
Received 16 September 2022, accepted 27 September 2022, date of publication 13 October 2022, date of current version 20 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3214516

Online Illumination Learning for Interactive
Global Illumination in Augmented Reality
WONJUN LEE , PILJOONG JEONG , HAJIN CHOI , JINWOO KIM ,
AND BOCHANG MOON , (Member, IEEE)
School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Bochang Moon (bmoon@gist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT)
under Grant 2020R1A2C4002425; and in part by the Ministry of Culture, Sports and Tourism and Korea Creative Content Agency under
Project R2021080001.

ABSTRACT Augmenting virtual objects into a real scene requires estimating the scene illumination so
that the augmented objects can become visually coherent with real objects. We propose an online technique
that learns the illumination from image sequences captured by a hand-held device. We approximate the
illumination with multiple linear models, and the coefficients and bandwidth parameters of the models
are updated progressively in a data-driven way. Our online learning enables us to seamlessly integrate
virtual objects into a real scene by rendering the objects with the estimated lights. We demonstrate that
our framework can provide a high-quality global illumination result in augmented reality at interactive rates.

INDEX TERMS Augmented reality rendering, interactive augmented reality, illumination learning.

I. INTRODUCTION
Photorealistic rendering is a necessity to give an immersive
experience to users. In augmented reality (AR), such photo-
realism can be obtained by augmenting virtual objects into
a real scene while maintaining consistent lighting for real
and virtual objects. However, it requires solving the techni-
cal challenge of rendering virtual objects while simulating
light interaction between the virtual and real objects. Global
illumination algorithms (e.g., path tracing [16]), which
can accurately simulate such light interaction, have been
well-established in the graphics field. However, a necessary
input to these light transport algorithms, i.e., the illumination
of a real scene, is typically unknown, and thus it should be
estimated for a realistic rendering in AR.

A conventional approach for estimating the scene illu-
mination is to capture incoming light at the place where a
virtual object places, using a hardware device (e.g., light
probes) [10]. This approach has been widely adopted in
offline applications (e.g., movies) as it allows for accurate
capturing of incident radiance at a specific point. However,
determining the exact locations of virtual objects in advance

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

can be infeasible when objects move, which is typical in
interactive scenarios.

A lightweight approach for interactive AR applications
is to estimate an environment map from a single image,
representing the incident radiance at the locations where
virtual objects are placed [21]. For example, one can render
a virtual object efficiently using direct lighting with the map.
However, its rendering quality can be degraded since a global
illumination method requires complete light information that
varies spatially.

Simultaneous localization and mapping (SLAM) based
methods [26], [30], [37] provided an effective means to
capture spatially varying illumination. Specifically, these
methods often assumed that surfaces in a real scene have
Lambertian reflectance and then estimated outgoing radiance
on surfaces from color and depth image sequences captured
by an RGBD camera. The SLAM-based techniques allow a
global illumination to estimate radiance at an arbitrary point
(not a specific point) on real objects thanks to the captured
spatially varying illumination. Nevertheless, estimating the
scene illumination accurately and producing an interactive
AR rendering result remain technical challenges.

This paper proposes a SLAM-based technique that
estimates the spatially-varying scene illumination more

109498 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5811-5754
https://orcid.org/0000-0001-7579-2047
https://orcid.org/0000-0001-9488-9514
https://orcid.org/0000-0001-6159-9350
https://orcid.org/0000-0003-3142-0115
https://orcid.org/0000-0001-5161-9311

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 1. Our technique produces interactive AR rendering results using a global illumination technique that simulates light interreflections between
real and virtual objects using the scene illumination estimated by our online learning. The example results are generated using a small number of
samples per pixel (spp). We use the Disney BSDF [4] for glossy materials of David and Buddha models (in the left and right figures), a mirror material for
Lucy and Sphere models (in the middle and right figures), and a diffuse material for the Bunny (in the right figure).

accurately from RGBD image sequences. As our main
technical contribution, we present an online algorithm that
learns the scene illumination progressively from a stream-
ing input (RGBD images). Our illumination learning allows
augmenting virtual objects seamlessly into a real scene,
even when the objects are highly glossy or specular, thanks
to our high-quality estimation on the scene illumination,
as shown in Fig. 1. Our main contributions are summarized as
follows:

• We approximate the scene illumination with multiple lin-
ear models, each of which estimates outgoing radiance in
a local scene area. The linear models, which approximate
the radiance, are created and updated progressively in a
data-driven manner, and we perform this online learning
at an interactive rate.

• We design an interactive global illumination that effec-
tively renders augmented virtual objects using estimated
local models.

We demonstrate that our online learning approximates the
scene illumination more accurately and produces higher AR
rendering quality than the state-of-the-art methods [22], [30].
Also, our online method provides an interactive visualization
of our estimated scene illumination to a user as live feedback
and allows a user to efficiently rescan only modified areas
when the scene illumination is locally changed.

II. RELATED WORK
Achieving lighting consistency between real and virtual
objects in an AR rendering scenario requires estimating the
scene illumination (Sec. II-A) and conducting a global illu-
mination that considers the light interaction between real and
virtual objects (Sec. II-B). We refer to a recent survey [19] for
a comprehensive overview.

A. CAPTURING SCENE ILLUMINATION
We categorize the previous methods, which capture the scene
illumination, into three groups: 1) measured illumination

using light probes, 2) estimated illumination, and 3)measured
illumination using an RGBD camera.

1) MEASURED ILLUMINATION USING LIGHT PROBES
This approach measures incoming radiance at specific points
using a specialized device (e.g., light probes) and stores
the measured light into images, e.g., environment maps.
A seminal work [10] demonstrated that high-quality AR
rendering results could be produced due to accurate captur-
ing of incident radiance at the positions where light probes
are placed. It has also been studied to exploit multiple
environment maps so that incoming radiance at a query
point can be interpolated using the maps [7], [34], [35],
[36]. Furthermore, Alhakamy and Tuceryan [3] estimated
the direction of direct illumination from a panoramic video
and approximated indirect illumination using a cube map.
However, these approaches can be limited to offline scenarios
where the locations of augmented virtual objects are at least
approximately predetermined.

2) ESTIMATED ILLUMINATION
Estimation approaches predict incoming radiance at the
points of interest from observed images even without spe-
cialized devices. Notable examples are deep learning-based
approaches [14], [21], which infer an HDR environment
map from a low dynamic range (LDR) image. The esti-
mated environment map represents incoming radiance at a
specific point, and one can render virtual objects using direct
lighting with the environment map. These approaches are
simple, but obtaining high-quality rendering results can be
challenging since a single map cannot appropriately rep-
resent spatially varying illumination. Recent learning-based
approaches [25], [13], [15], [22] demonstrated that a neu-
ral network could estimate spatially varying illumination
(not only a single map) from a single RGB image. These
learning-based techniques demonstrated impressive results
even from a single image, but accurately recovering a com-
plete illumination of a real scene is still challenging since

VOLUME 10, 2022 109499

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

it should predict unobserved illumination using only limited
information (e.g., a single image).

