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ABSTRACT Integration of multiple biological datasets is crucial to understand comprehensive biological
mechanismswith the aid of a rapid development of biomedical technology. However, the predictivemodeling
for such an integrated dataset faces two major challenges, namely, heterogeneity and imbalance in the
acquired data. Thus, in this study, we present a method for the integration of multiple biological datasets
called multimodal multitask matrix factorization (MMMF) to address these issues. The MMMF uses matrix
factorization (MF) to integrate data from multiple heterogeneous biological datasets, and oversampling is
applied to resolve the imbalanced data during the training step. Moreover, gradient surgery is used for
multitask (MF and classification) learning to increase the quantity of classification information by projecting
the gradients of the MF that conflict with the classification gradient onto the normal plane of a classification
gradient. We demonstrate that MMMF outperforms other state-of-the-art biomedical classification models
in binary and multi-class classification problems using five biological datasets. We also show that MMMF
can be used as a feature selection approach for finding biomarkers that help in classification. The source
code of the MMMF is available at https://github.com/DMCB-GIST/MMMF.

INDEX TERMS Classification, feature selection, matrix factorization, multimodal, multitask.

I. INTRODUCTION
A rapid development in the field of biomedical technology
has facilitated the acquisition of various types of biolog-
ical data (e.g., gene expression, DNA methylation, and
microRNA [miRNA] expression). In general, each type of
biological data can only capture a part of the biologi-
cal complexity and provide independent and complemen-
tary information. Therefore, to decipher complex biological
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mechanisms, it is necessary to find consensus information
by integrating several types of biological data. It has been
demonstrated, particularly for disease diagnosis, that when
multiple biological datasets are integrated, the prediction
accuracy is improved compared to that of a single biological
dataset [1], [2], [3], [4], [5].

However, the analysis and predictive modeling of such
biological datasets can be achieved only after solving the
following two challenges. First, the integration of these
datasets is difficult owing to their heterogeneous properties.
For example, the distributions of various biological data
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differ, as do the number of features in each of these data;
additionally, the types of data differ (e.g., mutations involve
category values, but gene expression involves continuous
values). Hence, using traditional multimodal fusion methods
(e.g., early fusion and late fusion) may lead to an inferior
classification performance.

Several models that use new fusion methods to integrate
multiple biological datasets have recently been proposed. The
canonical correlation analysis (CCA) based data integration
analysis for biomarker discovery using latent components
(DIABLO) [6] is a supervised framework which has been
established by extending the sparse generalized CCA [7].
As DIABLO maximizes the covariance between linear com-
binations of variables, it is possible to select correlated fea-
tures from each biological dataset. Autoencoder (AE) based
concatenation AE (Concat AE) [8] and cross-modality AE
(Cross AE) [8] are proposed for breast cancer survival pre-
diction. Concat AE is a model that predicts by concatenating
the hidden layer of AE that obtains complementary informa-
tion from each biological dataset, and Cross AE maximizes
the agreement between multimodal data to achieve modality-
invariant representation. The matrix factorization (MF) based
collective deep matrix factorization (CDMF) [9] approach
exhibits a high performance by building a non-linear hier-
archical deep matrix decomposition that decomposes each
biological dataset into two matrices according to the classifi-
cation information. These two matrices include the multiple
coefficient matrices that represent specific characteristics of
each of the modalities and a common basis matrix with
consensus information from multimodal data.

Second, the problem of imbalance in data needs to be
resolved. Because most machine learning or deep learning
models assume relatively balanced distributions, dealing with
imbalanced datasets presents significant challenges [10]. One
of the traditional methods for resolving an imbalanced dataset
involves matching the number of each class through under-
sampling or oversampling. However, overfitting occurs when
the samples of the insufficient class are increased by over-
sampling. Hence, a synthetic minority oversampling tech-
nique (SMOTE) [11] has been proposed for oversampling
through segments joining the minority samples and their ‘‘k’’
minority-class nearest neighbors.

In this study, we propose the multimodal multitask matrix
factorization (MMMF) approach to solve the two aforemen-
tioned challenges using various recently proposed methods.
To fuse heterogeneous multimodal data, we divided these
data into multiple coefficient matrices and a common basis
matrix similar to the CDMF method. During this process,
we encountered two problems owing to the simultaneous
processing of the two tasks, namely, MF and classification.

First, the goal of MF is to decompose multimodal data
intomultiple coefficient matrices and a common basis matrix,
such that oversampling is not required. However, classifi-
cation models require oversampling to solve for overfitting
and high variance. To solve this problem, we proceed with
MF with the raw data itself, and then trained a classifier by

oversampling only a common basis matrix, which was used
as an input to the classifier. Thus, there are no oversampling
effects on MF, and the MMMF can be trained by applying
oversampling to the classification model alone.

