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A B S T R A C T

General artificial intelligence counteracts the inductive bias of an algorithm and tunes the algorithm for out-
of-distribution generalization. A conspicuous impact of the inductive bias is an unceasing trend in improving
deep learning performance. Although a quintessential attention-based object detection technique, DETR, shows
better accuracy than its predecessors, its accuracy deteriorates for detecting small-sized (in-perspective) objects.
This study examines the inductive bias of DETR and proposes a normalized inductive bias for object detection
using data fusion, SOF-DETR. A technique of lazy-fusion of features is introduced in SOF-DETR, which sustains
deep contextual information of objects present in an image. The features from multiple subsequent deep layers
are fused for object queries that learn long and short-distance spatial association in an image using the attention
mechanism. Experimental results on the MS COCO and Udacity Self Driving Car datasets assert the effectiveness
of the added normalized inductive bias and feature fusion techniques, showing increased COCO mAP scores
on small-sized objects.
1. Introduction

Object detection is one of the long-standing research topics in
computer vision (CV) and more challenges in the detection surface
with every technology update and artificial intelligence (AI) venture.
Most futuristic applications demand rigorous, accurate, and efficient
detection of all objects of interest in an image. AI scooped by advance-
ments in deep learning (DL) generally benefits from a hard inductive
bias of convolutional neural networks (CNNs) with the region proposal
network (RPN) in two-stage object detection [1–4]. Later, single-shot
object detection using anchors efficiently produced competitive re-
sults [5–7]. Despite outstanding results, RPN generates highly overlap-
ping region proposals for the same set of objects and needs handcrafted
post-processing like non-maximum suppression (NMS) [4–6]. Recently
a new paradigm of inductive bias, transformer [8], is introduced,
which has shown better performance in the natural language process-
ing (NLP) than conventional DL network compositions. Subsequently,
transformers are adopted in a wide range of machine learning (ML)
problems like image captioning [9], speech processing [10], biomedical
imaging [11], and the most perceptible CV [12–14] domain. Detection
using the transformer (DETR) [13] proposes a new DL architecture for
object detection in images that efficiently generates bounding boxes
and classes in parallel using the self-attention mechanism proposed in
the transformer. DETR uses bipartite matching to remove redundant
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detection and performs better than conventional DL-based object detec-
tion networks. Nevertheless, detecting small-sized objects is challenging
due to inadequate resolution of the objects and relatively fewer training
images containing more small-sized objects in the training dataset. This
particular study approaches the challenges of detecting small-sized ob-
jects with inadequate resolutions in a transformer-based model without
affecting its capability to detect medium and large-sized objects. We
indicate detected objects at a different scale in Fig. 1.

Evidently, major performance breakthroughs in AI using artificial
neural networks are exhibited using inductive bias exposited through
a network composition: convolutional for CV [12,15] or sequential for
NLP [8,16]. Generally, the hard inductive biases are referred as a hard-
encoded form of the possible architectural limitations of the CNNs for
efficient sample training. In contrast, soft inductive biases are intro-
duced to preserve the local spacial features in the self-attention module
of the transformer for sample efficiency [17]. Recently, these inductive
biases were explored to improve the performance of transformer-based
models, ViT [12] and ConViT [17], in the image classification task.
These studies encouraged our current model to integrate the strengths
of inductive biases for unraveling the present detection challenge.
Consequently, this work examines the impact of inductive biases on
the transformer-based object detection model.
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Fig. 1. Object detection at different sizes: small-, medium- and large-sized objects.
CNN explores local regions in spatial data using confined location
connections in the network layers and provides performance improve-
ments, whereas the transformer pays attention to learned features from
spatially related regions. However, passing a direct encoding of high-
level CNN extracted features to the transformer losses some information
from small local regions, particularly for small-sized objects in an
image. Therefore, in this work, we propose a model, small object favor-
ing detection using the transformer (SOF-DETR), where a normalized
inductive bias is included, which pronounces features for small-sized
objects without losing other objects essential features before passing
them through the transformer’s encoder layer. Normalized inductive
bias applies group normalization (GN) [18] on features from successive
spatial filtering layers in a CNN and fuses them before passing to the
attention module. Fusion techniques are commonly used to combine
multi-sensor or multi-source data [19]. In our study, multiple layers of
the normalized convolutional layers are fused together to give some
hard-encoded inductive bias to favor the small-sized objects. Then,
these advanced deep features are progressed through the transformer
network as object queries, and thus the network learns associations
among present objects in the image by using the attention mechanism.
SOF-DETR predicts unique bounding boxes associated with a single
object by utilizing a global set-based cost function for the bi-partite
matching technique similar to studies [13,20].