3) MEASURED ILLUMINATION USING AN RGBD SENSOR
An alternative to the aforementioned techniques is directly
capturing spatially varying illumination using a sequence of
images (not a single image) from an RGBD sensor. This
approach takes advantage of SLAM algorithms (e.g., [20],
[27]) that provides an effective means to capture illumination
samples (i.e., globally registered point clouds) as well as
geometries of a real scene from an RGBD image sequence.
Existing approaches [26], [30], [37], which rely on SLAM
methods, mainly focused on building a data structure that
compactly represents the scene illumination from observed
point clouds. For example, Meilland et al. [26] constructed
an environment map from a set of illumination samples
at a given point and exploited the map for AR render-
ing. Zhang et al. [37] represented the scene illumination with
HDR textures by reprojecting observed illumination samples
onto the estimated surfaces of a real scene. Rohmer et al. [30]
proposed a sophisticated process of estimating surface nor-
mals and HDR colors of samples in a globally registered
point cloud so that these enriched samples can be transformed
into light representations (e.g., an environment map or voxel
volume).

Analogously to the prior methods, our method relies on
a SLAM algorithm that estimates a camera location and
geometries of a real scene. However, unlike the previous
techniques, we do not record all point samples for learning
the scene illumination. Our technique approximates the scene
illuminationwith a set of linearmodels and refines themodels
progressively and adaptively while minimizing our estima-
tion errors via an online optimization. Our online process
can also provide an interactive visualization of the estimated
illumination to a user who scans an indoor scene.

B. RENDERING ALGORITHMS FOR AR
Integrating virtual objects into a real environment requires
a rendering framework that considers light interaction
between virtual and real objects using estimated scene illu-
mination. Differential rendering [10] is a widely adopted
framework that accounts for the illumination changes intro-
duced by augmenting virtual objects. Given the framework,
designing a global illumination technique, which efficiently
computes the illumination changes, has been a technical
problem, especially for an interactive rendering. For exam-
ple, Knecht et al. [18] constructed two sets of virtual point
lights (VPLs), each of which represents the illumination
of a real scene with and without virtual objects, respec-
tively. Then, the difference between the rendering results
from each set is added to the observed image. In [11]
and [12], the scene illumination was discretized using a
voxel-based data structure, and the illumination change for
a differential rendering was computed interactively using a
real-time rendering method, voxel cone tracing (VCT) [8].
Recently, Rohmer et al. [30] demonstrated that VCT based

TABLE 1. Notations used throughout the paper.

AR rendering could be performed using a voxel-based rep-
resentation where each voxel contains an averaged value of
illumination samples captured by a mobile device.

Our method also provides an interactive rendering result,
but unlike the existing methods, we demonstrate that our light
representation allows exploiting a general global illumination
technique (i.e., path tracing [16]) that can accurately simulate
various lighting effects.

III. OVERVIEW OF OUR FRAMEWORK
We target a typical AR scenario where a user navigates an
indoor space (e.g., a room) with a hand-held camera. We take
a sequence of color images and depths (i.e., RGBD images)
as input. Fig. 2 illustrates an overview of our framework.
Given the streaming input from amobile device, we propose a
new online learning technique that creates and updates linear
models, each of which approximates the scene illumination
in a local area (Sec. IV). Once the light learning phase
completes, we start a rendering phase where virtual objects
are seamlessly augmented into a real environment (Sec. V).
Table 1 summarizes our notations used throughout the paper.

A. ASSUMPTIONS
Given the AR scenario, we assume the surfaces (e.g., triangu-
lar meshes) of a real scene are static, and thus we pre-compute
the geometries and provide those to our learning as input.
Thus, we suppose the surfaces of the scene have Lambertian
reflectance, i.e., LRo (x, ω) = LRo (x). For the sake of brevity,
we will omit the direction ω when we refer the outgoing
radiance LRo (x).

B. MOTIVATION FOR ONLINE LEARNING
One may think that an offline process cannot be much dif-
ferent from online learning in practice, as we assume that
the geometries of a real scene are static. The illumination,
however, can change over time, even when real objects do
not move. Fig. 3 illustrates an example scenario where our
method adapts the estimated scene illumination for modified
local areas (e.g., the poster on the right side in Fig. 3 (c)).
This example indicates that, unlike offline learning, one can
rescan only a local region where illumination is modified if
the given space is scanned before.

IV. ONLINE ILLUMINATION LEARNING
Wepropose an onlinemethod that incrementally estimates the
scene illumination LRo (x) from an RGBD image sequence to

109500 VOLUME 10, 2022

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 2. Our framework consists of two main stages: illumination
learning (top) and AR rendering (bottom). We take observed illumination
samples as input on the learning stage and then approximate the
illumination of a real scene with multiple local models whose parameters
are progressively updated. Once the illumination learning completes,
we provide realistic AR rendering results to users using the estimated
illumination in the rendering phase.

FIGURE 3. An example scenario for our online learning, where the input
illumination (a) is partially changed to another (c). Our online learning
approximates the input illumination closely and shows a nearly
converged result (b). When a small part of the input changes (c), our
method adapts the existing approximation for the changes (from (d) to
(f)), without retraining models from scratch.

render virtual objects using the estimated radiance. Suppose
we have n input samples (x1, y1), . . . , (xn, yn), where yj is
the j-th observed radiance (i.e., a pixel color) at xj ∈ �R

(j ∈ {1, . . . , n}). We shall treat yj as a one-dimensional
value since we process each color channel independently and
assume an additive noise model:

yj = LRo (xj)+ εj, (1)

where εj is a bounded error term whose expectation is zero,
i.e., E[εj] = 0. Intuitively, our learning problem is to con-
struct an approximate function L̂Ro (x), which is an estimate of
the unknown LRo (x), from the observed input samples, so that
outgoing radiance at a query point xq can be utilized in a
rendering phase. To this end, we employ the local regres-
sion [6], [31] that locally approximates our target function,
outgoing radiance, with multiple linear models. Let us denote

the coefficients of the linear model at position xc as βc that
includes the intercept and slopes (i.e., gradients) of themodel.
The linear model centered at xc approximates the radiance in
a neighbor position xq near the xc, and an estimated radiance
ŷc(xq) using the c-th linear model is computed as

ŷc(xq) = βTc

[
1
xq

]
. (2)

The coefficients of the model in the equation above
are estimated by minimizing a weighted sum of squares∑n

j=1 wc,j
(
yj − ŷc(xj)

)2. We define the weight wc,j allocated
to the j-th sample as:

wc,j = exp

(
−
||xj − xc||2

2b2c

)
, (3)

where bc is a bandwidth parameter that controls the size of the
area covered by the model. We will present our optimization
that adjusts the parameter per model in Sec. IV-B.

