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Abstract: Herein, we design and characterize 9-heterocyclic ring non-fullerene acceptors (NFAs) with
the extended backbone of indacenodithiophene by cyclopenta [2,1-b:3,4-b’] dithiophene (CPDT). The
planar conjugated CPDT donor enhances absorption by reducing vibronic transition and charge
transport. Developed NFAs with different end groups shows maximum absorption at approximately
790–850 nm in film. Because of the electronegative nature of the end-group, the corresponding
acceptors showed deeper LUMO energy levels and red-shifted ultraviolet absorption. We investigate
the crystallinity, film morphology, surface energy, and electronic as well as photovoltaic performance.
The organic photovoltaic cells using novel NFAs with the halogen end groups fluorine or chlorine
demonstrate better charge collection and faster exciton dissociation than photovoltaic cells using
NFAs with methyl or lacking a substituent. Photovoltaic devices constructed from m-Me-ITIC with
various end groups deliver power conversion efficiencies of 3.6–11.8%.

Keywords: non-fullerene acceptor; cyclopenta [2,1b:3,4b’] dithiophene; organic solar cell; surface
energy; film morphology; ITIC

1. Introduction

Organic solar cells (OSCs) are regarded as next-generation photovoltaics because their
advantages of lightweight, semi-transparent, tunable energy levels and absorption range,
and potential application for flexible devices [1–8]. A typical bulk heterojunction (BHJ)
organic solar cell is a combination of acceptor and donor materials. In the early stage of
organic solar cells, fullerene derivatives were used as acceptors, owing to their excellent
electron and affinity mobility and appropriate nanoscale morphology. [9–14] Benefits from
the development of device optimization and donor materials [15–20], fullerene-based OSCs
have exceeded 10% power conversion efficiencies (PCEs) [21,22]. However, limitations
such as inferior near-infrared and narrow visible region absorption as well as low tunability
of energy level have limited the further development of fullerene derivatives [23–25].

To overcome the limitations of fullerene derivatives, ITIC non-fullerene acceptors
(NFAs) and their derivatives with acceptor-donor-acceptor (A-D-A) architecture have
drawn particular interest owing to broad light absorption, regulable energy levels, stable
morphological, and low-cost synthesis potential [26–33]. This A-D-A backbone includes
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a fused and planar electron-donating unit capped with electron-withdraw end groups.
Through manipulation of the backbone conjugated length [34–38], sidechain type and
length [39–43], and end groups [44,45], the electronic and morphological properties can
easily modify. With the boost of ITIC non-fullerene acceptor, the PCEs of organic solar cells
have reached 13–15% [46–53].

In this paper, we utilize extended conjugation: the conjugation of indacenodithiophene
is extended by substituting the outward thienothiophene moieties with cyclopenta [2,1-
b:3,4-b’] dithiophene (CPDT), which enables construction 9-heterocyclic ring acceptor,
meta-methyl-ITIC (m-Me-ITIC). The symmetric and planar conjugated CPDT electron
rich moiety enhances absorption because of reduced vibronic transition and enhances the
charge transport. Additionally, extended conjugate bridging units improved the absorption
in the long-wavelength region. Meta-alkoxy phenyl side chains provide good solubility
in common solvents, and different end groups lead to distinct LUMO energy levels with
good morphology in the film state [28]. Blend with PBDB-T polymer donor, the m-Me-ITIC
device delivers an open-circuit voltage (Voc) of 0.78 V, and short-circuit current density (Jsc)
of 23.7 mA·cm–2, fill factor (FF) of 64%, and PCE of 11.8%.

2. Experimental
2.1. Synthesis
2.1.1. Synthesis of Compound 2

n-BuLi (5.4 mL, 13.5 mmol) was dropped into THF solution of 1-bromo-3-((2-ethylhexyl)
oxy)benzene (6.0 g, 13.1 mmol) at −78 ◦C and string for 1.5 h. Compound 1 (2 g, 2.2 mmol)
was added to the mixture, and after stirred at 25 ◦C overnight, the solvent was removed.
The crude product was added to 100 mL THF with 10 g amberlyst® 15(H) and stirred for 1 h
at 70 ◦C after cooling down to temperature and removing the solvent, crude purified with
silica gel chromatography (hexane/dichloromethane 9:1) to give compound 2 (1.9 g, 65%).