Second, a common basis matrix is trained by both the
MF and classification. Here, MF was guided using relatively
little information regarding the classification. To solve the
multitask problem, we used a projecting conflicted gradient
(PCGrad) [12] that projects each gradient onto the normal
plane of the other gradient to minimize gradient interfer-
ence in case of conflicts between gradients. In this study,
PCGrad was used to provide a large amount of classification
information to a common basis matrix by projecting the MF
gradients that conflicted with the classification gradient onto
the normal plane of the classification gradient, which we call
gradient surgery.

We demonstrate the classification performance of MMMF
compared to other state-of-the-art biomedical classification
models in binary and multi-class classification problems
using multiple biological datasets, such as the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [13], Religious
Orders Study and Memory and Aging Project (ROSMAP),
breast invasive carcinoma (BRCA), kidney renal clear cell
carcinoma (KIRC), and colon adenocarcinoma (COAD)
datasets. In addition, we demonstrate that MMMF can be
used for feature selection of important biomarkers for clas-
sification.

The remainder of this study is organized as follows.
Section II introduces the related work on MF. Section III
describes the details of the proposedmodel. The experimental
setup and results are described in Section IV. Finally, the
conclusions of the work are proposed in Section V.

II. RELATED WORK
This section briefly reviews MF, collective matrix factoriza-
tion (CMF) [14], and CDMF related to our model, which
can combine heterogeneous multimodal data. Table 1 lists the
explanations of the notations used in Eq. 1-6 for clarity.

A. MATRIX FACTORIZATION (MF)
MF is a method of representing a matrix via two low-rank
matrices. The original matrix is X ∈ Rn×m and the two low-
rank matrices are defined by a basis matrix (U ∈ Rn×k ) and
coefficient matrix (V ∈ Rm×k );U ,V can be trained using the
following objective function:

min
U ,V
‖X − UV>‖2F , (1)

where ‖ · ‖2F is the frobenius norm, and the rank k <

min{n,m}. However, MF has two major limitations: (1) it
considers linear relationship and (2) it is applicable for a
single modality.

B. COLLECTIVE MF (CMF)
The CMF model extends the functionality of MF beyond
a single modality. CMF factorizes a common basis matrix
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TABLE 1. The notations used in Eq. 1-6.

(U ∈ Rn×k ) and multiple coefficient matrices (Vi ∈ Rmi×k )
that can have different value types. We define M as the
number of modalities and Xi ∈ Rn×mi as the i-th modality;
U and Vi can be trained using the objective function as
follows:

M∑
i=1

min
U ,Vi
‖Xi − UV>i ‖

2
F , (2)

where the rank k < min{n,mi|∀i}. Although CDF can be
applied to multimodal data, its applicability is limited owing
to its inconsideration of non-linearity.

C. COLLECTIVE DEEP MATRIX FACTORIZATION
The CDMF approach decomposes the multiple coefficient
matrices into a low-rank matrix and adds non-linearity using
the activation function (σ ). If the dimensions of the i-th
modality coefficient matrix are reduced into r factors with
Di,0,Di,1, . . . ,Di,r , then the dimension of i-th modality coef-
ficient matrix in j-th layer can be obtained as follows:

Vi,j ∈ RDi,j−1×Di,j

s.t. Di,0 = mi,Di,r = k,Di,j−1 > Di,j,∀i, j. (3)

When non-linearity is added, the i-th modality coefficient
matrix with non-linearity can be represented as follows:

gi(Vi) = σ (Vi,1(. . . , σ (Vi,r−1Vi,r ))). (4)

In Eq. (4), using a non-linear activation function, gi(Vi) can
capture complex biological processes that cannot be achieved
through linear matrix multiplication. The gi(Vi) also serves
as a non-linear mapping between the i-th modality (Xi) and a
common basis matrix (U ). The reconstruction loss resultant
expressing the original modality using the two matrices can

be computed as follows:
M∑
i=1

min
U ,Vi
‖Xi − Ugi(Vi)>‖2F . (5)

Further, to deliver the classification information to U and
Vi, U is used as the input to the classifier. We define f (·) as
the classifier, θ as the parameters of the f (·), It is the train
index,U [It ] as the rows ofU corresponding to the train index,
Y [It ] as the corresponding label, and Lclf(·) as the loss of the
classifier; the total objective function of CDMF is expressed
as follows:

min
U [It ],θ

Lclf(f (U [It ]),Y [It ])+min
U ,Vi

M∑
i=1

‖Xi − Ugi(Vi)>‖2F .

(6)

From Eq. (6), it is possible to train U , which has consensus
information of multimodal data, and Vi, which has comple-
mentary information of each modality. Moreover, usingU [It ]
as an input to the classifier, it is possible to learn classifica-
tion information in each matrix as well. Thus, CDMF can
account for the non-linear relationship and can be applied
to multimodal data in addition to being trained to deliver
classification information.