A query point xq, where wewill infer an estimated radiance
in AR rendering, can be covered by multiple linear models.
As a result, we linearly interpolate the radiance values esti-
mated from the neighboringmodelsN (xq) of xq, to determine
the final estimate:

L̂Ro (xq) =
1
Wc

∑
c∈N (xq)

wc,qŷc(xq), (4)

where Wc is the normalization term, Wc =
∑

c∈N (xq) wc,q.

The estimated radiance L̂Ro (xq) on a surface point xq will be
exploited in our AR rendering phase (Sec. V). Also, during
our learning phase, we perform the interpolation (Eq. 4) at
each pixel so that our intermediate results can be visualized
to a user interactively.

The presented regression technique can be considered con-
ceptually simple, but two major challenges exist for our prob-
lem. First, the model parameters βc should be updated online
since we aim to process streaming input from a hand-held
device, and thus the number of samples n is a variable (not
a fixed value). Second, the bandwidth parameter bc should
be adapted in a data-driven way so that its approximation
error, e.g., a difference between L̂Ro (x) and unknown LRo (x),
can be minimized. In the subsequent sections, we propose an
online learning technique that exploits recursive least squares
(RLS) [24] and online parameter learning [32] while tackling
the technical challenges.

A. ONLINE CREATION AND UPDATE OF MODELS
This section explains howwe create and update linear models
in our online scenario, where a newly observed sample (xn+1,
yn+1) is given progressively, as illustrated in Fig. 4.

1) ONLINE CONSTRUCTION OF MODELS
As a model can only cover a local area near the model,
we should construct multiple models so that the sampling
domain �R, where LRo (x) at x ∈ �R is defined, can be
fully covered. We create a new model when the existing

VOLUME 10, 2022 109501

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 4. An illustrative figure for our model creation and update. Given
a new sample at xn+1, we search neighbor models N (xn+1) within a
search radius (denoted as dashed circles). If there are no such models,
we create a new model at xn+1 (a). Otherwise, we update the parameters
of the neighboring models (b).

models cannot cover a new sample (i.e., (n + 1)-th sample),
analogously in [32]. Specifically, given a new sample (xn+1,
yn+1), we search models nearby xn+1 within a search radius
(set to 0.2 meters) and check if their weights wc,n+1 to the
sample are larger than a predefined threshold ε = 0.1. When
we find the models that satisfy the condition, the respective
models are updated using the new sample. We refer to the
models as neighboring models N (xn+1) of the new sample
xn+1. If we fail to find a neighbor (i.e., N (xn+1) = ∅),
we create a new model at the point xn+1, as it indicates that
the sample comes from an unobserved area.

2) LOCAL TRANSFORMATION
Before updating the neighboring models of a new sample,
we apply a local transformation into the xn+1. Learning the
model coefficients on a global space (i.e., a world coordinate)
can be a straightforward option, but this approach can become
inefficient for our problem since we can observe the data
xn+1 on real surfaces (not in free space). Fig. 5 illustrates
our local transformation that consists of translation, rotation,
and projection. The local transformation varies per model,
and thus we perform the transformation for all neighboring
models N (xn+1) and update the neighboring models inde-
pendently with the transformed sample. Let us denote the
transformed point by x̄n+1 ∈ R2. Theweight functionwithout
the transformation (Eq. 3) is converted into a compact form:

wc,j ≡ exp

(
−
||x̄j||2

2b2c

)
. (5)

3) ONLINE UPDATE OF MODEL COEFFICIENTS
Once we transform the new sample, we update the coef-
ficients β of neighboring models N (xn+1) using recursive
least squares (RLS) [24]. We will drop the subscript c in
the model coefficients (and other variables) for brevity since
our update is performed for each model independently. Also,
we add superscript n + 1 into the coefficients (e.g., βn+1)
to explicitly denote the updated values given the (n + 1)-th
sample. We adopt the following RLS update rules:

Pn+1 =
1
λ

(
Pn −

Pnx̃n+1x̃Tn+1P
n

λw−1n+1 + x̃Tn+1P
nx̃n+1

)
, (6)

βn+1 = βn + wn+1Pn+1x̃n+1
(
yn+1 − (βn)T x̃n+1

)
. (7)

FIGURE 5. Illustration of a local transformation. We translate xn+1 to the
local space where xc is the origin (b), then the translated point is rotated
with a rotation operator R(·) that maps a surface normal Nc at the point
xc into [0,0,1]T (c). Lastly, the transformed vector is projected onto a xy
plane (d).

FIGURE 6. Visualization of the estimated illumination results using our
adaptive bandwidth (b) and a constant bandwidth (c), given example
input images (a). We adjust the constant bandwidths (i.e., globally fixed
numbers) so that the numbers of its models become similar to those of
our adaptive bandwidth selection. Our adaptive selection approximates
high-frequency details in the input illumination (i.e., RGB images) much
more accurately than the alternative.

where x̃Tn+1 = [1, x̄Tn+1] and λ is a forgetting factor that is
typically set to a number close to one. For example, we set λ
to 0.97 initially and increase the value up to 0.9999 over time
using an interpolation. Pn+1 is an inverse covariance matrix
of size 3× 3.

For the recursion rule above, we set β0 and P0 to the zero
vector and 105I (I is the identity matrix) respectively when
those are initialized, i.e., when a model is created. Note that
this update is performed whenever we observe a sample, and
thus this process is fully online.

B. BANDWIDTH OPTIMIZATION
While our online update rules enable us to estimate the model
coefficients progressively, it requires allocating a proper
weight wi to the i-th sample. We will omit a model index
c from variables (e.g., wi=wc,i) for brevity, as the band-
width optimization is conducted per model independently.
We present a local optimization that adjusts the bandwidth
parameter b used in the weight function (Eq. 5) so that local
models can approximate the radiance LRo (x) closely. To this
end, we define an objective function for our optimization as:

J ≡
n+1∑
i=1

wi
W

∥∥yi − ŷi(x̄i)∥∥22︸ ︷︷ ︸
J1

+ γ1(βn+1)T (βn+1)︸ ︷︷ ︸
J2

+ γ2b−4︸ ︷︷ ︸
J3

, (8)

109502 VOLUME 10, 2022

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 7. An example result of our differential rendering that adds the
difference between two rendering results ((b) and (c)) without and with a
virtual object, into an observed background (a) so that a final AR
rendering output (d) can be produced.

where W =
∑n+1

i=1 wi. We seek to estimate the optimal
bandwidth that minimizes the cost function, and the optimal
will be used for the RLS update rules (Eq. 6 and 7).