Contributions: This study contributes to the object detection field
as follows. First, we introduce a normalized inductive bias for detection
using a transformer to get distinct features from different filtering layers
of a CNN. Second, the normalized filters are fused to generate diverse
and focused self-attention maps. Our extensive experimentation demon-
strates the effectiveness of particular choices of hard inductive bias,
normalization techniques for filtered features, and fusion of features.
Detailed explanations are given in the following sections.

2. Method

The architecture of the proposed model, SOF-DETR, is depicted in
Fig. 2. SOF-DETR introduces a new composition of the neural networks
in the transformer-based detection model, DETR. It channelizes the
hard inductive bias of a CNN to the soft inductive bias of a transformer
by interleaving a normalized inductive bias on fused feature maps from
different convolutional blocks. The model consists of three modules:
convolutional backbone, normalized inductive bias, and transformer
detection. For unique detection, this study follows set-based object
detection [20] to associate a unique bounding box with an object. The
composition of each module is given in the following sections.1

1 The code is publicly available on https://github.com/shikha-gist/SOF-
DETR/
2

2.1. Convolutional backbone

In this study, we have utilized the standard convolutional model,
ResNet [21], as a backbone of SOF-DETR for extracting features in an
image. We have experimented our model on the ResNet-50. ResNet con-
sists of five distinct building blocks of stacked convolutional layers with
layer names conv1, conv2_x, conv3_x, conv4_x, and conv5_x, followed
by one fully connected layer (a detailed structure is given in [21]),
where 𝑥 is the number of stacked blocks of that particular building
block and varies in different architectures of ResNet. For example, in
ResNet-50, there are 3, 4, 6, and 3 building blocks of conv2, conv3,
conv4, and conv5, respectively. Moreover, each building blocks conv2,
conv3, conv4, and conv5 consists of 3 convolutional layers. In SOF-
DETR, we have utilized a pre-trained ResNet-50 model. Generally, we
can obtain four intermediate layers, 1, 2, 3, and 4, from the pre-trained
ResNet model. In SOF-DETR, intermediate layers 3 and 4 are chosen af-
ter experimentation for further processing. Besides, intermediate layers
3 and 4 are achieved from the outputs of blocks conv4_6 and conv5_3
with feature dimensions 1024 and 2048, respectively.

2.2. Normalized inductive bias

DETR practices the CNN hard inductive bias for features and soft
inductive bias to learn the relationship. The hard inductive bias of
a CNN helps to explore the spatially connected features in spatial
data using its local receptive fields. However, the benefits become a
limitation with the abundance of available data. The soft inductive
bias realized by an attention mechanism in transformers tweaks and
refines the distant spatial features while holding the learned relations
of local features intact during training and inference [17]. However, a
challenge persists in detecting small-sized objects due to their infinites-
imal presence, presumably caused by missing indispensable features
of the objects and thus generating poor attention maps for such ob-
jects. Consequently, to overcome this challenge in transformer-based
detection, SOF-DETR channelizes hard inductive bias and normalizes it
before passing it to the soft inductive bias of the transformer encoder.
SOF-DETR combines features from successive convolution layers from a
backbone network. The features are spatially localized and downscaled
in the successive layers, and a normalization of the inductive bias in the
feature space helped to pronounce the spatially reduced effect of small-
object features. The normalized hard inductive bias fuses the features
extracted at different convolution blocks so that the essential features
of the small-sized are intact for further processing. Particularly, features
from the last two layers (intermediate layers 3 and 4) of the backbone
model are used by down-projecting the features from the high-level
(layer 4) using a de-convolutional layer of 1024-size and transferring it
through a convolutional layer of 1024-size, then fused with the lower-
level (layer 3) features. A detailed ablation study in Section 3.3.2
shows that fusing more layers decreases the overall performance. These
features are fused after GN using element-wise-summation as given in
the following equations.

