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This work presents a two-layer decentralized charging approach (TLDCA) based on fuzzy data fusion con-
cerning the economic and power layers for optimizing the charging cost of residential electric vehicles
(EVs). We defined the problem with the fuzzy objective function of minimizing the charging costs and
presented a detailed fuzzy integer linear programming formulation for obtaining the optimal solution
set. The optimal solution set relies on the decision control variable which is obtained through the fuzzy
fusion mechanism that incorporates multiple independent and uncertain day-ahead price patterns and
state-of-charge inputs from the utility grid and EV domains. The developed TLDCA reduces the charging
cost for EVs while guaranteeing their required energy by determining the optimal charging schedule. We
conduct two case studies to investigate the TLDCA behavior, where the first case explores the optimiza-
tion of charging costs and the changing needs of individual EVs. The second case examines the charging
cost, impact on load profile, and peak-to-average ratio against the summer and winter load profiles for
the aggregated EVs. The simulation results verify that the developed TLDCA optimizes the charging cost
and peak-to-average ratio compared to the uncoordinated charging, standard-rate charging, and time-of-
use charging schemes.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The changing climates (i.e., rise in atmospheric temperature, sea
level, severe floods, etc.) caused by global warming are affecting
human lives. The main reason is a large-scale emission of carbon
dioxide CO2 from the power generation sources (i.e., petroleum,
natural gas, coal, and geothermal) and automobile industries. The
internal combustion engines of conventional cars and trucks emit
about 26% of CO2, while the other transportation methods are
responsible for about 12% of CO2 emissions (Beliveau et al.,
2010). The transportation sector is the second-largest source with
34% of CO2 emissions in the U.S., in which the light-duty vehicles
(i.e., cars and light trucks) and medium to heavy-duty vehicles con-
tribute by about 60% and 23% respectively (Lee et al., 2016). The
department of energy in the U.S. reported about 1,737 million met-
ric ton (MMT) CO2 emissions from the transportation sector in
2015. Besides the CO2 emissions, the transportation sector heavily
relies on fossil fuels. In contrast, EVs reduce the dependencies on
fossil fuels with other potentials (i.e., environment-friendly, low
cost of fuel, safe, incredibly simple, reliable, compact, and light-
weight) and can support vehicle-to-grid (V2G) power, especially
at times of peak demand (Arora and Priolkar, 2016; Lee and
Lukszo, 2016). Consequently, the automobile industry has rapidly
moved towards electrified transportation in recent years.

However, massive penetration of EVs constitutes additional
power demand from the electric grid thereby causing overloading
of the transformer, feeder congestion, circuit faults, and instability
n fuzzy
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in the overall grid operation (Shao et al., 2012). One of the straight-
forward solutions for mitigating such a high power demand
requirement is to increase the power generation and upgrade the
existing power grid infrastructure. However, this is not a feasible
solution due to the higher costs of installing the generation sources
and upgrading the overall power system infrastructure. Alterna-
tively, a more feasible solution is to control the operation of EVs
within the existing power infrastructure by taking advantage of
the temporal power baseload & price (i.e., off-peak, on-peak hours,
and cost) and the EVs owner behaviors (i.e., dwell time and
required amount of energy) (Khan et al., 2013).

In the electric power network, the electricity is traded using
wholesale and retail market among three actors, including the pro-
ducers, the re-sellers, and the end-users (Tookanlou et al., 2021).
The wholesale market involves the power trading between the
generation companies and re-sellers (i.e., utility companies). Gen-
erally, the re-sellers buy the electricity at pre-defined rates
through a bilateral contract. The government bodies (e.g., Federal
Energy Regularity Commission in the United States) are responsi-
ble for the transactions. Usually, the generation companies deter-
mine the wholesale market prices according to the generation
resources, at which they can supply a specific number of
megawatt-hours. The retail market regards electricity trading
between the re-sellers and the end-users. The end users are the
customers (i.e., householders, education institutions, government
organizations, industries, etc.) who pay bills to the electric utility
company for the energy they consume each month (Haider et al.,
2021). The consumers either purchase electricity from their local
utility company or several competitive retailers to find the service
that best fits their needs. The state regulators are responsible for
determining the energy rates according to the consumption
demands in the retail market. Usually, such rates are higher during
peak hours and are low in off-peak periods (Verzijlbergh et al.,
2012). Consequently, the retail market provides different tariff sys-
tems with fixed prices per unit according to the time-of-use (TOU),
such as peak, mid-peak, and off-peak periods (Zhang et al., 2012).

The electric power system at the low-voltage (LV) distribution
network experiences controllable and uncontrollable loads at the
consumer premises. The controllable loads (i.e., EV load) are the
type of loads that are flexible for shifting from peak to off-peak
hours (Zhang et al., 2014). The uncontrollable load is the baseload
(i.e., lighting, water/room heating, air condition, laundry machine,
etc.) that represents the basic need of daily life. Taking advantage
of the TOU tariff systems, the users can control the charging of
their EVs by plugging them during off-peak hours and thereby
reducing their peak loads and costs. However, due to the uncertain
behavior of users (i.e., arrival and departure sequence, dwell time,
and energy requirements) and the battery state-of-charge (SoC), it
is hard for the users to follow the fixed TOU (Hussain et al., 2020a).
Besides, the updates of energy prices in real-time according to
the energy consumption with a granularity of 15-min intervals is
another obstacle that restricts the EV users from following the
TOU.

Nevertheless, optimizing the charging cost of EVs according to
the real-time prices is a more feasible alternative with economic
benefits for the power grid operators and EV users (Xiang et al.,
2019). However, the non-linear input parameters from multiple
domains present challenges for aggregated decisions in coordinat-
ing and optimizing the charging process of EVs in real-time (Oliva
et al., 2240; Hussain et al., 2022a).

In this work, we propose TLDCA, which employs the fuzzy infer-
ence system for correlating the inputs from the utility grid and EV
domains into an aggregated decision control variable for control-
ling the charging load and optimizing their cost. We present a
detailed fuzzy fusion mechanism for obtaining the decision control
variable based on the battery characteristics and real-time electric-
2

ity market price patterns from the EV and the utility grid. Our con-
tribution to this work is summarized as follows:

� We defined the charging cost optimization problem with a
fuzzy objective function that coordinates the charging of EVs
through a fuzzy control variable. Moreover, we presented a
detailed fuzzy integer linear programming for obtaining the
optimal solution set for the requesting EVs at residential
premises.
� We developed the TLDCA that exploits the decision control vari-
able to obtain an optimal solution set for controlling the charg-
ing of EVs, which leads to minimizing their charging cost while
guaranteeing their required energy. We explored the underly-
ing fuzzy fusion mechanism by incorporating the price pattern
obtained from the utility grid and the state-of-charge of EVs
to determine the decision control variable.
� We evaluated the performance of TLDCA through two case stud-
ies. The first case corresponds to the optimization of charging
costs of individual EVs according to decision control variable
obtained through the fuzzy fusion. In the second case, we eval-
uated the charging cost, impact on load profile, and peak-to-
average load reduction against the summer and winter load
profiles for the aggregated EVs. We verified the results against
uncoordinated charging, standard-rate charging, and different
time-of-use charging schemes.