In Eq. 8, J1 is a weighted sum of the residual errors and J2
is a regularization term that prevents the model coefficients
from being too large. Also, we include a penalty term J3 that
prevents the bandwidth from becoming a very small value
(and thus results in overfitting). γ1 and γ2 are the parameters
that control the relative importance of J2 and J3 in the cost
function above. We set those values to one and 1E − 10,
respectively.We solve the optimization using a stochastic gra-
dient descent [32] (see the supplemental report for details).

Fig. 6 shows an example result with and without our
bandwidth optimization. As seen in the figure, the adap-
tive bandwidth selection allows our technique to pre-
serve high-frequency details more accurately than a simple
alternative that uses a constant bandwidth.

V. AR RENDERING USING ESTIMATED ILLUMINATION
Once our online learning generates a set of linear mod-
els (Sec. IV), we can estimate the radiance L̂Ro (xq) at a
query point xq. It allows us to exploit a global illumination
technique that renders virtual objects using the estimated
scene illumination. Our rendering is built upon the differential
rendering framework [10], which combines a (vectorized)
background image IB (Fig. 7 (a)) (i.e., an image observed
from a device) with a differential rendering result using vir-
tual objects:

IF = (1− a)⊗ IB + a⊗
(
IR+V − IR

)
, (9)

where⊗ is the element-wisemultiplication and IR (illustrated
in Fig. 7) is a rendered image in a local region�L around the
space �V where virtual objects are augmented. We separate
the space �R of a real scene into two disjoint spaces, local
�L and distant areas �D, analogously in [10]. Specifically,
we compute the bounding boxes of virtual models and enlarge
the boxes slightly (e.g., 5 to 15 percent). Then, we define the
points within the extended boxes as the local region �L . a
is a vector that contains alpha-masking values that determine
blending factors between IB and (IR+V − IR). We generate
primary rays from the camera per pixel and check whether the
intersection points between the rays and the scene are within
the local region�L . Then, the alpha-masking value for a pixel
is set to the fraction of how many rays intersect with the local

FIGURE 8. Rendering results without and with our HDR compensation.
We simulate our illumination learning and AR rendering from LDR
samples (e.g., clamped colors) in a virtual space. The Cornell box is a
simulated real scene, and the sphere is an augmented virtual object. Our
compensation allows us to recover the illumination effect (the shadow
below the object) lit by an HDR area light.

area. For example, when the intersection points of all rays are
within the region, the value is set to 1.

We assume that the radiance in the �D is not affected
by augmenting virtual objects. On the other hand, the
radiance in the �L should be amended since the virtual
objects can change the illumination (e.g., shadows below the
virtual object). Therefore we compute an additional rendering
image IR+V (Fig. 7 (c)) in the local area, including virtual
objects. The rendering difference caused by augmenting vir-
tual objects is added to the background image IB to produce
the final image IF (Fig. 7 (d)).

A. HDR COMPENSATION AND REFLECTANCE ESTIMATION
Illuminating virtual objects through the differential rendering
framework (Eq. 9) requires estimating the reflectance of sur-
faces in the local area �L . We assume the reflectance is the
same for all points in the �L , similarly to [10], and denote
it as ρ. Also, we should compensate for an energy loss in a
saturated region of the observed image. Note that a hand-held
device typically does not produce a high dynamic range
(HDR) image, and thus the rendering results of virtual objects
look darker than other objects in a real scene unless we com-
pensate for the energy loss in saturated image regions (e.g.,
pixels on light sources). Specifically, we check all estimated
models if a model is (potentially) saturated by testing whether
its intercept term (i.e., the first element in the coefficients βc)
is higher than a threshold λmax (e.g., 0.95) that is close to
the maximum intensity (1.0 in our setting). For such models,
we increase their intercept terms into λmax + αloss.
As a result, we should estimate two global parameters,

ρ and αloss. A commonly adopted approach is to find the
optimal parameters that minimize the difference between
the observed intensities (e.g., IB) and rendered results
(e.g., IR) while varying the parameters (e.g., [10], [37]).
We also formulate this problem into a similar minimization
problem:

ρ̂, α̂loss

= argmin
ρ,αloss

∑
p

∣∣∣∣IBp − πρnt
nt∑
j=1

F
(
L̂Ri (xp, ωj)

)
(ωj · Np)

∣∣∣∣,
(10)

VOLUME 10, 2022 109503

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

where the function F is defined as

F(·) =

{
L̂Ri (xp, ωj) if L̂Ri (xp, ωj) < λmax

λmax + αloss otherwise.
(11)

In Eq. 10, we compute the sum of the differences between
observed intensities and rendering values by casting nt pri-
mary rays. L̂Ri (xp, ωj) is the estimated incident radiance at
xp with direction ωj. Specifically, we compute the point xp
and normal Np by casting a primary ray that passes the pixel
position p from the camera origin. Also, we cast a ray from xp
with direction ωj and find the intersection point xq between
the ray and scene. Then, we estimate the radiance using
L̂Ro (xq) at the query point xq (Sec. IV).
We solve the minimization problem with constraints (0 ≤

ρ ≤ 1 and λmax+αloss ≥ 1) using a non-convex optimizer [1].
Note that we assume that a real scene is static, and thus
we estimate the parameters only once when the positions
of virtual objects are determined. In our experiments, the
computational cost of estimating both parameters (ρ and
αloss) took approximately 0.2 secs when nt = 2048. Fig. 8
shows a rendering result with and without our compensation
for an energy loss. We produce the example figures using a
virtual test since a ground truth image cannot be obtained
in a real test. Specifically, we have employed a light trans-
port algorithm, path tracing, in a physically-based rendering
framework (PBRT [29]) for the test, which produces ground
truthHDR radiance samples.We have clamped theHDR sam-
ples to generate LDR samples and fed the clamped samples to
our method, and then generated local models using the LDR
samples and computed their HDR compensation. As shown
in the figure, the rendering result using our compensation is
more accurate than the one without the compensation.