1H NMR (300 MHz, CDCl3) δ 7.26 (s, 4H), 7.13 (t, J = 8.0 Hz, 4H), 7.00 (t, J = 2.0 Hz,
4H), 6.88 (d, J = 7.9 Hz, 4H), 6.83 (d, J = 4.6 Hz, 2H), 6.77 (m, 4H), 3.76 (m, 8H), 1.66 (s, 4H),
1.52–1.18 (m, 8H), 0.91 (s, 12H), 0.86 (t, J = 7.3 Hz, 24H).

13C NMR (125 MHz, CD2Cl2) δ 159.54, 157.95, 156.31, 152.45, 151.39, 144.12, 142.83,
140.24, 136.85, 135.18, 129.52, 124.79, 122.21, 121.02, 116.68, 116.60, 115.09, 112.97, 112.88,
70.86, 64.16, 39.83, 37.79, 31.96, 30.89, 29.75, 29.49, 24.58, 24.22, 23.50, 23.08, 14.31, 14.22, 11.30.

2.1.2. Synthesis of Compound 3

POCl3 (1.66 g, 10.8 mmol) was slowly dropped into the mixture of compound 2 (1.8 g,
1.36 mmol) and DMF (0.88 g, 12 mmol) in toluene at −10◦ C and heated to 75 ◦C for eight
hours. After removing the solvent, the mixture was purified through silica gel column
chromatography (hexane/dichloromethane1:3). Compound 3 was obtained as an orange
solid (1.5 g, 95%).

1H NMR (300 MHz, CD2Cl2) δ 9.76 (s, 2H), 7.48 (s, 2H), 7.41 (s, 2H), 7.18 (t, J = 7.8 Hz,
4H), 6.96 (m, 4H), 6.90 (m, 4H), 6.81 (m, 4H), 3.78 (d, J = 5.7 Hz, 8H), 1.81–1.54 (m, 4H),
1.51–1.20 (m, 32H), 0.96 (s, 12H), 0.92–0.78 (m, 24H).

13C NMR (125 MHz, CD2Cl2) δ 182.52, 161.53, 159.75, 158.49, 157.02, 151.54, 147.42,
145.99, 143.76, 143.51, 138.43, 135.78, 129.66, 121.44, 116.58, 115.98, 113.20, 70.92, 63.99, 46.73,
39.71, 30.86, 30.82, 29.44, 24.20, 24.17, 23.92, 23.45, 14.27, 11.25.

2.1.3. Synthesis of M-Me-ITIC Acceptors

INCN, INCN-Me, INCN-F, or INCN-Cl (0.82 mmol) and compound 3 (250 mg,
0.181 mmol) were dissolved in chloroform (30 mL), and pyridine (2 mL) was added. After
string overnight at 65 ◦C, the mixture was poured into CH3OH; the solid part was purified
through silica-gel column chromatography (hexane/dichloromethane 1:5). m-Me-ITIC
acceptors were obtained as blue solid.

m-Me-ITIC, (220 mg, 68%). 1H NMR (300 MHz, CD2Cl2) δ 8.83 (s, 2H), 8.66–8.56
(m, 2H), 7.89–7.80 (m, 2H), 7.70 (dd, J = 5.3, 2.4 Hz, 4H), 7.52 (d, J = 16.1 Hz, 4H), 7.21 (t,
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J = 8.0 Hz, 4H), 7.02–6.88 (m, 8H), 6.83 (dd, J = 8.2, 2.4 Hz, 4H), 3.79 (d, J = 5.7 Hz, 8H), 1.66
(m, 4H), 1.49–1.20 (m, 32H), 1.00 (s, 12H), 0.87 (m, 24H). 13C NMR (126 MHz, CDCl3) δ
188.67, 161.03, 160.73, 159.41, 157.49, 151.68, 142.74, 140.09, 136.89, 136.21, 134.73, 134.02,
129.49, 125.11, 123.38, 121.22, 116.55, 116.35, 115.45, 115.32, 112.95, 70.72, 66.92, 63.67, 46.35,
39.36, 30.58, 30.55, 29.82, 29.17, 29.14, 24.07, 23.91, 23.88, 23.14, 14.22, 11.19, 11.17. MS
(MALDI-TOF) calcd. For C112H110N4O6S4, 1734.7308; found, 1734.7863.