The rest of the paper is organized as: Section 2 discusses the
related work by exploring state-of-the-art techniques in this area.
The problem formulation and the proposed TLDCA are presented in
Section 3. The performance evaluation is discussed in 4. Simulation
results and discussion are illustrated in Section 4. Finally, Section 5
concludes the paper with possible future work.
2. Related work

The growing popularity of EVs presents challenges and opportu-
nities to the power grid. Consequently, the integration of EVs into
the power grid infrastructure has been studied intensively from
different perspectives and objectives. Some of the techniques con-
sidered the power and price profiles with different objective func-
tions such as minimizing power losses, voltage deviation and
charging cost optimization for the residential and fleet of EVs.

The authors in Mets et al. (2011) studied a scheduling algo-
rithm for reducing the residential peak load by utilizing the
V2G technology. The study considered 63 households, where each
house was assigned a random electric load profile obtained from
the Belgium household’s loads. They have simulated their model
with three different scenarios (i.e., uncontrolled charging, con-
trolled charging without and with V2G support) considering dif-
ferent penetration levels of EVs (i.e., 15%, 45%, and 75%) and
evaluated the performance against the uncontrolled charging
method. A control algorithm for residential charging of EVs was
discussed in Dubey et al. (2015), which demonstrated the charg-
ing start time using the TOU price mechanism for optimizing the
electric load while ensuring the required energy until 7:00 AM.
They have validated their work with different charging scenarios
such as fixed and random charging concerning the charging start
timing according to the varying TOU prices. In Hussain et al.
(2022a), the authors developed a charging cost optimization algo-
rithm that computed an optimal charging schedule for each arri-
val and departure sequence of EVs by heuristically learning the
real-time price pattern and the EVs information. The authors in
Lojowska et al. (2011) simulated various uncontrolled charging
scenarios using Monte Carlo simulations to compute the energy
demands of EVs at the residential premises. They have considered
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the stochastic nature of each trip (i.e., the traveling distance) with
battery SoC using the historical datasets obtained from the
Netherlands transportation department. The research work in
Zhang et al. (2012) focused on optimizing the electric load profile
for domestic charging EVs based on three different electricity tar-
iff systems. The tariff systems correspond to the fixed electricity
rates (i.e., constant rates), TOU electricity rates (i.e., dual rates,
according to off-peak and on-peak periods), and real-time rates
(i.e., the temporal rates varying according to the energy consump-
tion). They coupled the vehicle commuting distance and the tariff
system to identify the suitable charging time. The work has sim-
ulated four different charging scenarios (i.e., uncontrolled domes-
tic charging, uncontrolled off-peak domestic charging, smart
domestic charging, and uncontrolled public charging) against
the 38-node distribution system in the U.K to evaluate the perfor-
mance of the proposed method. Recently, a multi-energy schedul-
ing algorithm based on ordered charging and discharging of EVs
in residential urban areas was presented in Wang et al. (2021).
They have considered renewable energy (e.g., photovoltaic sys-
tems) to optimize the variance in total power load. The proposed
model was tested on power load data obtained from a Shanghai-
based distribution network for the spring and summer seasons.
They have shown that the ordered scenarios significantly reduced
the power load compared to the random charging scenarios. The
work in Nimalsiri et al. (2021) developed a centralized network-
aware charge & discharge scheduling algorithm under the EV cus-
tomer’s economic and distribution grid constraints. The analysis
focused on a multi-objective problem, such as maintaining the
feeder voltage limits to improve the power quality and minimize
the charging costs. They assessed the performance by utilizing the
residential load data collected from the Australian distribution
network. Albeit, the centralized-based coordinated charging opti-
mized the charging load but was unable to ensure the EVs desired
energy requirements.

The authors in Alonso et al. (2014) employed a genetic algo-
rithm (GA) for coordinating the charging process of a fleet of
EVs. They have considered various factors such as load on the
transformer, voltage limits, and parking availability to calculate
the optimal load pattern for aggregated EVs. The GA took the
power load for 24 h, the parking pattern (e.g., arrival, departure
of EVs), and day-ahead EVs demand as input and applied the
grid constraints to generate an hourly optimal charging pattern
for EVs. The authors in Yu et al. (2015) studied the charging
optimization algorithm for a fleet of EVs based on the dynamic
programming concept by considering the arrival and departure
times frame from 8:00 AM and 6:00 PM. Their proposed
scheme reduced about 17.0% daily load profile compared to
the conventional dumb charging scheme. A Monte Carlo-based
method suggested in Sandels et al. (2010) focused on managing
the charging load of aggregated EVs. The models combined sev-
eral features such as departure time, commuting distance, and
average power consumption. The research in Wang et al.
(2014) analyzed a multi-location charging problem for EVs
based on the travel distance. The work used the U.S national
household travel survey (NHTS) driving dataset for deriving sta-
tistical distributions of travel patterns. Then a simulation was
performed to generate a trip chain using start time, end time,
driving distance, and the end location from the NHTS dataset.
The authors in Qian et al. (2010) proposed an optimal power
management scheme for aggregated EVs by utilizing the driving
cycle obtained from the historical traffic information. The simu-
lation considered several standard driving cycles, and the
results showed significant improvement compared to rule-
based control and a depletion sustenance control scheme. In
our previous work (Hussain et al., 2019; Hussain et al.,
2020b; Hussain et al., 2022b), we employed fuzzy logic
3

weight-based schemes for coordinating the aggregated EVs
under the bounded constraints of the EV owners, parking lot
operators, and power system requirements. The objectives were
to optimize the electric load and waiting times of EVs while
satisfying the charging needs of EVs.

All these works mainly focused on household and parking lot
electric loads, EVs waiting times, and charging cost reductions
while considering a perfect knowledge of the input variables. Nev-
ertheless, the charging cost optimization while ensuring the
energy requirements of EVs considering the multiple domains
and the uncertainties in their inputs, such as the energy prices
and the battery SoC, are yet to be analyzed. To the best of the
author’s knowledge, none of the work studied the integration of
EVs with an arbitrage consideration of charging cost optimization
and energy requirements with multi-domains and their uncertain
inputs for EVs. In this work, we present TLDCA that incorporates
the economic layer to manage the power layer (i.e., charging load)
and utilizes the fuzzy fusion to aggregate the uncertain inputs
parameters from multiple domains and optimize the cost of resi-
dential EVs.
3. The proposed two layer decentralized charging approach

3.1. Layered structure of power system

In the electric power system, the generated electricity is trans-
mitted to the consumers through the transmission lines and trad-
ing according to the wholesale and retail markets. Consequently,
the power system can be categorized into two layers concerning
the power and economic layers according to their functional
behavior, as shown in Fig. 1.

3.1.1. Power layer
The power layer corresponds to the electric power system

defining the electrical components used to generate, transmit,
and consume the electric power, usually in a unidirectional power
flow from generation to the consumers. This layer consists of gen-
erator systems, transmission systems, distribution systems, and
end-users for producing, carrying, distributing(i.e., serving the
end-users), and consuming the power. The power generation sys-
tem includes hydroelectric, thermal, nuclear, and renewable
energy sources (i.e., wind and photovoltaic systems). The trans-
mission systems are the medium of transporting the electric
energy to the load locations. These are highly integrated systems
of subsystems, such as transformers, relays, circuit breakers, and
transmission lines. The distribution systems feed the power to
the consumers. The final is the consumption stage, also known
as a utilization point, that converts power to useful work, such
as light, heat, or combinations. This stage includes industries, res-
idential, agriculture, transportation, and others (Mahmud et al.,
2020).

