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A B S T R A C T   

Optical second-harmonic generation (SHG) technique is widely used to characterize the structural symmetry of 
condensed matters not only for the bulk but also for the surface states. Since experimental results of the SHG 
anisotropy patterns often contain multiple contributions from bulk and surface states, a conventional regression 
process may not provide a unique solution about the symmetry of each part. With a given symmetry for the bulk 
state, we here develop a discriminator for the surface symmetry by exploiting neural architectures based on 1D 
convolution layers where simulation results of SHG anisotropy patterns are taken as learning sequence data. 
Since SHG experimental results have limited information for determining a unique symmetry out of several 
symmetry candidates, our discriminator consists of tens of neural architectures optimized with different 
hyperparameters. As a final output, the surface symmetry discriminator gives a weighted sum of results sug
gested from all the individual neural architectures. We demonstrate that the discrimination results of the deep 
learning approach agree well with those of the conventional regression method for GaAs and Bi2Se3.   

A precise characterization of structural symmetry is essential in 
solid-state material researches. The bulk crystalline symmetry can be 
determined with well-established diffraction techniques using X-ray, 
neutron, and electron beams. The optical second-harmonic generation 
(SHG) is also a powerful tool in characterizing the bulk symmetry, and 
has been widely used to investigate polar, ferroelectric, and multiferroic 
states [1–4]. Furthermore, the technique is particularly useful in char
acterizing the surface and interface symmetry since the SHG process is 
primarily allowed in the non-centrosymmetric state, which is naturally 
realized at such structural boundaries [2]. By the way, the as the optical 
beam can easily penetrate into the inner part of the bulk, there are often 
multiple contributions to the SHG responses which arise not only from 
the surface but also from the bulk. Whereas non-centrosymmetric ma
terials endow the bulk electric dipole contribution, centrosymmetric 
materials also can have the bulk contribution from the electric quad
rupole [5]. Therefore, it is a challenging task to determine the additional 
symmetry of the surface and/or the interface based on the SHG re
sponses which contain multiple contributions from both bulk and sur
face of the given sample. In analyzing the SHG results, many 
conventional optimization techniques are usually adopted to optimize a 
large number of tensor components involved with multiple SHG con
tributions. By the way, such techniques require much effort to overcome 

the so-called local minimum problem and consume much time by having 
trials and errors with a wide range of initial tensor components. Even if 
one of the fitting conditions would be successfully obtained, one should 
further check whether the other symmetry combinations may account 
for the experiment results. In this respect, it is worth to try an alternative 
approach for the SHG result analyses. 

Recently, the deep learning methodology has been widely applied to 
the solid-state materials science [6], and it is proved to be useful in 
discriminating the system’s status which is described by sequence data 
[7]. For example, Lee et al. took X-ray diffraction patterns as the 
sequence data for the convolution neural architecture, and demon
strated that structural phase of complex inorganic compounds can be 
successfully classified with the machine learning technique [8]. Our 
problem is similar to this case. SHG anisotropy patterns are obtained 
experimentally with a variation of an azimuth angle of the sample, and 
such sequence data in the azimuth angle dimension contain essential 
information of the sample symmetry. While the structural symmetry 
may be determined simply by the conventional fitting analysis, namely 
by comparing such results with a prediction based on a certain sym
metry, the deep learning approach for the sequence data can be also 
advantageous in solving the symmetry discrimination problem based on 
the SHG measurement. 
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In this work, we develop a surface symmetry discriminator by 
exploiting the model-driven deep learning approach. We organize 
training data sets using a well-defined susceptibility model for several 
symmetry candidates. The ADAM solver optimizes neural parameters of 
1D convolution-based architectures [9]. When each optimization pro
cess is running, several sets of hyperparameters are chosen with a 
Bayesian optimization solver which tries 30 iterations. We collect 
approximately 10 optimized results having the validation score near the 
best, and use these results for statistical inferencing of the additional 
symmetry. We confirm that the inference results are reasonable in 
discriminating the surface symmetry for GaAs (001) and Bi2Se3 (0001). 

Fig. 1 displays the conventional experimental geometry of the SHG 
measurement. Laser pulses irradiate the sample with an incidence angle 
θin = 45◦ , and the intensity of second-harmonic wave generated from 
the sample is monitored with a variation of the azimuth angle φazi. There 
are four polarization combinations for fundamental and second- 
harmonic waves, namely, PP, PS, SP, and SS, where the first and the 
second letters denote p- or s-polarization states of fundamental and 
second-harmonic waves, respectively. Fig. 1(b) displays the rotational 
anisotropy patterns of the SHG intensity for GaAs and Bi2Se3. For the 
(001)-oriented GaAs, we took the results using the femtosecond laser 
with a repetition rate 80 MHz as described in Ref. [10]. For Bi2Se3, 
oriented along (0001) in the hexagonal convention, the results are taken 
from Ref. [11]. The results for GaAs and Bi2Se3 are given to be fourfold- 
like and threefold-like, which reflect 43m and 3m point group symmetry 
for GaAs and Bi2Se3, respectively (Fig. 2). 