III. PROPOSED METHODOLOGY
In this section, we discuss the details of the proposed model
and how to select features that help classification using the
proposed model.

A. MULTIMODAL MULTITASK MATRIX FACTORIZATION
Figure 1 shows the forward and backward of the proposed
MMMF model. The MMMF model (1) integrates heteroge-
neous multimodal data, (2) solves the imbalance problem by
oversampling to avoid overfitting and reduce variances of the
classifier, and (3) solves the multitask problem, implying that
a common basis matrix is trained by both MF and classifica-
tion, using gradient surgery. The process of training MMMF
to counter these three issues is described as follows.

The first step involves the integration of the heterogeneous
multimodal data, comparable to the CDMF method. The
heterogeneous multimodal data (X1,X2, . . . ,XM ) matched
with the sample are decomposed into a common basis matrix
(U ) and the multiple coefficient matrices (V1, . . . ,VM ). Each
coefficient matrix is decomposed into r factors, while simul-
taneously reducing dimensions and adding non-linearity
(gi(Vi) = σ (Vi,1(. . . , σ (Vi,r−1Vi,r )))).
The second step involves solving the imbalance prob-

lem through oversampling. To apply oversampling only to
the classification task excluding the MF task, U [It ] is con-
structed, which is used as the training set of the classifier.
Next, the SMOTE oversampling is performed using U [It ]
and the corresponding label Y [It ]. The SMOTE oversam-
pling generates new samples and their labels for relatively
insufficient classes in Y [It ], and they were combined with
existing U [It ] and Y [It ], resulting in O(U [It ]) and O(Y [It ]),
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FIGURE 1. Illustration of forward and backward of the MMMF. MMMF can integrate heterogeneous multimodal data by decomposing them into a
common basis matrix (U) and multiple coefficient matrices (V1,1, . . . ,VM,2); it adds non-linearity using the activation function (σ ). (a) Model forward:
MMMF performs oversampling by indexing the part of the train index in U that have the consensus information in the heterogeneous multimodal data,
and subsequently, supplies it as an input to the classifier to solve the imbalance problem. (b) Model backward: The gradient propagated from the
classifier is indexed by the MMMF, except for the gradient that was added due to oversampling in the model forward. After indexing, the gradient for
updating U (Gu) is propagated by applying gradient surgery which projects the gradients propagated by MF (GMF = [G1, . . . ,GM ]) that conflicts with the
gradient propagated by the classifier (Gclf) onto the normal plane of the Gclf to solve the multitask problem. By applying gradient surgery, a large amount
of classification information can be delivered to U .

respectively. Consequently overfitting and high variance can
be reduced because the classifier can be trained using samples
with the equal distribution of classes.

The imbalanced problem can be solved by oversampling;
however, an additional process needs to be executed in the
model backward process. In the model backward process, the
gradient propagated from the classifier (Gclf) for updating
U was also oversampled; thus, it is necessary to exclude
the oversampled indexes from Gclf before propagating to
U . Moreover, as only the train index of U is input to the
classifier, the Gclf in the validation and test index (Gclf[Īt ])
has no value; thus,Gclf[Īt ] is declared as 0 to perform gradient
surgery.
The third step requires performing gradient surgery to

solve the multitask problem. In Eq. (6), it can be seen that
both gradients propagated from MF (GMF = [G1, . . . ,GM ])
and gradient propagated from classifier (Gclf) are used to
update U , which denotes that gradients from the tasks could
be in conflict with each other. Here, while the GMF is propa-
gated M times from the matrix multiplication by Ugi(Vi)>,
Gclf is propagated once. To resolve this problem, we used
gradient surgery that can be applied for multitask learning.
The gradient surgery projects the GMF that conflicts with
the Gclf onto the normal plane of the Gclf (Gi −

Gi·Gclf
||Gclf||2

Gclf,

i = 1, . . . ,M ). Thus, U can be updated to be more specific
to the classification.

As an additional consideration, U , which is the input of
the classifier, continues to change during MMMF training.
Moreover, as U is updated by applying gradient surgery, it is
significantly changed by Gclf. Therefore, to ensure a stable
input to the classifier, only GMF is used to update from the
beginning to a certain epoch (Tp), except for the Gclf. Until
Tp, U is trained by only GMF to have consensus information,
and after Tp, U is trained by GMF and Gclf to have consensus
information for classification from the heterogeneous multi-
modal data. Algorithm 1 provides detailed steps for training
the proposed model.

B. FEATURE SELECTION USING MMMF
The MMMF is trained to obtain a common basis matrix
(U ) with consensus information for classification from the
heterogeneous multimodal data. Simultaneously, MMMF is
trained to obtain the multiple coefficient matrices (gi(Vi))
with complementary information and non-linearity of each
modality. Here, we identify the features that are useful for
classification using U and gi(Vi) after training the MMMF,
which is illustrated in Figure 2.