3.1.2. Economic layer
Electricity has a different nature compared with other com-

modities in the markets, as it cannot be stored for a long time
and requires instant consumption. The electricity trades among
the generation companies, retailers, and consumers, are serviced
through the economic layer in wholesale and retail markets. The
wholesale market expects a balanced demand and supply in real-
time, and thereby the retailer entities and the retail market play
a significant role in this regard. The consumers pay a monthly bill
for the energy consumption according to their meters (AAmir et al.,
2015; Hussain and Kim, 2015). The consumed units help the retail-
ers to aggregate the total demand for managing trades in the
wholesale market (Kuiken, 2021).



Fig. 1. Power system illustration in economic and power layers based on functional behaviour.

Fig. 2. System model of the proposed TLDCA illustrating the decentralized charging control of EVs according to the economic layer of the power system.
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3.2. System model of the proposed TLDCA

Following the two-layered structure of the power system
(Fig. 1), we developed the system model of the proposed TLDCA,
as illustrated in Fig. 2. It consists of an LV distribution system serv-
ing the residential houses with electricity transmission. The smart
meters installed at the customer’s premises record the household’s
consumption and update the utility company while receiving the
updated retail market price signals through the local (Hussain
et al., 2017) and wide area communication networks (Suhail
Hussain et al., 2018; Hussain and Kim, 2014). The utility company
aggregates local energy demands and notifies the power grid for
maintaining the demand response balance and bulk trading in
the wholesale market. Each house has an installed electric vehicle
supply equipment (EVSE) and thereby representing the baseload
consumption and a load of EV charging. The EVSE has a control unit
4

that collects the data from the EVs and the utility company and
accordingly controls the charging EVs by scheduling their opera-
tions using the services of the developed TLDCA. The TLDCA learns
the price pattern and inputs from EVs for aggregating them to the
decision control variable using the fuzzy fusion. Consequently, the
proposed TLDCA resolves the objective function according to the
decision control variable and heuristically computes an optimal
solution set used to control the charging operations of EVs in
real-time. The subsequent sections present a detailed mechanism
of the TLDCA.

3.3. Problem formulation and objective function

The proposed TLDCA collects the inputs from the EVs once they
are plugged into the EVSE. Each EV is characterized by arrival time
ðtarrÞ and departure time ðtderÞ sequence (tarr ; tder), bettery capacity
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(BC), and SoC. The stay time (ST) and the required state-of-charge
(SoCr) of EV with i are the functions of the arrival & departure
times, SoC, and BC and can be computed according to Eq. (1) and
Eq. (2). At the time of connection, the required time to charge
(Tr) of an i-th EV depends upon the SoCr , charging rate (Cr), and
charging efficiency (g) of j-th EVSE as given in Eq. (3).

STi ¼ tdepi � tarri ð1Þ

SoCr
i ðtÞ ¼

1� SoCiðtÞ; If SoCr
i ¼ 1

SoCdep
i � SoCiðtÞ If SoCi < SoCdep

i < 1

(
ð2Þ

Tr
i ¼

SoCr
i � BCi

Cr � gj
ð3Þ

The TLDCA minimizes the charging cost for each of the i-th (i.e.,
i 2 N) EV over the time horizon (T) with time step (t), such that t =
1, 2, � � �, T . The energy consumption (E) (i.e., charging) of an i-th EV
is a function of SoC, BC, and Cr , and is computed according to Eq.
(4). The charging cost (c) is the sum of products of the energy con-
sumption E in kilowatt-hour (kWh), and the energy price (P) over
the horizon T , as given by Eq. (5). The total energy consumption
(Etotal) at t is the sum of baseload (BL) and the charging load of
the EV (E), as given by Eq. (6). Given the BL and the updated Etotal

such that BLðtÞ < EtotalðtÞ, we compute the PAR and the impact on
baseload (I) according to Eq. (7) and Eq. (8) (Nguyen et al., 2012).

EiðtÞ ¼ SoCiðt � 1Þ � BCið Þ þ g� DðtÞ � Crð Þ ð4Þ

CiðtÞ ¼
Xtdepi

t¼tarr
i

EiðtÞ � DiðtÞ � PðtÞ ð5Þ

EtotalðtÞ ¼ BLiðtÞ þ EiðtÞ ð6Þ

PAR ¼
max

XT
t¼1

EtotalðtÞ
 !

1
T

XT
i¼1

EtotalðtÞ
ð7Þ

I ¼
max

XT
t¼1

EtotalðtÞ
 !

�max
XT
t¼1

BLðtÞ
 !

max
XT
i¼1

EtotalðtÞ
ð8Þ

where in Eq. (4) and Eq. (5), decision control variable (D) is used to
control the charging of i-th EV and is obtained through the fuzzy
data fusion. Once the EV is plugged into the EVSE for charging, it
has tight bounded constraints on ST and required SoC. There exist
multiple candidate time steps t 2 T , with temporal baseload BL
and energy cost C; thereby, the goal is to identify the optimal time
steps for charging EVs that minimizes their charging cost and satis-
fying their energy requirements. Consequently, we define the objec-
tive function to minimize the cost C for i-th EV and resolve it
through a fuzzy data fusion mechanism incorporating input data
from multiple domains, as given by Eq. (9).

min
i2N; pt2P; di�2D

Ciði; pt; di

�
Þ ð9Þ

subject to : tstri P tarri ð10Þ
tendi 6 tdepi ð11Þ

tarri < Tr
i 6 tdepi ð12Þ

SoCmin
i < SoCi 6 SoCmax

i ð13Þ
5

where i 2 N, represents the index of EV, pt 2 P is the energy price,

and di

�
2 D is the fused output for i-th EV at the t 2 T time step.

The objective function is subject to several non-linear constraints,
including the start time of charging (tstr) and end time of charging
(tend) should follow the arrival and departure times (tarr ; tder)
sequence as given in Eq. (10) and Eq. (11). Likewise, the required
charging time Tr should be between the arrival and departure times,

while the SoC at any time step t must follow the SoCmin and maxi-
mum state-of-charge SoCmax ranges as defined by Eq. (12) and Eq.

(13). The optimal solution set depends on the di

�
2 D, which is com-

puted using fuzzy data fusion mechanism discussed in the follow-
ing section.

3.4. Fuzzy data fusion

This section presents the data fusion from multiple domains
through a fuzzy inference mechanism to resolve the objective func-
tion discussed in Eq. (9). An illustration of the data fusion process is
shown in Fig. 3, consisting of multiple domains (i.e., EV and the
utility grid) with different characteristics (i.e., amount of energy
requirements and the prices, etc.). The data fusion from a multi-
domain system through the fuzzy inference system involves the
data representation & fuzzification, knowledge base, and defuzzifi-
cation steps.