B. GLOBAL ILLUMINATION WITH ESTIMATED
ILLUMINATION
Once the parameters (ρ̂ and α̂loss) are determined, our final
task is to provide a realistic rendering result to a user at an
interactive rate by adding the differential term (IR+V − IR)
into the observed image IB (see Eq. 9). To this end, we employ
a general global illumination technique, path tracing [16].
To adopt the light transport algorithm, we should define the
place where we can query for a radiance value L̂Ro (xq), i.e.,
a weighted sum of linear models (Eq. 4). Note that we assume
the illumination of a real scene does not change in the distance
region �D, and thus we perform the radiance query L̂Ro (xq)
only at xq ∈ �D.
Given the assumption, we generate multiple primary rays

from the camera per pixel and trace those rays recursively
until those rays intersect with the �D. Note that we do not
need to trace secondary rays when the intersection points of
the rays are in the distance region �D since the area’s illumi-
nation is not affected by augmented virtual objects based on
the assumption. We run this modified path tracing using our
radiance estimation twice for generating IR and IR+V , which
are rendering results without andwith virtual objects.We then
add the difference (IR − IR+V) into a background image IB.

FIGURE 9. Interactive visualization results of our estimated illumination.
Our method provides intermediate learning results to a user as live
feedback during learning.

FIGURE 10. Visualization results of a voxel volume ((a) and (b)) and our
estimated illumination (c). We train both methods using the same image
sequence and show estimated illumination results at a specific frame.
The voxel volume (a) shows discretization artifacts since it uniformly
divides a given space. It is potentially possible to reduce the artifacts by
increasing the granularity of volume (b), but it significantly increases its
memory usage. On the other hand, our method (c) with a much smaller
overhead approximates high-frequency details adequately.

As we aim to achieve an interactive rendering, we can use
only small numbers of samples per pixel (e.g., two samples).
As a result, our final image IF can be corrupted by noise.
To eliminate the noise, we apply a real-time denoiser [9]
together with a temporal reprojection [2] into the noisy image
IF . We refer to a survey [39] that provides a comprehensive
overview on denoising.

VI. IMPLEMENTATION DETAILS
We have implemented our online learning and rendering
using CUDA and the Optix library [28].

A. HARDWARE CONFIGURATION
A server-client configuration, which communicates through a
wireless network, has been used to implement our framework.
We have used an iPad with a depth sensor (Structure Sensor
MK1) to acquire RGBD images for the client. For the server
where we perform our learning and rendering, we have used

1https://structure.io

109504 VOLUME 10, 2022

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 11. Computational and memory overheads for our online
illumination learning for the scenes in Fig. 9.

a single desktop PC with an AMD threadripper and NVIDIA
TITAN RTX.

B. GEOMETRIES OF A REAL SCENE
We have constructed geometries of a real scene before we
learn the illumination of the scene, and the geometries are
given to our learning and rendering as input. We have esti-
mated the trajectory of the camera using the built-in SDK in
the Structure Sensor and generated a triangular mesh using
Open3D [38]. We observed that the reconstructed mesh could
have erroneous holes caused by depth measurement failure
on specular objects (e.g., glasses or mirrors). We manually
filled the holes, analogously in [37]. As the geometries are
prepared before running our algorithm, it is needed to align
the camera pose in our illumination learning and rendering
phase with the constructed mesh. To this end, we have built
a SLAM map using the existing SLAM technique [20] and
performed re-localization to identify the initial camera pose
at the first frame. We then have used the Structure SDK to
estimate a relative change of the camera pose for the other
frames.

C. POINT CLOUD GENERATION IN RUNTIME
In our illumination learning phase, we take an RGBD input
image where each pixel is converted into a color sample
aligned with a world coordinate. It is straightforward to con-
vert a depth value into the corresponding world coordinate,
using the estimated camera pose from the Structure SDK.
However, we observed that the computed world coordinates
could be erroneous due to depth measurement errors. To mit-
igate this problem, we have instead generated a virtual ray
from the estimated camera origin to each pixel center, then
found an intersection point between the geometries and the
ray, analogously in [37].

D. DATA STRUCTURE FOR THE NEAREST
NEIGHBOR SEARCH
To find the nearest local models from a given point, we need
an acceleration data structure that contains the models.

FIGURE 12. Comparisons with environment mapping (EM) that uses an
environment map captured at a specific position (denoted by the blue
circle A in (f)). EM can produce an accurate result when the virtual object
is placed at the position where its map is captured, but it produces an
erroneous result (a) when the object is augmented at a different position
(the red circle B in (f)). On the other hand, our rendering output (b) is
similar to the reference (c) that is rendered by EM, where we use the
accurate map captured at the location of the virtual object. The visualized
errors ((d) and (e)) are computed using the reference image (c).

We have used a uniform grid containing corresponding local
models whose centers are within the grid.

VII. RESULTS
We have tested our online illumination learning for three
indoor scenes (shown in Fig. 9) and generated AR rendering
results by augmenting virtual objects with different materials
into the scenes. We compare our illumination learning with
a voxel-based representation that discretizes a given scene
uniformly. Specifically, we have recorded all samples that
our online method took as input and constructed the voxel
volume where each voxel contains an averaged illumination
value. Note that our online method does not need to store all
samples. We store only local models and update the mod-
els progressively without keeping samples. We have given
the same point cloud to the baseline for a fair comparison.
We have also adjusted the volume resolution (i.e., the size of
each regular volume) so that its memory footprint becomes
higher than our method.

For rendering comparisons, we compare our AR rendering
with the state-of-the-art [30], which uses an extended voxel
cone tracing that additionally generates secondary cones to
support glossy and specular materials. We have also used the
clipmap texture [33] to represent its voxel volume efficiently.
We also compare our method with a recent deep learning
technique [22] using the public source code provided by the
authors. We apply our post-processing (e.g., denoising) to
their results for a fair comparison.

A. ONLINE LEARNING RESULTS WITH
INTERACTIVE FEEDBACK
Fig. 9 shows both observed images and our estimated illu-
mination for the three scenes. Note that our online learn-
ing allows visualizing illumination (i.e., our intermediate

VOLUME 10, 2022 109505

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 13. Equal-time comparisons with two recent methods, Li et al. [22] and Rohmer et al. [30] under low- and high-quality settings. We use diffuse
materials for Buddha and Bunny models, a specular material (e.g., a mirror) for the Sphere, and a glossy material for the Lucy model. The learning-based
method [22] does not capture reflected scene details on a mirrored sphere (in the top and bottom rows) and produces unnatural rendering results for the
diffuse object (i.e.., the Buddha model). The existing SLAM-based method [30] preserves the reflected details but suffers from discretized artifacts caused
by its voxel-based representation. Also, it does not handle the reflections on a glossy surface (i.e., the Lucy model) properly and produces noticeable
artifacts. On the other hand, our method generates high-quality rendering results with much fewer visual artifacts, thanks to our high-quality
representation of the scene illumination.

learning result at a frame) for a user during the learning
process, unlike offline methods (e.g., [37]). The live feedback
enables the user to identify problematic regions (blurry areas)
to be refined. The accompanying video includes our interac-
tive visualization results for the three scenes.