m-Me-ITIC-Me, (210 mg, 66%). 1H NMR (300 MHz, CD2Cl2) δ 8.80 (s, 2H), 8.50 (d,
J = 8.1 Hz, 0.6H), 8.43 (s, 1.4H), 7.74 (d, J = 7.6 Hz, 1.4H), 7.66 (s, 0.6H), 7.59–7.44 (m, 6H),
7.20 (t, J = 8.0 Hz, 4H), 6.99–6.87 (m, 8H), 6.82 (dd, J = 8.3, 2.3 Hz, 4H), 3.79 (d, J = 5.7 Hz,
8H), 2.52 (d, J = 3.6 Hz, 6H), 1.66 (p, J = 6.1 Hz, 4H), 1.47–1.18 (m, 32H), 0.99 (s, 12H),
0.92–0.80 (m, 24H). 13C NMR (125 MHz, CDCl3) δ 188.79, 188.47, 160.83, 159.40, 157.41,
151.61, 151.34, 146.23, 145.70, 142.80, 140.49, 137.70, 137.27, 136.53, 136.17, 135.59, 134.99,
134.75, 129.47, 125.55, 125.07, 123.78, 123.31, 121.23, 116.55, 116.30, 115.50, 115.38, 112.95,
70.71, 66.72, 66.27, 63.67, 46.34, 39.36, 30.59, 30.56, 29.17, 29.14, 24.07, 23.91, 23.89, 23.15,
22.63, 22.15, 14.22, 11.20, 11.17. MS (MALDI-TOF) calcd. For C114H114N4O6S4, 1762.7621;
found, 1762.7922.

m-Me-ITIC-F, (250 mg, 78%). 1H NMR (300 MHz, CD2Cl2) δ 8.81 (s, 2H), 8.46 (dd,
J = 10.3, 6.5 Hz, 2H), 7.66–7.47 (m, 6H), 7.20 (t, J = 8.0 Hz, 4H), 6.98–6.87 (m, 8H), 6.82
(dd, J = 8.2, 2.4 Hz, 4H), 3.78 (d, J = 5.7 Hz, 8H), 1.64 (m, 4H), 1.52–1.20 (m, 32H), 0.99
(s, 12H), 0.95–0.80 (m, 24H).13C NMR (125 MHz, CDCl3) δ 186.16, 162.93, 161.70, 159.43,
158.49, 157.94, 157.69, 155.23, 155.12, 153.16, 153.06, 153.03, 152.61, 151.76, 142.59, 139.26,
137.63, 137.21, 136.55, 136.33, 134.41, 134.36, 129.50, 121.17, 118.64, 116.58, 116.53, 115.02,
114.94, 114.87, 114.69, 112.96, 112.34, 112.20, 70.72, 67.16, 63.70, 46.37, 39.35, 30.56, 30.53,
29.16, 29.13, 24.01, 23.89, 23.87, 23.13, 14.21, 11.18, 11.15.MS (MALDI-TOF) calcd. For
C112H106F4N4O6S4, 1806.6931; found, 1806.7775.

m-Me-ITIC-Cl, (250 mg, 74%). 1H NMR (300 MHz, CD2Cl2) δ 8.81 (s, 2H), 8.66 (s,
2H), 7.75 (d, J = 2.0 Hz, 2H), 7.54 (d, J = 3.1 Hz, 4H), 7.19 (t, J = 8.0 Hz, 4H), 6.96–6.88 (m,
8H),6.84–6.76 (m, 4H), δ 3.77 (d, J = 5.7 Hz, 8H),1.63 (m, 4H), 1.48–1.19 (m, 32H), 0.99 (s,
12H), 0.86 (m, 24H).13C NMR (125 MHz, CDCl3) δ 186.11, 163.07, 161.94, 159.41, 158.56,
158.29, 157.78, 153.05, 151.80, 142.55, 139.66, 139.42, 138.91, 138.70, 137.95, 137.33, 136.40,
135.96, 129.49, 126.58, 124.67, 121.18, 118.54, 116.72, 116.53, 115.12, 114.94, 112.92, 70.75,
67.02, 63.71, 46.35, 39.34, 30.55, 30.52, 29.16, 29.12, 24.00, 23.87, 23.14, 14.22, 11.19, 11.16. MS
(MALDI-TOF) calcd. For C112H106Cl4N4O6S4, 1870.5749; found, 1870.6914.