3.4.1. Data representation and fuzzification
The input domains (i.e., utility grid and the EV) have different

temporal-based varying parameters, such as charging cost C and
the required energy SoCr . The cost depends upon the electric base-
load BL, whereas the SoCr depends on the user’s requirements and
battery capacity BC and thereby, are highly uncertain. The fuzzifi-
cation process characterizes the crisp inputs into fuzzy variables
using linguistic terms and standard membership functions (MFs).
The inputs require characterization with the lower bound, upper
bound, proper units, and selection of appropriate MFs for repre-
senting them through the inference system. The selection of MFs
depends upon the influence of the linguistic term concerning the
output values, such as if a range of values results in a minimum
change, a trapezoidal MF is preferred; however, a gradual change
reflects a maximum, a triangular MF is an appropriate choice
(Gerlach and Bocklisch, 2021). Considering the selection criteria
(Gerlach and Bocklisch, 2021), we have adopted a mixed strategy
for the input MFs selection, and based on the input MFs, we fol-
lowed the same criteria to choose the MFs for the output variable.
Consequently, we measure the price P in cents per kWh and repre-
sent it in the range of [0� 30] (Yao et al., 2016). We define the P
using five MFs represented through the linguistic terms very low
price (VLP), low price (LP), medium price (MP), high price (HP),
and very high price (VHP). The terms VLP and VHP are modeled
using the left-open and right-open trapezoidal MFs, while the LP,
MP, and HP are defined by the triangular MFs, as illustrated in
Fig. 4a. The SoCr is normally measured in percentage and repre-
sented through a normalized range [0�1] (Hussain et al., 2019).
The SoCr is defined through five MFs, denoted by linguistic terms
very low SoC (VL), low SoC (L), medium SoC (M), high SoC (H),
and ery high SoC (VH), respectively. Following the mixed selection
criteria (Gerlach and Bocklisch, 2021) the VL and VH are defined
with left-open and right-open trapezoidal MFs, while the L, M,
and H are defined according to the triangular MFs, as shown in
Fig. 4b. The inference fuses the inputs to the fuzzified output,
which indicates the scale of change imposed by the MFs and the
set of expert rules administering the fuzzy input variables. The out-
put variable in this work is the decision control variable D holding
the decision score in the range [0�1] for each of the time steps. The



Fig. 3. Multi-domain input data and illustration of their fusion process through fuzzy inference mechanism.

Fig. 4. Input and output fuzzy MFs. (a). MFs for energy price (P), (b). MFs for
required SoC (SoCr), (c). MFs for decision variable (D).
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output variable D is characterized by three trapezoidal MFs, repre-
sented through the linguistic terms low score (LS), medium score
(MS), and high score (HS), respectively. The linguistic terms LS,
HS, and MS are modeled with left-open trapezoidal MFs, right-
open trapezoidal MFs and trapezoidal MFs, respectively, as illus-
trated in Fig. 4(c) (Hussain et al., 2022b; Gerlach and Bocklisch,
2021).

3.4.2. The knowledge base fusion process
The fuzzy inference system (FIS) fuses the independent and

uncertain input variables to the fuzzified output variables using
the knowledge of the expert system (Andrenacci et al., 2017).
The IF-THEN logical sequence of fuzzy rules defines the expert sys-
tem such that for the given input data, the IF (antecedents) cap-
tures the corresponding linguistic terms for the applicable MFs
using AND/OR logical operators (Bai et al., 2007). Likewise, the
THEN (consequences) fuse them to the linguistic variables of out-
put MFs based on the fuzzy set operation (i.e., intersection, union,
and compositions).

Definition 1. A fuzzy set A#X is represented by an ordered pair of its
element ðxÞ and the degree ðlAðxÞÞ of its MF to A, as given by Eq. (14).

A ¼ x; lAðxÞ
� �

: x 2 X; lAðxÞ ! ½0;1�
� � ð14Þ

where X represent the universal set of discourse and the degree
(lAðxÞ) of MF relate the element x to A such that x 2 A, if
lAðxÞ ¼ 1; x R A, if lAðxÞ ¼ 0, and x partially belong to A, if
0 < lAðxÞ < 1.

Definition 2. Two fuzzy sets A#X and B#Y can be related by the
relationship R, which is the cartesian product (x� y) of x 2 X and
y 2 Y as given by Eq. (15) (An et al., 2019). Normally for multiple
elements the relationship Rðxm; ynÞ is denoted through m� n matrix
according to Eq. (16) (Hussain, 2010).

Rðx; yÞ ¼ ððx; yÞ; lRðx; yÞÞ : ðx; yÞ 2 X � Y
� � ð15Þ

Rðxm; ynÞ ¼
lRðx1; y1Þ . . . lRðx1; ynÞ
..
. . .

. ..
.

lRðxm; y1Þ . . . lRðxm; ynÞ

2
664

3
775 ð16Þ

Definition 3. For the two relations R ¼ A! B and Q ¼ B! C such
that A#X;B#Y, and C# Z, respectively, there exsist a third relation S
that fuses the element (x 2 A) in R and (z 2 C) in Q and is computed
using the fuzzy composition operation (�) according to Eq. (17)
(Hussain et al., 2020a). The fused output fuzzy set S is given by Eq.
(18), while the degree of their MFs can be computed using the min–
max operation as given by Eq. (19) (Hussain et al., 2019).
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S ¼ R� Q ð17Þ

Sðx; zÞ ¼ lSðx; zÞ
ðx; zÞ jðx; zÞ 2 X � Z

� �
ð18Þ

lSðx; zÞ ¼ max min lRðx; yÞ; lQ ðx; zÞ
� 	� 	

ð19Þ

Following the fuzzy sets relationship principles, the set of fuzzy
rules Rules ¼ fRule1;Rule2; � � � ;Rulen0} can be characterized through
a sequence of IF-THEN logical statements as defined by Eq. (20) and
can be generalized as defined by Eq. (21).

Rule1 ¼ IF x1 is A1 THEN y1 is B1

Rule2 ¼ IF x2 is A2 THEN y2 is B2

..

.

Rulen0 ¼ IF xn0 is An0 THEN ym0 is Bm0

8>>>>><
>>>>>:

ð20Þ

Rules ¼ IF xs is As THEN ys is Bs ð21Þ
where the sets xs ¼ fx1; x2; . . . ; xn0g and ys ¼ fy1; y2; . . . ; ym0g are the

input variables, and the sets As ¼ fA1
;A2

; . . . ;An0} and
Bs ¼ fB1;B2; . . . ;Bm0} are the linguistic representations of their corre-
sponding antecedents and consequences (Vo and Detyniecki, 2013).
Considering the number of MFs of the input variables, we design a
total of 25 fuzzy rules (Table 1) for the inference system used to fuse
the inputs to the output variable (Shah et al., 2015). Following Eq.
(17), we compute the relation D (i.e., Decision control variable)
through Eq. (22). Likewise, we compute the di 2 D for an i-th EV
using the instances of fuzzy sets pt 2 P and socri 2 SoCr and their cor-
responding degree of MFs as given by Eq. (23). The FIS applies mul-
tiple fuzzy rules using the approximate reasoning feature that fuses
the most appropriate knowledge for obtaining the desired output.
The reasoning feature evaluates the degrees of MFs for the input
data against the set of applicable fuzzy rules and selects the optimal
number of fuzzy rules. Following Eq. (19), we fuse the inputs
(pt 2 P) and (socri 2 SoCr) into the output (di 2 D) for the i-th EV
(i 2 N), using the knowledge of set of fuzzy rules (r) (i.e., multiple
applicable rules), such that i ¼ 1;2; � � � ; r and the min–max fusion
expression as given in Eq. (24).