In calculating the SHG intensity as a function of the sample azimuth, 
we first define the input electric field of the fundamental wave inside the 
crystal which is originally p- or s-polarized. The outgoing second har
monic wave is defined inside the crystal following the induced second 
harmonic polarization, and its p- or s-polarization component is selected 
outside the crystal. In all these processes, Fresnel coefficients are 
appropriately adopted following the convention introduced in the pre
vious work by Mizrahi and Sipe [12]. In understanding SHG responses 
presented in Fig. 1(b), we consider three different SHG sources which 
are assumed to contribute to the final signal incoherently as 
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where the contributions from bulk electric dipole (ED), bulk electric 
quadrupole (EQ), and surface electric dipole (sED) are given in order. 

Although the coherent summation of multiple contributions may be 
adopted, the incoherent summation explains the experimental results 
better particularly for Bi2Se3. We take second- and third-order suscep
tibilities as free variables which allow the dimensional match between 
different terms and also include the role of different proportional co
efficients. As aforementioned, our goal is to determine the structural 
symmetry for the surface/interface from the SHG results containing such 
multiple contributions, and it can be achieved by referring solely to the 
surface contribution irrespective of its relative strength with respect to 
the bulk contribution. 

We now explain the deep learning architecture prepared for the 
additional symmetry discrimination. For the given bulk symmetry, 
additional symmetry candidates for the surface are selected from hier
archically lower symmetries within two-level than the bulk one. To 
enhance the performance of the discriminator, we introduce 10 features 
for sequence data. The normalized SHG model outputs are first gener
ated by equation (1) with random susceptibility tensor components for 
four polarization states PP, PS, SP, and SS. Additionally, the first de
rivatives of such outputs are also considered as they may focus more on 
SHG signals without constant contributions, which can arise easily from 
the bulk quadrupole. Whereas we consider a Fresnel coefficient 
correction with random refractive index values 1 – 6 for fundamental 
and second harmonic waves [12], two additional features are prepared 
with random stepwise sequences based on refractive index values. They 
help to secure the symmetry learning with a less sensitivity to the un
certainty in the refractive index. All together, we prepared approxi
mately 5 × 104 input data sets for the given symmetry tag, where a 
single data set is composed of azimuth-dependent data for aforemen
tioned 10 features. For each data point, we consider experimental un
certainties by including a random incidence angle error of ±2◦ and 
random modifications of output amplitudes by ±2.5%. 

A Bayesian optimization algorithm was introduced to optimize the 
neural architecture suitable for our desired problem. The algorithm tries 
the deep learning process 30 times with L1 penalization. For this, the 
objective function value Z is defined as Z = 1 − C, where the correctness 
C measures the similarity between the deep learning estimation and 
actual results, and it ranges from 0 to 1. It finds the best configuration of 
the neural architecture with a minimal Z by adjusting section width, 
initial learning rate, L2 regularization factor, and dropout rate. Once the 
hyperparameters are fixed, the ADAM solver runs to fit neural param
eters of the architecture for generating the same categorical estimation 

Fig. 1. (a) Schematic for the optical second-harmonic generation (SHG) experiment. The fundamental wave is incident on the sample with an incidence angle θin, and 
the second-harmonic wave is monitored in a reflection geometry with a variation of the sample azimuth φazi. The SHG process is allowed from the inner bulk and the 
interface in terms of electric dipole and electric quadrupole. (b) Rotation anisotropy patterns of the SHG intensity for GaAs and Bi2Se3. The crystals are oriented along 
(001) and (0001) directions, respectively. The results for Bi2Se3 are taken from Ref. [11]. 
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results with input symmetry tags. With these processes, we could avoid 
both under- and over-fitting results by making the neural architecture 
have the comparable complexity to our problem. 