3. Result and Discussion

The synthetic scheme of m-Me-ITIC series was presented in Scheme 1. We treated
compound 1 with freshly prepared (3-((2-ethylhexyl)oxy)phenyl)lithium-yielded diol, then
intramolecular Friedel–Crafts cyclization to was carried out to furnish compound 2 (IT).
This IT was reacted with POCl3 and dimethylformamide to yield carbaldehyde, which was
then capped with various IC groups by the Knoevenagel condensation reaction to generate
the desired compound. Each of the new acceptors was characterized by NMR, and mass
spectrometry (Figures S1–S6 in Supporting Information). The resulting acceptors showed
good solubility at room temperature in common solvent.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) was car-
ried out to investigate the thermal stability of the m-Me-ITIC acceptors (Figures S7 and S8 in
Supporting Information). All four acceptors have decomposition temperatures (Td) > 330 ◦C
(5% weight loss), indicating m-Me-ITIC series have good thermal stability. Differential
scanning calorimetry revealed that m-Me-ITIC-Cl undergoes an endothermic melting tran-
sition at 144 ◦C. This thermal transition implies that m-Me-ITIC-Cl has a greater tendency
to crystallize than the other derivatives because of end group differences.
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Scheme 1. Synthetic scheme for m-Me-ITIC series acceptors.

The ultraviolet–visible absorption spectra and corresponding data of the m-Me-ITIC
series in chloroform and thin film are shown in Figure 1b,c and Table 1. The entire series
exhibited large red-shifts > 100 nm compared with ITIC-ethylhexyl oxy (OEH), which was
composed of thienothiophene instead of CPDT due to the extended conjugation. Further-
more, measurement of ultraviolet–visible spectra in solution revealed that λmax exhibited
greater red-shifts with increasing electron acceptor ability: m-Me-ITIC-Me (λmax: 756 nm)
< m-ITIC (760 nm) < m-ITIC-F (775 nm) < m-ITIC-Cl (790 nm). In thin film, a broader
spectrum and redshifted maximum absorption were observed for m-Me-ITIC acceptors;
the absorption maximum of m-Me-ITIC-Cl was shifted by nearly 16 nm compared with
m-Me-ITIC-F, suggesting that stronger π–π interactions occur in thin film. We conducted
our electrochemical study of the m-Me-ITIC series using cyclic voltammetry for energy
level measurement (Figure S9 in Supporting Information). Owing to the electronegative
nature of INIC group, the LUMO energy levels of the corresponding NFAs decreased
from −4.19 and −4.20 eV for m-Me-ITIC-M and m-Me-ITIC, respectively, to −4.29 eV for
m-Me-ITIC-F and −4.35 eV for m-Me-ITIC-Cl.
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Table 1. Optical and Electrochemical Properties of acceptors.

Materials HOMOcv

(eV)
LUMOopt

(eV)
λmax

sol

(nm)
λmax

film

(nm)
λonset
(nm)

ε

(mol−1 cm−1 L)
Eg

opt

(eV)

m-Me-ITIC −5.60 −4.20 760 788 885 2.04 × 105 1.40
m-Me-ITIC-Me −5.58 −4.19 756 789 890 1.88 × 105 1.39
m-Me-ITIC-F −5.63 −4.29 775 830 920 1.83 × 105 1.35
m-Me-ITIC-Cl −5.66 −4.35 790 846 930 1.72 × 105 1.33