D ¼ P � SoCr ð22Þ

di ¼
ldi
ðpt ; soc

r
i Þ

ðpt; socri Þ
jðpt ; soc

r
i Þ 2 P � SoCr

� �
ð23Þ

lðdiÞ ¼max min ðptÞ1;lBðsocri Þ1
� 	

;
h

� � � ;min lðptÞr;lBðsocri Þr
� �
 ð24Þ
3.4.3. Defuzzification of the fused output variable
The fuzzy process results in fuzzified fused output that should

be converted to crisp value using the defuzzification method, such
as the center of gravity (COG). The COG is a widely used method in
Table 1
The fuzzy inference system rules for fusing the inputs to decision control variable.

D

VLP LP MP

SoCr

VL HS HS
L HS HS
M HS HS
H LS MS
VH LS MS

7

realistic applications that efficiently fuses the best comprise
among the multiple linguistic terms for the given input data type
such as discrete or continuous (Van Leekwijck and Kerre, 1999).
Considering both the discrete and continuous input data cases,
we compute the fused (i.e., final crisp) variable di for the i-th EV
using Eq. (25) and Eq. (26) (Mogharreban and Dilalla, 2006). Upon
the arrival of an i-th EV at time step t, we compute the fused vector
D for controlling its operation in the time domain (i.e., T vector)
using Eqs. (22)–(24) as given by Eq. (27).

di ¼

Xm
k¼1

ldi
ðxkÞ � ðxkÞ

Xm
k¼1

ldi
ðxkÞ

; 8k ¼ 1;2; � � � ;m ð25Þ

di ¼
Rm
k xk � ldi

ðxkÞdxRm
k ldi

ðxkÞdx
ð26Þ

D ¼ d1

�
; d2

�
; . . . ; di

�
; . . . ; dn

�� �
ð27Þ

where di

�
represents the crisp value (di) and the degree (lðdiÞ) of its

MF for the i-th EV, such that di

�
¼ ðdi; lðdiÞÞ.

3.4.4. The optimal solution set
To find optimal solution set of decision control ðD	n0Þ using the D

such that D	n0#D, we resolve the optimization problem (Eq. (9)) as
a function of degree of membership lðdiÞ for the di 2 D (Eq. (27))
using the following criteria.

Definition 4. The support set denoted by SuppðAÞ of a fuzzy set A in
the universe of discourse X is the crisp subset of X with the elements
having nonzero membership grades as given by Eq. (28)
(Zimmermann, 2010).
SuppðAÞ ¼ x; lAðxÞ
� �j lAðxÞ > 0
� � ð28Þ

Definition 5. Given a fuzzy relation Rðx; yÞ on the X � Y, such that
x 2 X and y 2 Y, the projection (i.e., x0) of R on X returns x 2 X with the
maximum lðxÞ as defined by Eq. (29) (Hussain, 2010).
x0¼SuppfRðx; yÞj y 2 Yg ð29Þ
Following the Bellman and Zadeh principles (Bellman and

Zadeh, 1970) the feasible solution set is obtained through the
intersection (i.e., min operation) of all lðdiÞ of D, such that it satis-
fies Eq. (28) i.e., lðdiÞi0, and is given by Eq. (30). Likewise, follow-
ing the projection property of fuzzy sets discussed in Definition 5
(Eq. (29)), we compute the projection D0 of decision control vari-
able D in Eq. (31). Let D	n0 2 D denotes the set of decision control
variables such that d 2 D with the highest degrees of their
P

HP VHP

HS MS LS
HS MS LS
MS MS LS
MS LS LS
MS LS LS
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membership, then D	n0 is the optimal solution set, provided that it
fulfill certain criteria such as D	n0 – / and d	 2 D	n0, as given by Eq.
(32) (Fullér, 1998).

lðDÞ ¼ min lðd1Þ;lðd2Þ; . . . :lðdqÞ
� � 8q 6 n ð30Þ

D0 ¼ Supp lðdÞj d 2 Df g ð31Þ

D	n0 ¼ Supp D	 2 Dj lðD	Þ ¼ D0f g ð32Þ
3.5. Pseudocode of the proposed TLDCA

Once an EV is plugged into an EVSE for charging, the proposed
TLDCA algorithm fuses the multi-domain input data to handle
the charging cost optimization. The main algorithm (i.e.,
algorithm-1) collects the input and controls the charging processes
according to the fused decision control variable returned by
algorithm-2. The overall process involves the following main steps.

Algorithm1 Main algorithm of the proposed TLDCA

Input: Arrival and departure times, battery capacity, SoC,
charging power, and energy price list

Output: Charging cost, final SoC, PAR, and impact on load
1: Initialize the system local and global variables

2: Get tarri ; tdepi ; SoCi; SoC
dep
i ;BCi

3: Compute STi, SoC
r
i , T

r
i .According to Eqs. 1,2,3

4: while j 6 jTjð Þ
5: P½j�  Tp½j� .Load day-ahead price pattern
6: j jþ 1
7: end while
8: Fuzzy_Fusion argumentsð Þ
9: for t  1 to jTj do
10: if t 6 tdepi &&SoCi½t� < SoCr

i

� 	
.Eqs. 11,12

11: if (D½t�!= 0) then
12: ðSoCi½t� � BCiÞ  ðSoCi½t� � BCiÞ þ ðg� CrÞ
13: Etotal½t�  BL½t� þ ðSoCi½t� � BCiÞ
14: Ci½t�  Etotal½t� � P½t�Þ
15: end if

16: else if t P tdepi j jSoCi½t�P SoCr
i

� 	
then

17: Break
18: end if
19:end for
20:Compute PAR and I .According to Eqs. 7,8
21:Print the results

Algorithm2 Fuzzy_Fusion(arguments)

1: Load the fuzzy fusion rules from Table 1
2: while (j 
 jPj)
3: Fuzzify the inputs and output variables (Fig. 4)
4: Validate constraints (10)-(11)
5: tmp FIS:EvaluateðP½j�; SoCr

i Þ
6: F½j�  FIS:MFðtmpÞ .Get MF by Eq. (24)
7: D½j�  FIS:DefuzzifyðtmpÞ .By Eqs. (25)-(26)
8: j jþ 1
9: end while
10: for j 1 to jFj .Adjust D using degree of MFs
11: for k jþ 1 to jFj do
12: if (F½k� 1� < F½k�) then
13: temp D½k� 1�
8

14: D½k� 1�  D½k�
15: D½k�  temp
16: end if
17: end for
18: end for
19: while (j 
 jDj) do
20: if (j � jTr

i j) then
21: D½j�  0 .Rectify the non-optimal decision
22: end if
23: j jþ 1
24: end while
25: Return updated (D) then
Step 1. Initialize all the system local and global variables and
collect the input data from the EV domain.
Step 2. Compute the stay time, required SoC, and the required
time for charging according to Eqs. (1)–(3).
Step 3. Load the day-ahead price pattern from the utility grid
domain in lines 4 to 7.
Step 4. Call the Fuzzy_Fusion (algorithm-2) with passing the
required SoC and the price vector arguments. Then fuzzify the
input variables, validate the desired constraints and fuse the
inputs by evaluating them through the FIS engine. It then
records the degree of membership and the crisp value for the
fused decision control variable. Once such information is
known, the feasible set of the decision control variables is
adjusted according to the degree of membership function in
lines 10 to 18. The optimal set of decision control variables is
then obtained for the required charging duration. Finally, the
optimal set of decision control variables is then returned to
the main algorithm.
Step 5. Check the EV stay time, the SoC status and control the
charging process according to the decision control variable.
Update the SoC and compute the total load and charging cost.
However, if at any time step the EV is departing or completing
its desired charging level, stop the charging process.
Step 6. Compute the PAR and impact on the load according to
Eqs. 7,8 and print the results.