𝐺𝑁 = 𝐺𝑁
(

𝐶𝑜𝑛𝑣
(

𝐷𝐶
(

𝐹 (𝐼, 𝐿)
)))

, (1)
𝐿

https://github.com/shikha-gist/SOF-DETR/
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Fig. 2. SOF-DETR architecture.
n

𝐺𝑁𝐿−1 = 𝐺𝑁
(

𝐶𝑜𝑛𝑣
(

𝐹
(

𝐼, 𝐿 − 1
)))

, (2)

𝐹𝑐 = 𝐺𝑁𝐿 ⊕𝐺𝑁𝐿−1, (3)

where 𝐷𝐶(⋅) and 𝐶𝑜𝑛𝑣(⋅) represent 2D-deconvolution and 2D-convolutio
layers, respectively. In Eqs. (1) and (2), 𝐹 (⋅) gives extracted features
from an image, 𝐼 of layers 𝐿 or 𝐿 − 1. Whereas 𝐺𝑁(⋅) stands for
GN layer [18], 𝐺𝑁𝐿 and 𝐺𝑁𝐿−1 represent normalized features from
layers 𝐿 and 𝐿 − 1, respectively. In Eq. (3), the symbol ⊕ represents
the element-wise-summation operation of the fusion technique, and 𝐹𝑐
denotes combined features. These combined features are then passed
through the relu layer, followed by a convolutional layer of size 1024 for
extracting deep features from these combined high-level and low-level
features. These extensive features from small-sized objects channelize
normalized inductive bias to support the transformer in generating
more focused self-attention maps. Concatenating these features has not
improved the current model; therefore, we have experimented with
the element-wise summation of the low-level and high-level features
(demonstrated in Section 3.3.2). The proposed model, SOF-DETR, em-
ploys GN over other normalization techniques since it is more suitable
while training the model with a small batch size. Another inspiration
for using GN is that the features after normalization are passed through
channel fusion; therefore, GN also helps to normalize the inductive bias
in the channel dimension and shows superior performance compared to
other normalization techniques and discussed in detail in Section 3.3.2.
Now, we transfer these contextual features, including inductive bias, to
the transformer module for further processing.

2.3. Transformer detection

The transformer architecture [13] for object detection consists of
a simple encoder–decoder architecture and a feed-forward network
(FFN) for bounding box and class predictions. The encoder layer
consists of standard multi-head self-attention layers and fully connected
3

Table 1
Performance analysis using mAP metrics on MS COCO val set, where s, m, and l
stand for small-, medium-, and large-sized objects, respectively. AP stands for average
precision.

Models APall AP50 AP75 APs APm APl

Pre-trained
Faster-RCNN [4]

36.7 – – 14.1 32.9 47.1

DETR
(ResNet-50)[13] 42.0 62.4 44.2 20.5 45.8 61.1

SOF-DETR
(ResNet-50) (Ours) 42.7 61.8 45.4 21.7 45.9 61.5

layers [8]. Positional encoding is added to image data [28], and the
encoded features of objects (𝑁 objects) each of 𝑑-dimension are passed
through the decoder layers. The queried objects (𝑁) are supposedly
larger than the number of objects present in an image in a particular
dataset. The decoder layer also follows the standard transformer-
based architecture where the embedded features of 𝑁 objects generate
attention maps using multi-head attention with the encoder output
and itself. SOF-DETR follows DETR, where all the embeddings of 𝑁
objects are passed together as queries and generate the output for each
object simultaneously as decoder embedding. The embedded outputs
are individually decoded into bounding box coordinates and class labels
by the FFN. The bounding boxes are normalized center coordinates,
height, and width of a predicted class.

