as a function of Fermi level from EF = 0 to 100
meV and the fitted linear relation (dashed red line) of Tdip and EF below 40 meV.

As the Fermi level increases, Tdip increases, as mentioned previously. Tdip increases almost
linearly from 0 to 0.4 when EF increases from 0 to 35 meV. The fitted linear relation of Tdip and EF
is Tdip = 12.65 EF (eV). This relation is very useful for tuning the transmission to a specific value.
We calculated the modulation depth as MD= (Ton-Toff)/Ton. When the on-state and off-state
are assumed to be EF = 90 and 0 meV, respectively, a modulation depth of ∼100% and insertion
loss of 36% are achieved. Compared to the previously reported graphene-based modulators, the
required Fermi level shift for modulation is approximately fivefold smaller.

The DLG optical modulators have been successfully fabricated by a ridge Si waveguide
on a SiO2 substrate [34,35]. The proposed low-voltage THz transmission modulator can be
implemented by an array of ridge Si waveguides on SiO2 substrate with a DLG. The array of ridge
Si waveguides with a period of a length of one hundred microns can be easily fabricated by using
conventional lithography techniques [36]. A graphene sheet grown by chemical vapor deposition
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[27,28,34] was then mechanically transferred onto the SiO2 substrate. Platinum electrodes are
deposited on the top and bottom of the graphene layers. Therefore, high efficient modulation
performance of the proposed structure can be realized by current fabrication technologies.

4. Conclusion

We proposed a graphene-embedded 1D subwavelength grating that supports quasi-BIC for tuning
Fano resonance. The enhanced light-graphene interaction from the quasi-BIC enables a sharp
transmission variation with a small Fermi level shift. Tdip (Q-factor) varies from 0.095 (2.09×104)
to 0.892 (935) when EF does 0 to 20 meV. Using this scheme, we proposed a high-performance
graphene-based THz-wave modulator. The high Q-factor of quasi-BIC intensified the graphene
loss and matched the critical coupling condition. The designed modulator achieved a very high
modulation depth of ∼100% and an insertion loss of 36% with a very small Fermi level shift of
90 meV. These promising features will likely generate new avenues for low-energy-consumption
graphene-based THz devices.
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