4. Performance evaluation criteria

The performance evaluation criteria refer to the different meth-
ods governing the charging process of EVs. Generally, EV charging
can be divided into two broad categories, including uncoordinated
and coordinated charging.

4.1. Uncoordinated charging

An uncontrolled charging (UCC) generally follows the EV user’s
requirements and the availability of the charging outlet. Depend-
ing on the battery SoC and the user requirements, once an EV is
plugged into the charging outlet, the process starts charging imme-
diately and lasts until the battery capacity. The uncoordinated
method is an essential criterion helping to understand the conse-
quences of the charging process on both the power grid and the
customer premises (Abul’Wafa et al., 2017).

4.2. Coordinated charging

The coordinated charging methods aim to auto-control the
charging process by determining the most suitable charging time
steps. Consequently, it provides a start and stop mechanism con-
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cerning external parameters such as the charging power (i.e.,
charging rate), stays time, and electricity tariff, etc. The residential
charging considers a constant charging rate and has enough stay
time for fulfilling the requirements; therefore, the tariff system is
the dominant factor (Andruszkiewicz et al., 2021). In the tariff sys-
tem, the electricity rate varies according to the different TOU,
encouraging the users to adopt a suitable TOU that lowers their
consumption and costs.

4.2.1. Standard rate
The standard tariff usually refers to the standard/fixedrate (SR)

based on the measured consumption over a monthly, quarterly, or
yearly basis with no inflation for the defined time frame (Ansarin
et al., 2020). The authors in Zhang et al. (2012) defined the SR as
an average-rates over 24 h for charging i-th EVs as given by Eq.
(33). However, the cost of electricity constitutes multiple factors,
including the generation, demand, transmission, losses compensa-
tion, and linearization of wholesale market costs, that influence the
cost every hour (Joskow, 2008). The conflict in electricity cost fac-
tors and the SR for the end-users present the unfairness problem
for their subscribers, such as some pay less for their fair share of
electricity, while the others pay a higher amount for their electric-
ity consumption (Ansarin et al., 2020). Consequently, the insecurity
of SR implies its inadequacy for the subscribers.

CiðtÞ ¼ 1
24

X24
t¼1

EiðtÞ � PðtÞ ð33Þ
Fig. 5. Real-time and STOU price pattern for the summer and winter season.
4.2.2. Single and multiple time of use
The time-of-use (TOU) considers different external factors (i.e.,

season and outside temperature, etc.) and defines the rate for a
specific TOU period. The authors in Zhang et al. (2012) defined sin-
gle time-of-use (STOU) and multi time-of-use (MTOU) systems for
charging EVs. Depending on the electricity consumption, the STOU
corresponds to two different rates concerning the off-peak and on-
peak load hours. The off-peak period consists of 00:00 to 08:00,
while the on-peak period considers the next 16 h, as given by Eq.
(34).

CiðtÞ ¼
1
8

X8
t¼1

EiðtÞ � PðtÞ; Rate1foroff � peak

1
16

X16
t¼1

EiðtÞ � PðtÞ; Rate2foron� peak

8>>>><
>>>>:

ð34Þ

Likewise, the multi-tariff system is an extension of the STOU,
which corresponds to multiple off-and-on periods and can be for-
mulated, as given in Eq. (34). The five different TOU periods with a
interval of four hours (i.e., 00:00–04:00, 01:00–05:00, 02:00–
06:00, 03:00–07:00, and 04:00–08:00) were assigned to the MTOU
tariff system (Zhang et al., 2012). However, the stochastic nature of
EV owners makes it extremely difficult for them to follow the TOU
tariff system while considering optimizing the charging cost. Con-
sequently, the real-time price signals are more effective for the
charging optimization of EVs. However, the multiple domains
and their input data present challenges such as how to couple
the real-time prices and the EV parameters into the optimal time
steps leading to the charging cost optimization while ensuring
the energy demanded (Soltani et al., 2014).

5. Simulation results and discussion

To analyze the effectiveness of the proposed TLDCA, we simu-
late two different case studies and verify the results against
state-of-the-art uncontrolled (Abul’Wafa et al., 2017), standard-
rate (standard-rate (SR)) (Ansarin et al., 2020), single time-of-use
9

(single time-of-use (STOU)) (Soltani et al., 2014), and multi time-
of-use (multi time-of-use (MTOU)) (Zhang et al., 2012) charging
methods. This section provides a detailed presentation of these
case studies.

5.1. Case study I

The first case corresponds to the charging control of an EV in an
individual household against the summer and winter price pat-
terns and varying EV parameters. The summer season consists of
three months (i.e., June, July, and August), whereas the winter sea-
son is based on December, January, and February. Consequently,
from the utility grid domain, an average real-time and STOU elec-
tricity price profile for the summer and winter seasons are shown
in Fig. 5 (Arablou, 2019). The rest of the parameters from the EV
domain with a battery capacity of 53 kWh that supports a charging
power of 6.6 kW, and g = 0.95, are given in Table 2. The baseload
profile of each month in the summer and winter seasons is illus-
trated in Fig. 6. Considering the arrival, departure, SoC, and the
price signals, the different methods result in a distinct charging
control process. The charging process for the summer season with
different charging methods is shown in Fig. 7, whereas the charg-
ing has similar behavior in the winter season and has been omitted
to avoid duplication. Considering the different charging control
strategies, the EV inputs, and the price patterns, each method
results in distinct charging costs for each month in the summer
and winter seasons.

A comparison of charging cost concerning the different charging
methods is presented in Fig. 8, such that Fig. 8a and Fig. 8b repre-
sents the charging costs in the summer and winter seasons. In both
the summer and winter seasons, the proposed TLDCA significantly
reduces the charging costs compared to the state-of-the-art charg-
ing costs methods. The TLDCA reduces the costs by 75.0%, 64.0%,
45.0%, and 43.0% compared to the UCC, SR, STOU, and MTOU meth-
ods, respectively, for the June profile. For the July profile, about
57.0%, 61.0%, 42.0%, and 39.0% efficiency have been recorded with
the TLDCA, compared to the UCC, SR, STOU, and MTOU methods,
respectively. In the case of the August profile, the cost reduction
with UCC, SR, STOU, and MTOU is about 90.0%, 95.0%, 65.0%, and
61.0%, respectively. Considering the case of summer load profiles,
on average, the TLDCA minimized the costs by about 33.0%,
33.0%, 11.0%, and 7.0% compared to the UCC, SR, STOU, and MTOU,
respectively.