Following studies [13,20], for a set of 𝑁-sized embedded outputs
generated from the decoder, we utilize a set-based loss function to train
the network and assign each object a unique bounding box. The lowest
cost for finding bipartite matching among sets of ground-truths 𝐺 and
detections �̂� elements, we calculate the best permutation, �̂�, as below:

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜗∈𝛼𝑁

𝑁
∑

𝑖
C𝑏𝑚(𝐺𝑖, �̂�𝜗(𝑖)), (4)

where C𝑏𝑚 is element-wise bipartite matching cost, calculated using
the Hungarian algorithm similar to [20], both sets 𝐺 and �̂� have 𝑁
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Fig. 3. AP metrics comparison among recent algorithms and SOF-DETR on MS COCO test-dev set for small-sized, medium-sized, and large-sized objects. SSD513 [5], YOLOv3 [22],
Faster-FPN [3], Mask RCNN [23], CornerNet [24], RetinaNet [25], RefineDet [26], Libra EBox [27], DETR [13].
Table 2
Online performance analysis using mAP metrics on MS COCO test-dev set.

Models Backbone APall AP50 AP75 APs APm APl

YOLOv2 [29] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
Faster-RCNN [4] VGG16 23.5 43.9 22.6 8.1 25.1 34.7
SSD513 [5] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
YOLOv3 [22] DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 [30] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
Faster-FPN [3] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
RefineDet [26] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
Mask RCNN [23] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
ExtremeNet [31] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1
CornerNet [24] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3
RetinaNeta [25] ResNet-50 36.1 55.9 38.7 20.1 38.9 45.2
FoveaBoxa [32] ResNet-50 36.8 56.7 39.3 20.3 40.1 45.2
FSAFa [33] ResNet-50 37.0 56.1 9.2 20.4 39.2 46.0
FCOSa [34] ResNet-50 37.1 56.6 39.6 20.6 39.8 46.9
Libra RCNNa [35] ResNet-50 37.6 57.0 40.0 21.3 40.4 47.0
Libra EBox [27] ResNet-50 38.4 59.4 41.1 22.3 41.6 47.8
DETRb [13] ResNet-50 42.2 62.0 44.8 20.2 45.0 59.0

SOF-DETR (Ours) ResNet-50 43.0 62.1 45.9 21.1 45.9 59.0

aModels’ result are taken from the study [27].
bModel is evaluated online by us.
i
o

t
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umber of objects, where 𝐺 is padded if the number of objects in 𝐺
s less than 𝑁 . Ground-truths 𝐺 has pair elements of the class and a
ounding box for each object. Similarly, predictions �̂� has predicted
lass, probability, and bounding box for each object. This bipartite
atching takes place for both: class and bounding box predictions. The

oss function used is Hungarian loss for all matched pairs, and it is
alculated similarly to works [13,20]. Class imbalances are handled
ikewise to [4]. The bounding box loss, C𝑏𝑏𝑜𝑥, is calculated utilizing 𝑙1
oss and generalized intersection-over-union (𝐼𝑜𝑈) loss, 𝐿𝐼𝑜𝑈 similar to
ork [36]. The loss function and shared layer-norm are added to each
ecoder layer. SOF-DETR is trained using this loss function and predicts
unique bounding box and class for each object present in an image.

. Experimentation and discussion

.1. Dataset

SOF-DETR is evaluated on two public object detection datasets: MS
OCO (2017) [37] and Udacity Self Driving Car [38]. Each dataset
ontains a fair number of small-sized objects, and the denotation of
4

he size is appraised in accordance with the MS COCO annotations. A
labeled object with a bounding box having an area less than 322(pixels)
s a small-sized object, the area between 322 and 962 is a medium-sized
bject, and the objects with an area greater than 962 are large-sized.