To demonstrate the photovoltaic performances of m-Me-ITIC acceptors, we fabricated
organic photovoltaic (OPV) devices by blending m-Me-ITIC acceptors with PBDB-T poly-
mer donor using an inverted structure with glass/tin-doped indium oxide/ZnO/BHJ/
MoOx/Ag. Current density–voltage (J–V) characteristics of the optimized devices with
the m-Me-ITIC acceptors was measured under simulated AM1.5 G with an intensity of
100 mW/cm2, the results are shown in Figure 2a and the device data are summarized
in Table 2. To verify the measurement accuracy, we crosschecked the external quantum
efficiency spectra with the J–V characteristics (Figure 2b and Table 2). We summarize the
device optimization data (e.g., thermal annealing, donor/acceptor blending ratio, and
processing additive of each OPV device) (Tables S1–S6 in Supporting Information). Thus,
the efficiency-optimized devices made from m-Me-ITIC, m-Me-ITIC-Me, m-Me-ITIC-F, and
m-Me-ITIC-Cl demonstrated PCE values of 5.9%, 3.6%, 11.8%, and 10.8%, respectively.
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To further understand the collection behaviors and charge dissociation of the four
fabricated OPV cells, the photocurrent density (Jph) on the effective voltage (Veff) was
investigated, the results are presented in Figure 2c. Veff was determined using the following
equation: Ve f f = V0 −Va, where V0 indicates the voltage when illuminated with a current
density (JL) identical to the dark current density (JD), and Va indicates the applied voltage.
Jph was determined using the following equation: Jph = JL − JD [52,53]. Each of the OPV
cells was biased from −2.0 to 1.0 V to demonstrate the exciton dissociation process; the
saturation current density (Jsat) was verified for a Veff of 2.5 V. The Jsat values measured for
m-Me-ITIC, m-Me-ITIC-Me, m-Me-ITIC-F, and m-Me-ITIC-Cl were 14.12, 9.20, 24.00, and
22.40 mA·cm−2. We divided the normalized Jph by Jsat to calculate P(E,T) to demonstrate
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the exciton dissociation as well as charge collection properties. The P(E,T) values calculated
were 79.00%, 71.24%, 96.84%, and 94.08%, respectively, indicating that OPV cells using
novel NFAs with the halogen end groups fluorine or chlorine demonstrate better charge
collection and faster exciton dissociation than OPV cells using the other two NFAs [54].

Table 2. The optimized photovoltaic performances of the OPV cells under simulated illumination of
AM 1.5 G (100 mW·cm−2).

Photoactive Materials VOC
(V)

JSC
(mA·cm−2)

EQE
(mA·cm−2) FF PCEbest/PCEavg

a

(%)

b PBDB-T:m-Me-ITIC
0.90

(0.89 ± 0.01)
12.00

(9.97 ± 1.22) 12.64 0.54
(0.54 ± 0.05)

5.90
(4.79 ± 0.41)

b PBDB-T:m-Me-ITIC-Me
0.92

(0.92 ± 0.01)
8.10

(6.90 ± 0.80) 8.30 0.49
(0.48 ± 0.02)

3.60
(3.05 ± 0.33)

c PBDB-T:m-Me-ITIC-F 0.78
(0.78 ± 0.00)

22.80
(21.04 ± 1.38) 22.80 0.67

(0.68 ± 0.02)
11.80

(11.07 ± 0.50)

d PBDB-T:m-Me-ITIC-Cl
0.75

(0.75 ± 0.00)
21.50

(18.64 ± 1.91) 22.19 0.67
(0.69 ± 0.02)

10.80
(9.74 ± 0.79)

a The Average PCE values are achieved from 10 devices. b The blending ratio of the device is 1:1.2 and without
additive. c The blending ratio of the device is 1:1 and with 0.5 vol% 1-chloronaphthalene. d The blending ratio of
the device is 1:1 and with 1.5 vol% 1,8-diiodooctane.

To investigate the charge transport behaviors, we analyzed the Jsc value of each cell
by varying the irradiated light intensity (Plight) from 0.93 to 100 mW·cm−2, as shown in
Figure 2d. The relationship between Jsc and Plight can be described as Jsc ∝ Pα

light, where α is
an exponential factor. A value for α close to unity indicates weak bimolecular recombination.
As the value of α decreases, severe bimolecular recombination occurs [55]. The α-values of
m-Me-ITIC-F blend and m-Me-ITIC-Cl blend was calculated as 0.9659 and 0.9673, which is
higher than the α-values of m-Me-ITIC blend and m-Me-ITIC-Me blend (0.9519 and 0.9526,
respectively). Because bimolecular recombination induces partial charge carrier losses [56],
we presume that minimizing bimolecular recombination will help to increase the Jsc value
and fill factor of the OPV devices based on NFAs with halogen end groups (m-Me-ITIC-F
and m-Me-ITIC-Cl).