B. COMPARISONS OF ESTIMATED ILLUMINATION
In Fig. 10, we compare two estimated illumination results
between our method and a voxel-based representation (i.e.,
a voxel volume). The figure shows that our method approx-
imates high-frequency details adequately, even with lower
memory usage, compared to the regular structure (voxel
volume). Technically, our method allocates more models into
high-frequency regions adaptively while maintaining a sparse
number of models in low-frequency parts. The technical
difference makes our method more memory-efficient and
accurate than the well-known structure.

C. OVERHEAD OF OUR LEARNING
Fig. 11 shows our memory consumption and runtime over-
head. Given the three test scenes, our learning times per frame
are 45.0 ms, 41.8 ms, and 51.9 ms on average, respectively,
and the visualization for the live feedback took approximately
5.0 ms. Additionally, the minimum and maximum learning
times per frame are 17.0 ms and 77.4 ms for Room 1, 23.2 ms
and 71.2 ms for Room 2, and 19.2 ms and 92.0 ms for
Room 3, respectively. Our memory consumption increases

over time as we dynamically create models, mainly when
an input image contains an unobserved area. However, the
increase rate in memory overhead becomes small as we go
to the end of the capturing sequences. The final memory
overheads at the end of the sequences are not significantly
high (364 MB, 416 MB, and 373 MB for the scenes) if we
consider the number of input samples (i.e., the total number
of pixels from more than 1K input images). Our compu-
tational overheads for illumination learning can be higher
than the voxel-based alternative [30] (e.g., 5 ms per frame
given a 5123 voxel resolution) since we dynamically create
and update our local models, unlike the fixed approach. Nev-
ertheless, our data-driven learning approximates the scene
illuminationmore accurately, given a similar memory budget,
as shown in Fig. 10.

D. ANALYSIS OF OUR SPATIALLY-VARYING ILLUMINATION
We analyze the spatially-varying nature of our learning pro-
cess with the conventional environmental maps generated by
measuring surrounding illumination at specific points using a
physical device. We generated point clouds using a 3D scan-
ner (Matterport Pro2 [5]). Note that we use a point cloud from
a mobile device for all the other tests, and this test using a 3D
scanner is used only for the analysis, which requires compar-
ing our learned illumination and environmental maps at the
same location. In Fig. 12, we render a virtual sphere using
our estimated illumination and environmental mapping (EM).

109506 VOLUME 10, 2022

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

FIGURE 14. Failure cases of the SLAM-based methods (voxel volume and
ours). Both techniques show some misaligned artifacts in their estimated
illumination due to erroneously estimated camera poses by a SLAM
technique.

We capture environmental maps at predefined positions using
the Matterport scanner to generate the EM results ((a) and
(c) in Fig. 12). As shown in the figure, EM produces an erro-
neous result when a virtual object is augmented at a location
different from where incident radiance is captured. On the
other hand, our method approximates the scene illumination
that varies spatially and produces a rendering output close to
the reference.

E. EQUAL-TIME RENDERING COMPARISON
In Fig. 13, our method is compared to state-of-the-art
techniques, Li et al. [22] and Rohmer et al. [30], given
low- and high-quality settings. For the equal-time compar-
isons, we adjust the number of samples per pixel (spp) for
both our method and Li et al. [22] and vary the number of
secondary cones (sc) for Rohmer et al. [30].

The environmental mapping [22], which uses an estimated
illumination by a neural network, can be a simple AR ren-
dering option since it infers the map only from an observed
single image. However, its rendering results are not accurate,
especially when estimated scene illumination can be directly
visible (e.g., reflected virtual objects on specular materi-
als). Also, the method produces unnatural rendering results
on a diffuse object (the Buddha model) while containing
noticeable noise. Technically, it is challenging to correctly
estimate the scene illumination since the technique infers an
unobserved illumination from limited information (a single
image).

The SLAM-based techniques (ours and Rohmer et al. [30])
produce more plausible results than the environmental
mapping, as these methods exploit the observed (scanned)
scene illumination in their illumination learning stages.
Nonetheless, the previous technique shows discretization
artifacts on the mirrored ball (in the top and bottom rows
of the figure) caused by its voxel-based approximation for
the scene illumination. Besides, it does not correctly han-
dle the interreflections between virtual objects (e.g., see the
visual artifacts on the Lucy model with a glossy material
in the figure). On the other hand, our method captures the
reflected high-frequency details (both real and virtual objects
reflected on the specular object) appropriately without notice-
able visual artifacts. Besides, our light representation allows
us to use a full global illumination solution (i.e., path trac-
ing) that accurately simulates the interreflections between
virtual objects. It results in high-quality AR rendering when

augmentingmultiple virtual objects (e.g., the second and third
scenes in the figure).

VIII. DISCUSSIONS AND FUTURE WORK
A. OUR ONLINE ILLUMINATION LEARNING
Our learning framework progressively approximates the illu-
mination using a streaming RGBD sequence from a mobile
device, allowing a user to refine the areaswhile showing inter-
mediate learning results dynamically. The proposed online
framework is able to produce a high-quality approximation of
the scene illumination while maintaining interactive learning
performance (less than 100 ms) per frame and moderate
memory overheads (about 400 MB) for the tested indoor
places.

Our online learning allows a user to easily update the pre-
captured scene illumination since one can capture only the
modified regions instead of conducting the whole learning
process, as demonstrated in Fig. 3.

Our current framework, however, still requires capturing
all necessary scene parts when the scene geometries are
modified since we pre-compute the geometries of the scene
(in Sec. VI). An ideal online framework would support a
complete online learning process to perform the learning and
AR rendering simultaneously. Still, a technically unresolved
problem in our framework is handling dynamic geometries
of the real scene. Extending our online learning and render-
ing system into a more comprehensive one, which supports
complete dynamic scenarios, would be a challenging but
important future research direction.

B. A TEXTURE-BASED ALTERNATIVE TO LOCAL MODELS
Onemay consider a texture-based approximation of the scene
illumination, which can be an alternative to our local model-
based approximation. For example, one can directly couple
the reconstructed scene geometries with texture maps where
a texel contains an illumination color at a specific position
(e.g., a vertex of the scene mesh). While this approach can
potentially approximate the illumination fruitfully when a
sophisticated offline optimization is performed (e.g., [37]),
it was unclear to perform such an approach for our online
scenario where a streaming input is given.