Fig. 1 provides a visual reference of different object sizes. In the case of
occluded objects, the area is computed on the size of a partially labeled
bounded box. MS COCO detection dataset consists of 41% of the small-
sized objects, whereas the Udacity Self Driving Car dataset consists
of 57% of the same. Additionally, data-augmentation techniques like
scaling, random cropping with a probability of 0.5, and resizing to
800 ∗ 800 are used for training.

MS COCO dataset labeled 80 object classes in 115k images for
he training set and 5k images for the validation dataset (val set).
dditional 20k images without annotations are available for online

evaluations only (test-dev set). There are at least 7 objects and at
most 63 objects present (labeled) in a single image of the training set.
Original Udacity Self Driving Car dataset consists of 4 object classes
with 15k images [38], but it missed objects in annotations. This study
uses a version annotated by Roboflow [39], which has additional
annotations and classes. MS COCO evaluation metrics are used for this
dataset, and the object classes are mapped to ‘‘person, car, truck and

traffic light’’ label classes of MS COCO.
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Fig. 4. AP metrics comparison on selected object classes between SOF-DETR and DETR on the MS COCO test-dev set for small-sized, medium-sized, and large-sized objects. The
object classes on the left-side and right-side of the red-dotted line are top-10 and last-10 object classes of the training dataset, respectively (based on the number of objects of that
particular class in the training dataset).
3.1.1. Evaluation metrics
This study presents quantitative and qualitative evaluations of SOF-

DETR. The quantitative results are generated using a standard MS
COCO evaluation metric: mAP (mean average precision) of bounding
boxes averaged on thresholds ∈ [0.5 ∶ 0.05 ∶ 0.95] for all detection.
Moreover, we have also compared the proposed model’s performance
using conventional precision, recall, and F-1 scores @0.5 for small-
sized, medium-sized, and large-sized objects. Furthermore, the PR curve
(Precision-Recall curve) is also utilized for performance analysis. The
qualitative results are depicted with detection in selected images and
the attention maps of transformers.

3.2. Implementation details

SOF-DETR is trained similar to DETR for a fair evaluation of the
proposed normalized inductive bias module. It uses an AdamW op-
timizer with an initial learning rate of 10(−4) and weight decay of
10(−4) with beta values, (𝛽1, 𝛽2) = (0.9, 0.999). The learning rate for
the backbone (ResNet-50) is 10(−5). SOF-DETR uses 0.1 dropout and
Xavier initialization [40] for starting weights. We have experimented
SOF-DETR without any additional dilation layer [41], and future work
can extend this work. We have reported the results after 500 epochs
of training for an overall evaluation, with a learning rate dropping by
5

Table 3
Performance analysis on Udacity Self Driving Car Dataset, where s, m, and l stand for
small-, medium-, and large-sized objects, respectively.

Models Backbone APall AP50 AP75 APs APm APl

DETR ResNet-50 15.4 38.9 9.6 8.0 28.0 53.7
SOF-DETR 18.3 43.0 12.9 10.3 31.0 55.3

10 after 300 epochs. SOF-DETR is trained on 8–𝑉 100 Nvidia-GPUs on a
single node with a batch size of 3 on each GPU (performs better than 2,
4, and 6 batch sizes) and tested on a single GPU and single node with
2 batch sizes.

3.3. Performance analysis of SOF-DETR

3.3.1. Quantitative analysis
We have compared the performance of SOF-DETR with transformer-

based algorithm DETR [13] and other recent state-of-the-art algo-
rithms [5,24,25,27,30,32–35]. Tables 1 and 2 show quantitative analy-
sis of SOF-DETR on val set and test-dev set, respectively, for MS COCO
dataset, while the performance analysis for the Udacity Self Driving
Car dataset [38] is demonstrated in Table 3. In Table 1, SOF-DETR is
compared with the pre-trained faster-RCNN [4] and DETR. SOF-DETR
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Table 4
Ablation study: Performance analysis using mAP metrics on MS COCO val set for a different number of fusion layers, fusion techniques, various backbones,
and normalization effects. All models are trained for 150 epochs.