The cost-efficiency of TLDCA against the UCC, SR, STOU, and
MTOU is about 32.0%, 24.0%, 16.0%, and 11.0%, respectively for
December profile. Against the January profile, the comparison of



Table 2
Input data from EV domain against the load profile for each month in the summer and winter season.

Season Month Arrival time Departure time SoC (kWh)

Summer
June 6:00 PM 9:00 AM 21.2
July 8:00 PM 10:00 AM 26.5

August 7:00 PM 11:30 AM 10.6

Winter
December 6:00 PM 9:00 AM 21.2
January 8:00 PM 10:00 AM 26.5
February 7:00 PM 11:30 AM 10.6

Fig. 6. Household baseload profiles for two seasons.

Fig. 7. Battery charging (i.e., SoC) update concerning different method.

Table 3
Penetration level of different types of EVs battery capacities (Tamura and Kikuchi,
2018; Wang et al., 2016; Wang et al., 2018; Kongjeen and Bhumkittipich, 2018).

Vehicles type Battery capacity (kWh) Penetration Level (%)

Nissan Leaf 40 25
Tesla S 53 25

Tesla Model 3 80.5 24
Tesla Model X 100 26
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cost reduction with the TLDCA is about 23.0%, 23.0%, 11.0%, and
6.0% compared to the UCC, SR, STOU, and MTOU, respectively. Like-
wise, against the February profile, the TLDCA effectively reduces
the charging cost by 45.0%, 46.0%, 27.0%, and 11.0% compared to
the UCC, SR, STOU, and MTOU, respectively. For the winter seasons,
on average, the cost-efficiency of the TLDCA is about 33.0%, 31.0%,
18.0%, and 9.0% against the UCC, SR, STOU, and MTOU, respectively.

Besides, we considered the baseload of the household and ana-
lyzed the PAR and load impact performance of the TLDCA against
the UCC, SR, STOU, and MTOU, methods respectively. The compar-
ison is tabulated in Table 4 and Table 5 for the three months of
10
summer and winter seasons. Each of the months has a different
baseload profile, and thereby these methods result in variable
PAR and load impacts. Considering the summer season (Table 4),
the TLDCA outperforms the UCC, SR, and STOU and is yet compet-
itive with the MTOU in terms of PAR and load impacts. Likewise,
against the winter baseload profiles (Table 5), the TLDCA has a sim-
ilar superior performance against the conventional methods. How-
ever, a modest impact on the household load has been recorded,
with both the TLDCA and MTOU methods. Such moderate effect
is rational because regardless of the individual load pattern, these
methods optimize the cost through price-based signals obtained
from the utility grid. Subsequently, we analyze the contribution
of individual load on the power grid by conducting case study II
for the aggregated charging EVs.
5.2. Case study II

To evaluate the performance of the proposed TLDCA, we consid-
ered a low-voltage distributed network consisting of overhead
power lines, underground power cables, and service drop lines
supporting a total of 102 houses, as shown in Fig. 9 (Hussain
et al., 2019). The aggregated electric load of these houses for the
summer and winter seasons is illustrated in Fig. 10 (Viegas et al.,
2015). We considered four different types of EV penetration with



Fig. 8. Charging cost of EVs according to the different charging methods methods.
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battery capacities of 40 kWh (Tamura and Kikuchi, 2018), 53 kWh
(Wang et al., 2016), 80.5 kWh (Wang et al., 2018), and 100 kWh
(Kongjeen and Bhumkittipich, 2018), as given in Table 3. Following
the probability distribution function (PDF) obtained from the real-
Table 4
Comparison of PAR and load impact with respect to different methods against the summe

Month Method Average load (kW) Peak load

June

UCC 2.82 6.09349
SR 2.82 6.09349

STOU 2.83 4.79146
MTOU 2.82 4.44349
TLDCA 2.82 4.44349

July

UCC 3.31 5.83368
SR 3.31 5.83368

STOU 3.31 4.69561
MTOU 3.31 4.44334
TLDCA 3.31 4.44334

August

UCC 3.97 6.90274
SR 3.97 6.90274

STOU 3.97 6.42200
MTOU 3.97 6.18200
TLDCA 3.97 6.13200

11
istic data of NHTS, we generated a random arrival departure
sequence of EVs (Akshaya Preethi et al., 2018). Consequently, the
arrival and departure times follows the Gaussian distribution with
mean(l) = 6:00 PM, standard deviation(r) = 3 h and meanl =
10:00 AM, r = 2.5 h, respectively as shown in Fig. 11 (Hussain
et al., 2020b). Likewise, the arrival time SoC is randomly between
20% to 50% against each type of battery capacity using a uniform
distribution, as shown in Fig. 12. The proposed TLDCA effectively
fuses different input data that help in optimizing the charging cost.
A comparison of the charging cost against both the summer and
winter seasons concerning the different charging methods is given
in Fig. 13. The proposed TLDCA significantly reduces the charging
cost for both the summer and winter seasons. In more detail, for
the summer profile, the cost reduction is about 36.0%, 35.0%,
18.0%, 7.0%, whereas, for the winter season, the difference is about
28.0%, 27.0%, 15.0%, and 8.0% compared to the UCC, SR, STOU, and
MTOU, respectively.

The aggregated load of EVs for the summer and winter seasons
is shown in Fig. 14. The TLDCA lowers the average aggregated load
in summer by 53.93 kW, 53.93 kW, 28.32 kW, 8.32 kW compared
to the UCC, SR, STOU, and MTOU, respectively. Likewise, in winter,
the average load difference of TLDCA is 26.70 kW, 26.70 kW,
13.08 kW, and 5.67 kW, compared to the UCC, SR, STOU, and
MTOU, respectively.

A comparison of PAR and load impact for the summer and win-
ter seasons are given in Table 6 and Table 7. For both summer and
winter seasons, the TLDCA results in minimal PAR compared to the
rest of the charging methods. Considering the summer season, the
TLDCA minimized the load impact of aggregated EVs by up to
33.79%, 33.79%, 19.79%, and 6.79% against the UCC, SR, STOU, and
MTOU, respectively. Similarly, in winter, the reduction in load
impact with TLDCA is recorded by up to 34.21%, 34.21%, 20.06%,
and 6.08%, compared to the UCC, SR, STOU, and MTOU, respec-
tively. Moreover, with a 100% EV penetration level, the conse-
quences of individual load impact are about 10.09% and 7.03% on
the distribution network. The global solution for load impact and
cost minimization turns the problem into a multi-objective and
multi-domain problem that incorporates constraints from the util-
ity grid, EVs, and the baseload of the households, which is our
future plan.
5.3. Discussion

The efficiency of the FIS in a multi-domain system relies on the
selection of MFs, the set of expert rules, and the defuzzification
method.
r load profile.

(kW) Baseload peak (kW) PAR Impact (%)

4.44349 2.16 27.00
2.16 27.00
1.69 7.00
1.58 0.00
1.58 0.00

4.44334 1.76 23.00
1.76 23.00
1.42 5.00
1.34 0.00
1.35 0.00

5.99200 1.74 13.00
1.74 13.00
1.62 6.70
1.56 3.07
1.54 2.28



Table 5
Comparison of PAR and load impact with respect to different methods against the winter load profile.