When we took discrimination results from each neural architecture, 
we generated 1000 inputs by adding Gaussian random fluctuation error 
in original experiment data, and collected the counts that each archi
tecture indicates. By the way, we observe that one neural architecture 
suggests only a single symmetry candidate, and the other architectures 
suggest different symmetries. We attribute this observation to the 
possible existence of many local minima. Also, it may be attributed to 
insufficient information of the usual SHG experiment to determine the 

symmetry of the additional dipole as the experimental result may reflect 
only some parts of susceptibility tensors [2,13]. To avoid this technical 
problem, we use the L1 penalization in the Bayesian optimization which 
leads to various objective function results Z that should be minimized 
with the L1 norm, and hence to several best configurations of hyper
parameters. From each neural architecture optimized with different 
starting hyperparameters, we collected the count distribution with the 
randomly perturbed 1000 inputs. Finally, we determined our discrimi
nation result by applying a Gaussian weighted summation of each result 
according to the Z values. 

We now demonstrate the application results of our surface symmetry 

Fig. 2. Overall flow of deep learning process in this work. For the given structural symmetry of the bulk state, symmetry candidates of the surface are selected from 
hierarchically-two-level lower symmetry species, and azimuth-dependent SHG results are generated with randomly chosen susceptibility tensor components. 
Hyperparameters are optimized by the Bayesian optimization algorithm in total 30 iteration runs. Several neural architectures optimized with different hyper
parameters give individual discrimination results, and our discriminator shows the inference result as a weighted summation of the whole suggestions. 
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discriminator for GaAs, which is one of the most representative polar 
semiconductors. GaAs has a zinc blende crystalline structure, and its 
point group symmetry is 43m. Since it is non-centrosymmetric, we 
consider first the electric dipole contribution from the bulk. By the way, 
we exclude the contribution from the bulk quadrupole as it is usually 
much weaker than the bulk ED contribution. We additionally consider a 
possible contribution from the surface, of which point group symmetry 
is supposed to be unknown and hence to be determined. From the 
symmetry 43m, there are primarially six symmetry subgroups, namely, 
23, 42m, 4, mm2, 222, and 3 which are hierarchically lower within the 
two-level as listed in Fig. 3(a). Therefore, the final learning symmetry 
tags are 43m(ED) + 23(sED), 43m(ED) + 42m(sED), 43m(ED) + 3 m 
(sED), 43m(ED) + 4(sED), 43m(ED) + mm2(sED), 43m(ED) + 222(sED) 
and 43m(ED) + 3(sED). We consider also an additional symmetry tag of 
43m(ED) + 43m(sED) supposing that the surface structural symmetry 
would remain the same as the bulk one. Before discussing the deep 
learning results, we check how well each symmetry tag would explain 
the experimental results based on the conventional fitting analysis. 
Fig. 3(b) displays that the additional consideration of mm2 can fit the 
experimental results reasonably well. Actually, there are mainly four 
symmetries that give comparable fitting qualities; as shown in Fig. 3(c), 
R2 is given to be almost unity when 42m, 4, mm2, and 222 are consid
ered for the surface symmetry. Interestingly, the symmetry groups of 23, 
43m, and 3 containing threefold rotation operations fail to fit the 
experimental results. 

Now we examine discrimination results for the additional symmetry 
based on our neural architecture for GaAs. As aforementioned, we have 
considered several different hyperparameter sets which have their own 
optimized neural architecture. Small dots in Fig. 3(d) display the final 
counts from such individual neural architecture. These small dots are 
largely distributed for four additional dipole symmetries of 42m, 4, 
mm2, and 222 indicating that different neural architectures can give 
different suggestions. The large open symbols are weighted counts 

obtained by considering all the suggestions. Interestingly, these four 
symmetries having the meaningful suggestions are in good agreements 
with symmetries having the large R2 shown in Fig. 3(b). This confirms 
that the neural architecture designed here works well to discriminate the 
additional dipole symmetry for GaAs. 

It should be noted that these mathematical approaches of the fitting 
analysis and the deep learning do not simply suggest a unique symmetry 
for the GaAs surface state. This is partly because information provided 
by the SHG measurement is not enough. Since only some parts of the 
whole tensor components are involved for the experimental results, 
different symmetry tags can produce similar anisotropy patterns. To 
improve the discrimination efficiency, it would be helpful to collect 
more information, for example, with different incidence angles. Also, it 
is a good strategy to consider the actual physical circumstance of the 
target crystal. In this specific case of GaAs, we can safely suppose that 
the additional ED contribution to the SHG process originates from the 
surface where the fourfold rotational symmetry is often broken by 
forming, for example, a (2 × 4) surface reconstruction [14]. We there
fore exclude symmetries 42m and 4 from the surface symmetry candi
dates. Between mm2 and 222, although the symmetry mm2 is usually 
suggested for the surface symmetry of GaAs by considering the surface 
band bending [15], the symmetry 222 may not be excluded if only SHG 
results are considered. 