Backbone Norm-type Fusion-type Fusion-layers APall AP50 AP75 APs APm APl

ResNet-18 Group ⊕ 4 & 3 36.7 56.0 38.5 15.6 39.7 55.1
ResNet-34 38.8 58.4 41.0 16.9 42.3 57.6

ResNet-50 Group ⊕ 4 & 3 & 2 39.6 60.2 41.3 17.8 43.0 59.2

ResNet-50

– – – 39.8 60.4 41.5 18.1 43.0 59.1
Group ||

4 & 3

38.6 58.7 40.7 17.4 42.2 57.7
–

⊕

35.6 55.2 37.2 14.7 38.2 54.2
Batch 40.4 60.3 42.7 19.0 44.1 59.7
Instance 40.4 60.2 42.6 19.1 43.6 58.2
Layer 40.7 60.5 43.0 19.2 44.2 59.8
Group-8 40.5 60.4 43.0 18.8 43.9 60.0
Group-32 40.6 60.6 42.7 18.9 44.2 59.7

ResNet-50 Group-16 ⊕ 4 & 3 40.9 60.7 43.2 19.2 44.3 60.1

⊕ and || stand for the element-wise summation and concatenation fusion techniques, respectively.
Fig. 5. PR-Curves comparison among DETR, Faster-RCNN, and SOF-DETR on top-5 object classes for small-sized, medium-sized, and large-sized MS COCO val set objects. The
curve surpassing other curves shows the best performance in all. The average precision of each object class is also given in the top-right corner.
outperforms DETR with a 0.7% improvement in mAP score overall,
and 1.2%, 0.1% and 0.4% improvements in detecting small-sized,
medium-sized, and large-sized objects, respectively. Moreover, Table 2
depicts the online evaluation of SOF-DETR with other state-of-the-
art algorithms. SOF-DETR sustains the performance trade-off among
small-sized, medium-sized, and large-sized object detection compared
to recent detection algorithms [27,32–35], where the detection per-
formance deteriorates for medium-sized and large-sized objects while
improving the detection of small-sized objects. Moreover, for a fair
comparison, SOF-DETR uses ResNet-50 as the backbone. However,
detection results with various other backbones are discussed in the
6

ablation study (Section 3.3.2). Further, average precision (AP) metrics
for small-sized, medium-sized, and large-sized objects are depicted in
Fig. 3, and SOF-DETR shows an overall better performance than others.

Fig. 4 depicts a performance comparison between DETR and SOF-
DETR on top-10 and last-10 object classes. The number of objects
present in the training set for the particular class provides top-10
and last-10 object classes. This classwise-metrics comparison illustrates
that even though our model is trained with a significant difference
among the number of objects for different object classes, it performs
adequately for top object classes as well as for low object classes.
SOF-DETR illustrates better AP metrics for these selected object classes
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Fig. 6. Precision, Recall, and F1-Values comparison between DETR and SOF-DETR on top-5 object classes for small-sized, medium-sized, and large-sized MS COCO val set objects.
All values are given on a scale of 0%–100%.
than DETR. For example, in the case of top-1 object class ‘‘Person’’,
SOF-DETR gives AP metrics improvements of 1.4%, 0.7%, and 0.4%
for small-sized, medium-sized, and large-sized objects, respectively.
Similarly, for classes with fewer examples, like ‘‘Microwave’’, SOF-
DETR shows AP metrics improvements of 4.2%, 2.6%, and 3.2% for
small-sized, medium-sized, and large-sized objects, respectively.