Our framework exploits a uniform grid as a data structure
for maintaining local models (in Sec. VI), but it requires a
nontrivial time to search for nearest neighbor models from a
query point. An interesting future work would be storing all
local models into more efficient image-space data structures
like texture maps once the learning process is complete since
it can accelerate our AR rendering process.

C. LIMITATIONS AND FUTURE WORK
One technical limitation of our method, like other
SLAM-based techniques, is that estimated illumination can
be affected by errors in the camera pose predicted using
a SLAM method, as shown in Fig. 14. The errors can
be observed in final AR rendering results given a specific

VOLUME 10, 2022 109507

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

scenario where reflected regions on virtual objects (e.g.,
a spherical mirror) correspond to the problematic region.

Our rendering framework supports an interactive AR expe-
rience but improving the rendering performance would be a
fruitful research direction. For example, the estimated local
models can be considered virtual point lights (VPLs) [17],
and thus VPL-based acceleration schemes that handle many
VPLs in a scalable manner (e.g., [23]) can be considered to
improve the rendering performance further.

Another limitation of our method is that we assume the
scene illumination is Lambertian. Thus it is not ideal for
capturing radiances on shiny objects, which vary accord-
ing to outgoing directions. Extending the local models into
higher dimensional ones that fully approximate the direc-
tional changes of the scene radiances would also be future
work.

IX. CONCLUSION
We have proposed a new illumination learning and rendering
framework for a realistic AR. Our online learning approx-
imates the illumination of an indoor scene with multiple
local models, and the parameters (i.e., the coefficients and
bandwidth parameter) of the models are updated progres-
sively. The proposed optimization allows approximating the
non-linear scene illumination closely even with low-order
functions (i.e., linear models). Besides, our online learning
allows users to check intermediate training results inter-
actively while capturing the scene illumination. We have
demonstrated that interactive rendering can be obtained using
a differential rendering, which takes advantage of the esti-
mated illumination using local models.

ACKNOWLEDGMENT
The authors thank the reviewers for the constructive com-
ments and the Stanford Computer Graphics Laboratory for
the virtual models (the David, Lucy, Bunny, and Buddha).

REFERENCES
[1] S. Agarwal, K. Mierle, and The Ceres Solver Team. (2022). Ceres Solver.

[Online]. Available: https://github.com/ceres-solver/ceres-solver
[2] T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki,

andS. Hillaire,Real-Time Rendering, A. K. Peters, Ed., 4th ed. Boca Raton,
FL, USA: CRC Press, 2018, ch. 12.2, pp. 522–523.

[3] A. Alhakamy and M. Tuceryan, ‘‘CubeMap360: Interactive global illumi-
nation for augmented reality in dynamic environment,’’ in Proc. Southeast-
Con, Apr. 2019, pp. 1–8.

[4] B. Burley and W. D. A. Studios, ‘‘Physically based shading at Disney,’’
in Proc. ACM SIGGRAPH Courses. New York, NY, USA: Association for
Computing Machinery, 2012, pp. 1–7.

[5] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, ‘‘Matterport3D: Learning from RGB-D
data in indoor environments,’’ in Proc. Int. Conf. 3D Vis. (DV), Oct. 2017.

[6] S.W. Cleveland and C. Loader, ‘‘Smoothing by local regression: Principles
andmethods,’’ in Statistical Theory and Computational Aspects of Smooth-
ing, W. Härdle and G. M. Schimek, Eds. Berlin, Germany: Physica-Verlag,
1996, pp. 10–49.

[7] M. Corsini, M. Callieri, and P. Cignoni, ‘‘Stereo light probe,’’ Comput.
Graph. Forum, vol. 27, no. 2, pp. 291–300, Apr. 2008.

[8] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, ‘‘Interactive
indirect illumination using voxel cone tracing,’’ in Proc. Symp. Interact.
3D Graph. Games (I D), Aug. 2011, p. 207.

[9] H. Dammertz, D. Sewtz, J. Hanika, and P. A. H. Lensch, ‘‘Edge-avoiding
À-trous wavelet transform for fast global illumination filtering,’’ in Proc.
Conf. High Perform. Graph. (HPG), 2010, pp. 67–75.

[10] P. Debevec, ‘‘Rendering synthetic objects into real scenes: Bridging tra-
ditional and image-based graphics with global illumination and high
dynamic range photography,’’ in Proc. 25th Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH). NewYork, NY, USA: Association for Com-
puting Machinery, May 2008, pp. 189–198.

[11] T. A. Franke, ‘‘Delta light propagation volumes for mixed reality,’’ in
Proc. IEEE Int. Symp. Mixed Augmented Reality (ISMAR), Oct. 2013,
pp. 125–132.

[12] T. A. Franke, ‘‘Delta voxel cone tracing,’’ in Proc. IEEE Int. Symp. Mixed
Augmented Reality (ISMAR), Sep. 2014, pp. 39–44.

[13] M.-A. Gardner, Y. Hold-Geoffroy, K. Sunkavalli, C. Gagne, and
J.-F. Lalonde, ‘‘Deep parametric indoor lighting estimation,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV). Los Alamitos, CA, USA: IEEE
Computer Society, Nov. 2019, pp. 7174–7182.

[14] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto,
C. Gagné, and J.-F. Lalonde, ‘‘Learning to predict indoor illumination
from a single image,’’ ACM Trans. Graph., vol. 36, no. 6, pp. 1–14,
Nov. 2017.

[15] M. Garon, K. Sunkavalli, S. Hadap, N. Carr, and J. Lalonde, ‘‘Fast
spatially-varying indoor lighting estimation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Los Alamitos, CA, USA: IEEE
Computer Society, Jun. 2019, pp. 6901–6910.

[16] J. T. Kajiya, ‘‘The rendering equation,’’ SIGGRAPH Comput. Graph.,
vol. 20. no. 4, pp. 143–150, Aug. 1986.

[17] A. Keller, ‘‘Instant radiosity,’’ in Proc. 24th Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH). Reading, MA, USA: ACM Press, 1997,
pp. 49–56.

[18] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wimmer,
‘‘Differential instant radiosity for mixed reality,’’ in Proc. 9th IEEE Int.
Symp.Mixed Augmented Reality. LosAlamitos, CA,USA: IEEEComputer
Society, Oct. 2010, pp. 99–107.

[19] J. Kronander, F. Banterle, A. Gardner, E. Miandji, and J. Unger, ‘‘Photore-
alistic rendering of mixed reality scenes,’’ Comput. Graph. Forum, vol. 34,
no. 2, pp. 643–665, May 2015.

[20] M. Labbé and F. Michaud, ‘‘RTAB-Map as an open-source LiDAR and
visual simultaneous localization and mapping library for large-scale and
long-term online operation,’’ J. Field Robot., vol. 36, no. 2, pp. 416–446,
2019.