We now move on to the second example about Bi2Se3. As one of the 
most famous topological insulators, there have been several SHG reports 
characterizing the surface symmetry, which is directly connected to the 
topological surface state [16]. Because the bulk symmetry is 3m which is 
centrosymmetric, we first consider the bulk EQ contribution. And, the 
candidates for the surface symmetry is chosen from the hierarchically 
lower symmetries within the two-level, namely 2/m, 3m, 32, 3, 3, m,

and 2, as displayed in Fig. 4(a). Among them, we exclude 3 and 2/m 
from the surface symmetry candidates for the SHG source since they are 
centrosymmetric. Therefore, the final learning symmetry tags are 
3m(EQ) + 3m(sED), 3m(EQ) + 32(sED), 3(EQ) + m(sED), 3m(EQ) +

Fig. 3. Symmetry discrimination result for the surface states of GaAs(001). (a) The point group symmetry hierarchy from 43m, the symmetry of bulk GaAs. (b) 
Regression results obtained by considering contributions from the bulk 43m and the surface mm2 symmetry. (c) Coefficient of determination from the conventional 
regression method for several symmetry candidates of the GaAs interface state. (d) Discrimination results for the surface symmetry of GaAs. 
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2(sED), and 3m(EQ) + 3(sED). An example of the conventional 
regression results is shown in Fig. 4(b) for the symmetry tag 3m(QP) +
3m(DP). The coefficient of determination displayed in Fig. 4(c) are 
comparable for all the five symmetry tags, which means the SHG 
experimental system intrinsically has insufficient information to deter
mine the surface symmetry. 

Fig. 4(d) displays the discrimination result from the neural archi
tectures optimized for the bulk 3m symmetry. Within the first-lower- 
level symmetries, namely 3m and 32, the symmetry 3 m has the higher 
suggestion. Actually, the symmetry 3 m has often been assigned to the 
surface symmetry of Bi2Se3 [11]; as Se ions easily escape from the sur
face, their vacancy can develop the surface band bending, and hence 
lead to the 3 m surface symmetry. Extending the symmetry candidate to 
the second-lower-level, it is found that the symmetry 3 has the much 
higher suggestion. The higher count for the symmetry 3 compared to 3 m 
is understood from their hierarchy relationship; the symmetry 3 has 
naturally higher degrees of freedom in tensor components than 3 m. 
Although 3 m is usually referred to the surface symmetry of Bi2Se3 [11], 
a possibility to have the surface symmetry 3 would not be excluded 
provided that only the SHG results are considered. 

In summary, we developed a discriminator for the point group 
symmetry of surface states by using a model-driven deep learning 
technique for azimuth-dependent SHG anisotropy patterns. It should be 
noted that experimental results are sensitive to only some parts of the 
whole nonlinear susceptibility tensor components, and the hierar
chically lower symmetries have a higher degree of freedom of nonzero 
tensor components. Namely, the model has insufficient information to 
exactly determine the additional symmetry. To overcome this limitation, 
we introduced statistical inference for the discrimination process. When 
the Bayesian optimization was performed for hyperparameters of the 
neural architecture, we used L1 penalization which allows to have 
several best sets of hyperparameters. Then we collected discrimination 
results of each optimized architecture, and applied statistical inference 

with Gaussian weighted summation based on the penalization score. We 
demonstrated the discrimination results of two representative examples 
of GaAs and Bi2Se3, where the surface symmetry candidates are properly 
suggested. The advantages of the deep learning approach in analyzing 
SHG results are (i) to discriminate crystal symmetries very fast (within 
seconds), (ii) to avoid the local minimum problem by taking the statis
tical approach, and (iii) to secure a generality about symmetry candi
dates as they are described by a probability distribution. The symmetry 
discriminator demonstrated in this work can be helpful in assigning the 
point group symmetries for the hidden layers of surfaces and interfaces, 
which can be a complementary approach to the conventional regression 
method and also a firm basis for the further fundamental and application 
researches exploiting surface sciences. 
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Fig. 4. Symmetry discrimination result for the surface states of Bi2Se3(0001). (a) The point group symmetry hierarchy from 3m, the bulk symmetry of Bi2Se3. The 
symmetries 3m and 2/m are excluded as they are centrosymmetric and hence has no electric dipole contribution to the SHG response. (b) Regression results obtained 
by considering contributions from the bulk 3m and the surface 3m symmetry. (c) Coefficient of determination from the conventional regression method for several 
symmetry candidates of the Bi2Se3 interface state. (d) Discrimination results for the surface symmetry of Bi2Se3. 
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