To study the charge transport properties of the OSCs further, the devices’ electron
and hole mobilities were evaluated by the space charge limited current (SCLC) method
(Figure S10 and Table S7 in Supporting Information). The electron mobility and hole
mobility were measured with the device structure of ITO/ZnO/Active layer/BCP/Al
and ITO/PEDOT:PSS/Active layer/MoOx/Ag, respectively. The calculated hole/electron
(µh/µe) of the PBDB-T:m-Me-ITIC, PBDB-T:m-Me-ITIC-Me, PBDB-T:m-Me-ITIC-F, and
PBDB-T:m-Me-ITIC-Cl devices were 4.38× 10−4/5.62× 10−4, 4.46× 10−4/5.53× 10−4,
6.55× 10−4/6.47× 10−4, and 5.17× 10−4/5.61× 10−4 cm2 V−1 s−1, which is equivalent
to µh/µe ratios of 0.78, 0.81, 1.01, and 0.92, respectively. The PBDB-T:m-Me-ITIC-F and
PBDB-T:m-Me-ITIC-Cl devices showed higher and more balanced charge transport than
PBDB-T:m-Me-ITIC, PBDB-T:m-Me-ITIC-Me, which could reduce charge recombination,
thus contributing to the enhanced Jsc and fill factor.

Atomic force microscopy (AFM) was employed to investigate the morphologies of
the m-Me-ITIC-, m-Me-ITIC-Me-, m-Me-ITIC-F-, and m-Me-ITIC-Cl-based BHJ films, the
detail was shown in Figure 3. The root-mean-square surface roughness (RMS) values were
higher for all BHJ blend films than for the novel NFA films. The RMS values of m-Me-ITIC
and m-Me-ITIC-Me blend were <1 nm (0.97 and 0.83 nm, respectively), while the values
of m-Me-ITIC-F and m-Me-ITIC-Cl blend were close to 1.5 nm. The exciton dissociation,
charge transport, and charge collection ability of OPVs can be determined by BHJ film
morphology. Favorable phase separation between donor and acceptor in m-Me-ITIC-F
blend and m-Me-ITIC-Cl blend may have produced a slightly rougher surface, increasing
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the efficiency of these OPV cells [57,58]. These results consistently show the effects of the
halogen end group on the novel NFAs.
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To confirm the crystallinity of the fabricated BHJ films based on novel NFAs, X-ray
diffraction was performed. Figure 4a shows the X-ray diffraction patterns of neat acceptor
films. 2θ diffraction peaks are located at 5.22◦, 4.20◦, 3.54◦, and 3.39◦, respectively; these
values correspond to d-spacings of 16.91, 21.02, 24.94, and 26.02 Å, respectively. Notably,
the diffraction peaks of the m-Me-ITIC-F and m-Me-ITIC-Cl films are clear and distinct. As
shown in Figure 4b, the 2θ diffraction peaks of m-Me-ITIC, m-Me-ITIC-F, and m-Me-ITIC-Cl
BHJ blend films are located at 3.20◦, 3.61◦, and 3.66◦, respectively; these values correspond
to d-spacings of 27.61, 24.46, and 24.09 Å, respectively. When the novel NFAs were mixed
with the donor to produce blended BHJ films, the crystallinity of the PBDB-T:m-Me-ITIC-
Me film almost disappeared compared to pristine m-Me-ITIC-Me. Although the peaks
of the other BHJ films remained visible, lamellar distances were shorter for m-Me-ITIC-F
blend and m-Me-ITIC-Cl blend than m-Me-ITIC blend. This might be caused by strong
intermolecular interactions through the highly electronegative halogen atoms used as end
groups, which could induce greater molecular polarization [59]. This might be consistent
evidence for highly efficient OPV cells based on m-Me-ITIC-F and m-Me-ITIC-Cl.
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4. Conclusions