Month Method Average load (kW) Peak load (kW) Baseload peak (kW) PAR Impact (%)

December

UCC 2.52 4.37253 4.17175 1.74 5.00
SR 2.52 4.37253 1.74 5.00

STOU 2.52 4.17175 1.68 0.00
MTOU 2.52 4.17175 1.66 0.00
TLDCA 2.52 4.17175 1.66 0.00

January

UCC 2.82 3.76398 2.11398 1.34 44.00
SR 2.82 3.76398 1.34 44.00

STOU 2.82 3.10398 1.10 31.89
MTOU 2.82 2.11398 0.75 0.00
TLDCA 2.82 2.11398 0.75 0.00

February

UCC 2.82 4.46750 3.62500 1.58 19.00
SR 2.82 4.46750 1.58 19.00

STOU 2.82 4.05750 1.44 10.66
MTOU 2.82 3.78500 1.34 4.23
TLDCA 2.82 3.68500 1.31 1.63

Fig. 9. Low-voltage distributed network topology.

Fig. 10. Aggregated baseload profiles for the summer and winter seasons.

Fig. 11. Arrival and departure sequence of EVs.
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Considering the selection criteria (Gerlach and Bocklisch, 2021),
we have adopted a mixed strategy for the input MFs, and based on
the input MFs, we followed the same criteria to choose the MFs for
the output variable. Consequently, each input variable is character-
ized by five MFs, while the output has three MFs. Given the input
12
data, the FIS utilizes the approximate reasoning feature that eval-
uates the degrees of MFs against the set of experts rules for approx-
imating the output. Considering the input variables and their MFs,
a total of 25 expert rules are designed using an adaptive method
(Shah et al., 2015).

The FIS results in a fuzzified output that needs to be converted
into crisp logic using any defuzzification methods such as the COG,
middle of maxima (MOM), first of maxima (FOM), last of maxima
(LOM), and random choice of maxima (RCOM) (Hussain et al.,
2019). The selection of a specific defuzzification method depends
on the type of input MFs (i.e., overlapping or non-overlapping. In
the case of non-overlapping MFs, a slight change in the input data
reflects an abrupt change in the output; therefore, the MOM is a
suitable choice. While for overlapping MFs, any minor change does
not influence the output significantly; thus, the COG is the most
feasible solution (Hussain et al., 2020a). Thereon, this work utilizes
the COG method to compute the crisp value for the decision con-
trol variable (Hussain et al., 2020b).

Two case studies are conducted to evaluate the performance of
the proposed TLDCA against state-of-the-art UCC, SR, STOU, and
MTOU methods (Abul’Wafa et al., 2017; Ansarin et al., 2020;
Soltani et al., 2014; Zhang et al., 2012). In both cases, the TLDCA
reduced the charging cost and PAR compared to the UCC, SR, STOU,
and MTOU. However, we observed a heading issue with the pro-
posed TLDCA, which resulted in about 2.28% (Table 4 and 1.63%
(Table 5) impact on the load against the summer (i.e., August load)



Fig. 12. State-of-charge distribution against four type of battery capacities.

Fig. 13. Normalized charging cost of aggregated EVs for the summer and winter
seasons. Fig. 14. Violin graph of aggregated load in the summer and winter seasons

concerning the different charging methods.
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and winter (i.e., February load) load profiles in the primary case. In
this case, we observed that the proposed TLDCA overloaded the
distribution network by about 10.09% (Table 6 and 7.03% (Table 7)
against the summer and winter load profiles. Consequently, a local
optimal solution is desirable by controlling the charging load
according to the individual household consumption and the price
Table 6
Comparison of PAR and impact of different methods for aggregated EVs in the summer se

Method Average load (kW) Peak load (kW)

UCC 230.08 464.91
SR 230.08 464.91

STOU 204.47 372.05
MTOU 184.47 313.916
TLDCA 176.15 290.202

Table 7
Comparison of PAR and impact of different methods for aggregated EVs in the winter sea

Method Average load (kW) Peak load (kW)

UCC 173.52 390.92
SR 173.52 390.92

STOU 159.9 315.03
MTOU 152.49 264.35
TLDCA 146.82 247.06

13
pattern, which will optimize the charging cost and the load profile
globally. Moreover, the proposed approach provides a pathway for
developing a software controller by coupling the smart meters and
EVs sensors data into an aggregated decision control variable for a
campus or micro-grid energy management.
ason.

Baseload peak (kW) PAR Impact (%)

260.916 2.02 43.88
2.02 43.88
1.82 29.87
1.70 16.88
1.65 10.09

son.

Baseload peak (kW) PAR Impact (%)

229.702 2.25 41.24
2.25 41.24
1.97 27.08
1.73 13.11
1.68 7.03
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6. Conclusion

In this paper, we highlighted the importance of fuzzy data
fusion and presented a two-layer decentralized charging approach
(TLDCA) concerning the economic and power layers for optimizing
the charging cost of EVs at the residential premises. We defined the
problem with the fuzzy objective function of charging cost opti-
mization and explored the entire fuzzy integer linear programming
formulation for obtaining the optimal solution set. The developed
TLDCA optimized the charging costs by exploiting a decision con-
trol variable computed through the fuzzy fusion mechanism. The
developed fuzzy fusion was able to incorporate the independent
and uncertain price pattern and state-of-charge from the utility
grid and EV domains and fused them into the decision control vari-
able. The proposed TLDCA effectively utilized the decision control
variable by computing an optimal charging schedule leading to
reduced costs while guaranteeing the expected energy for the
requesting EVs.

The performance of TLDCA is evaluated against state-of-the-art
UCC (Abul’Wafa et al., 2017), SR (Ansarin et al., 2020), STOU
(Soltani et al., 2014), and MTOU (Zhang et al., 2012) methods
through two case studies, simulated for the summer and winter
seasons. First, a primary case study for individual EVs with differ-
ent load profiles, arrival time, departure time, and SoC, was con-
ducted to analyze the functional behavior of the different
approaches in optimizing the charging costs and the charging
requirements at the customer’s premises. The result showed that,
on average, the TLDCA reduced the costs by about 33.0%, 33.0%,
11.0%, and 7.0% against the UCC, SR, STOU, and MTOU, respec-
tively, for the summer season. The average cost efficiency of the
TLDCA is about 3.0%, 31.0%, 18.0%, and 9.0% compared to the
UCC, SR, STOU, and MTOU, respectively, for the winter season.
The secondary case evaluated the TLDCA from the grid and cus-
tomer’s perspectives by considering an aggregated EV load with
different types of battery penetration levels. In this case, the
TLDCA optimized the average cost by 36.0%, 35.0%,18.0%, 7.0% in
the summer season, whereas in the winter, the cost difference
is about 28.0%, 27.0%, 15.0%, and 8.0% compared to the UCC, SR,
STOU, and MTOU, respectively. In both cases, we observed a min-
imal PAR with a trivial impact on the load with the proposed
TLDCA. The possible reason for the impact on the load is the herd-
ing problem, such as many requesting EVs are directed to charge
during the same low price period. Consequently, a multi-objective
analysis under the constraints of multiple domains is our plan in
the future.
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