The results indicate that normalized inductive bias in SOF-DETR
improves the detection of small-sized objects without affecting the
medium-sized and large-sized objects detection. To emphasize the ef-
ficacy of our proposed model in small-sized object detection, we have
also presented the quantitative analysis of SOF-DETR using AP@0.5
metric and PR curve, as shown in Figs. 5 and 6, respectively. In the
case of class imbalance, PR-Curve presents a more reliable evaluation
comparison. These curves display the correlation between precision
(positive predictive value) and recall (sensitivity) values for each at-
tainable cut-off value. A curve higher than the other curve exhibits
better performance, and Fig. 5 indicates that SOF-DETR outperforms
other algorithms in most cases. Also, Fig. 6 exhibits model cogency
using precision, recall, and F-1 values on top-5 object classes of small-,
medium- and large-sized objects of MS COCO val set.

Table 3 presents mAP scores of SOF-DTER and DETR when tested
on Udacity Self Driving Car dataset. Both models use weights trained
on MS COCO dataset. SOF-DETR outperforms DETR with 2.3%, 2.0%
and 1.6% AP improvements in detection results of small-sized, medium-
sized, and large-sized objects, respectively, and an overall 2.9% im-
provement in the score. It indicates that training our model on this
dataset can certainly improve these results.
7

3.3.2. Ablation study
The quantitative results of an ablation study of the proposed tech-

nique are shown in Table 4. First two rows depict mAP scores using
different backbones, ResNet-18 and ResNet-34, for the same model,
SOF-DETR. The scores advocate the choice of ResNet-50 for the pro-
posed model. Moreover, fusing the features from the last three layers
(layers 4, 3, and 2) degrades the performance, suggesting that the
fusion of earlier layers features with the high-level features does not
positively impact the proposed model. Table 4 also demonstrates that
the model performance with normalized inductive biases surpasses
the model performance without utilizing any fusion technique in the
detector. Additionally, the element-wise fusion technique compared
to the concatenated-fusion technique shows more promising results.
Later, we have also tested the importance of using GN for the hard-
inductive biases. SOF-DETR without normalization and with different
normalization techniques such as batch, instance, layer, and group
(8 and 32) normalization techniques, along with element-wise fusing
of the last two layers features, show performance degradation when
compared with the proposed GN (16 groups) technique. Overall, in
the last row, the proposed combination of SOF-DETR demonstrates the
significance of using GN, element-wise fusion, and fusion layers with
better quantitative results on evaluation metrics.

3.3.3. Qualitative analysis
We have shown qualitative results of the proposed technique along-

side DETR results in Fig. 7, and Fig. 8 for a comparative study. It is
evident in Fig. 7 that SOF-DETR detects small-sized objects that DETR
misses. Furthermore, SOF-DETR produces a higher confidence score for
other small-sized objects than the confidence score of DETR. Fig. 7 also
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Fig. 7. Qualitative analysis of SOF-DETR, where we have several pairs of images with the first and second images illustrating detections from DETR and SOF-DETR, respectively.
Additional detections through SOF-DETR are represented with a pink color class box. Detections only with more than 90% confidence value are displayed.
-

signifies SOF-DETR’s higher confidence in predicting the small-sized
objects without affecting the performance of medium-sized and large-
sized objects. Another potential trace of the perceptible normalized
inductive bias introduced in this study is depicted in Fig. 8, which com-
pares self-attention activation of SOF-DETR with self-attention maps of
DETR. It is noticeable that SOF-DETR attention maps are more vibrant
for small-sized objects, including medium-sized and large-sized objects.

4. Conclusion

This study improves hard inductive bias of DETR for small-sized
object detection without affecting the performance of medium-sized
and large-sized objects. A normalized inductive bias is introduced using
a lazy fusion of feature maps before passing it to the transformer
layers of our proposed technique, SOF-DETR. The proposed technique
shows higher confidence scores for detected small-sized objects and
overall better performance than DETR. Future studies can explore
another direction of improving inductive biases for small objects, like
introducing a penalty in loss function for object sizes. This can be
introduced in parallel to the normalized inductive biases. Future work
can also include the study of such inductive biases in segmentation,
panoptic segmentation, and instance segmentation.
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