We designed and synthesized a 9-heterocyclic ring acceptor, m-Me-ITIC, with different
end groups by substituting the outward thienothiophene moieties with CPDT at indacen-
odithiophene. The developed m-Me-ITIC, m-Me-ITIC-Me, m-Me-ITIC-F, and m-Me-ITIC-Cl
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showed long-wavelength absorption at approximately 756–790 nm in solution because of
the symmetric, planar, and extended conjugated CPDT donor. The m-Me-ITIC-based accep-
tors were developed into polymer solar cells that contained benzodithiophene-based donor
polymers. The devices optimized for efficiency demonstrated PCEs of 5.9%, 3.6%, 11.8%,
and 10.8% using m-Me-ITIC, m-Me-ITIC-Me, m-Me-ITIC-F, and m-Me-ITIC-Cl, respectively.
Analyses of the charge dissociation and collection behaviors of the four fabricated OPV cells
found that the new NFAs with halogen end groups showed salient bimolecular recombina-
tion dynamics. The BHJ film morphology for exciton dissociation, charge transport, and
charge collection ability of the OPVs showed favorable phase separation in m-Me-ITIC-F
blend and m-Me-ITIC-Cl blend. The shorter lamellar distances of these two materials,
caused by strong intermolecular interactions through the highly electronegative halogen
atoms, could induce greater molecular polarization. This may also be consistent evidence
for highly efficient OPV cells based on m-Me-ITIC-F and m-Me-ITIC-Cl.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217615/s1, Figure S1: 1H-NMR and 13C-NMR of
compound 2; Figure S2: 1H-NMR and 13C-NMR of compound 3; Figure S3: 1H-NMR and 13C-NMR
of m-Me-ITIC; Figure S4: 1H-NMR and 13C-NMR of compound m-Me-ITIC-Me; Figure S5: 1H-NMR
and 13C-NMR of m-Me-ITIC-F; Figure S6: 1H-NMR and 13C-NMR of m-Me-ITIC-Cl; Figure S7: TGA
curves of (a) m-Me-ITIC, (b)m-Me-ITIC-Me, (c) m-Me-ITIC-F, and (d) m-Me-ITIC-Cl with a heating
rate of 10 ◦C/min; Figure S8: DSC thermograms of m-Me-ITIC-X (a) heat-only thermograms and (b)
cool-only thermograms; Figure S9: CV curves measured from Chloroform solution of m-Me-ITIC-Xs;
Figure S10: SCLC measurements of hole- and electron-only devices. J–V characteristics of (a) hole-
only devices and (b) electron-only devices based on PBDB-T and the acceptors blend films; Table S1:
The photovoltaic parameters of the OPVs based on PBDB-T:m-Me-ITIC, PBDB-T:m-Me-ITIC-Me,
PBDB-T:m-Me-ITIC-F, and PBDB-T:m-Me-ITIC-Cl with or without thermal annealing for 20 min
under the illumination of AM 1.5G, 100 mW·cm−2; Table S2: The photovoltaic parameters of the
OPVs based on PBDB-T:m-Me-ITIC, PBDB-T:m-Me-ITIC-Me, m-Me-ITIC-F, and m-Me-ITIC-Cl with
different donor:acceptor blend ratios under the illumination of AM 1.5G, 100 mW·cm−2; Table S3:
The optimized photovoltaic performances of the OSCs based on PBDB-T:m-Me-ITIC with different
additives under the illumination of AM 1.5G, 100 mW·cm−2; Table S4: The optimized photovoltaic
performances of the OSCs based on PBDB-T:m-Me-ITIC-Me with different additives under the
illumination of AM 1.5G, 100 mW·cm−2; Table S5: The optimized photovoltaic performances of
the OSCs based on PBDB-T:m-Me-ITIC-F with different additives under the illumination of AM
1.5G, 100 mW·cm−2; Table S6: The optimized photovoltaic performances of the OSCs based on
PBDB-T:m-Me-ITIC-Cl with different additives under the illumination of AM 1.5G, 100 mW·cm−2;
Table S7: Hole and electron mobilities of the devices based on PBDB-T and the acceptors blend films.
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