[21] C. LeGendre, W.-C. Ma, G. Fyffe, J. Flynn, L. Charbonnel, J. Busch, and
P. Debevec, ‘‘DeepLight: Learning illumination for unconstrained mobile
mixed reality,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2019,
pp. 5911–5921.

[22] Z. Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker,
‘‘Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and SVBRDF from a single image,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 2475–2484.

[23] D. Lin and C. Yuksel, ‘‘Real-time stochastic lightcuts,’’ Proc. ACM Com-
put. Graph. Interact. Techn., vol. 3, no. 1, pp. 1–18, Apr. 2020.

[24] L. Ljung and T. Söderström, Theory and Practice of Recursive Identifica-
tion. Cambridge, MA, USA: MIT Press, 1983.

[25] S. Ma, Q. Shen, Q. Hou, Z. Ren, and K. Zhou, ‘‘Neural com-
positing for real-time augmented reality rendering in low-frequency
lighting environments,’’ Sci. China Inf. Sci., vol. 64, no. 2, pp. 1–15,
Feb. 2021.

[26] M. Meilland, C. Barat, and A. Comport, ‘‘3D high dynamic range dense
visual SLAM and its application to real-time object re-lighting,’’ in
Proc. IEEE Int. Symp. Mixed Augmented Reality (ISMAR), Oct. 2013,
pp. 143–152.

[27] R. A. Newcombe, A. Fitzgibbon, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, and S. Hodges, ‘‘KinectFusion:
Real-time dense surface mapping and tracking,’’ in Proc. 10th IEEE Int.
Symp. Mixed Augmented Reality, Oct. 2011, pp. 127–136.

[28] G. S. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D.McAllister, M.McGuire, K.Morley, A. Robison, andM. Stich, ‘‘OptiX:
A general purpose ray tracing engine,’’ ACM Trans. Graph., vol. 29, no. 4,
pp. 1–13, Jul. 2010.

[29] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering:
From Theory to Implementation, 3rd ed. San Francisco, CA, USA:Morgan
Kaufmann, 2016.

109508 VOLUME 10, 2022

W. Lee et al.: Online Illumination Learning for Interactive Global Illumination in AR

[30] K. Rohmer, J. Jendersie, and T. Grosch, ‘‘Natural environment illu-
mination: Coherent interactive augmented reality for mobile and non-
mobile devices,’’ IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 11,
pp. 2474–2484, Nov. 2017.

[31] D. Ruppert and M. P. Wand, ‘‘Multivariate locally weighted least squares
regression,’’ Ann. Statist., vol. 22, no. 3, pp. 1346–1370, Sep. 1994.

[32] S. Schaal and C. G. Atkeson, ‘‘Receptive field weighted regression,’’ ATR
Hum. Inf. Process. Laboratories, Kyoto, Japan, Tech. Rep. TR-H-209,
1997.

[33] C. C. Tanner, C. J. Migdal, and M. T. Jones, ‘‘The clipmap: A virtual
mipmap,’’ inProc. 25th Annu. Conf. Comput. Graph. Interact. Techn. (SIG-
GRAPH), New York, NY, USA: Association for Computing Machinery,
1998, pp. 151–158.

[34] J. Unger, S. Gustavson, P. Larsson, and A. Ynnerman, ‘‘Free form incident
light fields,’’ in Proc. 19th Eurographics Conf. Rendering (EGSR). Goslar,
Germany: Eurographics Association, 2008, pp. 1293–1301.

[35] J. Unger, J. Kronander, P. Larsson, S. Gustavson, J. Löw, andA. Ynnerman,
‘‘Spatially varying image based lighting using HDR-video,’’ Comput.
Graph., vol. 37, no. 7, pp. 923–934, Nov. 2013.

[36] J. Unger, A. Wenger, T. Hawkins, A. Gardner, and P. Debevec, ‘‘Capturing
and rendering with incident light fields,’’ inProc. 14th EurographicsWork-
shop Rendering (EGRW). Goslar, Germany: Eurographics Association,
2003, pp. 141–149.

[37] E. Zhang, M. F. Cohen, and B. Curless, ‘‘Emptying, refurnishing, and
relighting indoor spaces,’’ ACM Trans. Graph., vol. 35, no. 6, pp. 1–14,
Nov. 2016.

[38] Q.-Y. Zhou, J. Park, and V. Koltun, ‘‘Open3D: A modern library for 3D
data processing,’’ 2018, arXiv:1801.09847.

[39] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi,
F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon, ‘‘Recent advances in adap-
tive sampling and reconstruction for Monte Carlo rendering,’’ Comput.
Graph. Forum, vol. 34, no. 2, pp. 667–681, 2015.

WONJUN LEE received the B.S. degree in
biomedical engineering from Yonsei University,
in 2014, and the M.S. degree in electrical and
computer engineering from Seoul National Uni-
versity, in 2018. He is currently pursuing the
Ph.D. degree with the School of Integrated
Technology, Gwangju Institute of Science and
Technology. His research interests include render-
ing and augmented/virtual reality.

PILJOONG JEONG received the B.S. degree
in computer engineering from Yonsei Univer-
sity, in 2017. He is currently pursuing the
integrated M.S. and Ph.D. degrees with the
School of Integrated Technology, Gwangju Insti-
tute of Science and Technology. His research inter-
ests include indoor scene understanding, SLAM
and fusion-based geometry reconstruction, and
differentiable rendering.

HAJIN CHOI received the B.S. degree from the
School of Integrative Engineering, Chung-Ang
University, in 2018. He is currently pursuing the
integrated M.S. and Ph.D. degrees with the School
of Integrated Technology, Gwangju Institute of
Science and Technology. His research interests
include rendering and augmented/virtual reality.

JINWOO KIM received the B.S. degree in elec-
trical engineering and computer science from the
Gwangju Institute of Science and Technology
(GIST), in 2020. From 2019 to 2020, he worked
as a Research Intern with the Computer Graphics
Laboratory, GIST. He is currently working as an
Assistant Manager with the Baggage Handling
System Operations Team, Incheon International
Airport Corporation. His research interests include
deep learning and optimization on computer
graphics and Monte Carlo simulation.

BOCHANG MOON (Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from the KAIST, in 2010 and 2014, respec-
tively. He is currently an Associate Professor
at the Gwangju Institute of Science and Tech-
nology (GIST). Before joining GIST, he was a
Postdoctoral Researcher at Disney Research. His
research interests include rendering, denoising,
and augmented and virtual reality. He served
as a PC Member for international conferences,
including EGSR, I3D, PG, and CGI.

VOLUME 10, 2022 109509