First, modules in U contributing to classification are
selected. The criterion for selecting modules contributing
to classification is a significant difference (p-value < 0.05)
between classes from a t-test for binary class and ANOVA for
multi-class. Second, for eachmodule of the coefficient matrix
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FIGURE 2. Illustration of feature selection using MMMF. (a) Select the modules in U that satisfy the criterion of a significant difference (p < 0.05) among
the classes. The selected module (M3) has more classification information than the module that does not. Subsequently, select the columns of the
coefficient matrix (gi (Vi )>) corresponding to the selected modules. The selected columns (gi (Vi )>[3]) have the weights of modality features
corresponding to modules with classification information. (b) Select a specific number of features having the largest absolute values among the columns
of the coefficient matrix selected in (a). Selected features (F6, F7) are expected to aid in classification.

with non-linearity (gi(Vi)) corresponding to the modules
selected inU , a specific number of features having the largest
absolute values are selected. For example, in Figure 2(a), the
first module of U (M0) does not exhibit a significant differ-
ence as p = 0.817; whereas, the last module (M3) shows a
significant difference as p = 0.046. Thus, M3 is selected.
Subsequently, F6 and F7 with the largest absolute values
in M3 of the coefficient matrix are selected as important
features (Figure 2(b)).

IV. RESULTS
A. DATA COLLECTION AND PREPROCESSING
We applied our proposed method to demonstrate its effective-
ness at classification and feature selection using five different
datasets: ADNI for Alzheimer’s Disease (AD) vs. normal
control (NC) classification, ROSMAP for AD vs. NC clas-
sification, BRCA for subtypes (luminal A, luminal B, basal-
like, HER2-enriched) classification, KIRC for early-stage vs.
late-stage classification, and COAD for high vs. low survival
times classification.

In the case of the ADNI dataset, three modalities of struc-
tural magnetic resonance imaging (sMRI), positron emis-
sion tomography (PET), gene expression (GE), and clinical
data were downloaded from the ADNI website.1 The ADNI
database contains data collected from different modalities

1http://adni.loni.usc.edu/

over a long period. In this study, we conducted experiments
by selecting samples based on the GE dataset, which has
fewer samples than the neuroimaging dataset. For GE data,
20392 genes were used by averaging the expression values
of the same gene symbol. For the neuroimaging dataset, the
age and sex are confounding factors that bias the analysis
[15], [16], and it is known that the model performance
improves when these confounding factors are removed
[3], [17]. Therefore, we removed three confounding factors:
age, gender, and cohort (ADNI2 or ADNIGO) from the neu-
roimaging data using generalized linear regression [18].

In the case of ROSMAP dataset, three modalities of GE,
DNA methylation (ME), and microRNA expression (MI)
and clinical data were obtained from the ROSMAP cohort
in the AMP-AD Knowledge Portal.2 The GE dataset was
used by applying log2-transformed to quantile normalized
fragments per kilobase of transcript per million mapped read
(FPKM) values. TheME dataset was measured β-value using
the Infinium HumanMethylation450 BeadChip. The missing
β-value of ME was replaced through the k-nearest neigh-
bor algorithm, and probes of CpGs located in the promoter
region (TSS200, TSS1500) were assigned to the correspond-
ing gene. All duplicated genes were used by replacing them
with the average values. The MI dataset was normalized

2https://adknowledgeportal.synapse.org/
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Algorithm 1 Details Steps for Training the Proposed
MMMF Model
Define:
Number of modalitiesM , Modalities Xi, Label Y ,
Classifier f (·) with parameters θ , Train index It ,
Validation index Iv, Cross entropy loss LCE, Initial
patience Tp, Max iterations Tmax, Regularization rates
α, β, Learning rates η1, η2

1 while Lval does not converged or t ≤ Tmax do
2 /*Step 1. Integrating heterogeneous multimodal

data*/
3 for i← 1 to M do
4 gi(Vi)← σ (Vi,1(. . . , σ (Vi,r−1Vi,r )))
5 Lre← ‖Xi − Ugi(Vi)>‖2F
6 Vi,j = (1− α)Vi,j − η1∇Vi,jLre
7 Gi← ∇ULre
8 end
9 GMF← [G1,G2, . . . ,GM ]

10 /*For stable input of classifier, GU is updated by
GMF from the beginning to a certain epoch*/

11 if t ≤ Tp then
12 GU ← mean(GMF)
13 end
14 else
15 /*Step 2. Solving the imbalance problem as

oversampling*/
16 O(U [It ]),O(Y [It ])←

Overampling(U [It ],Y [It ])
17 Lclf← LCE(f (O(U [It ])),O(Y [It ]))
18 θ = (1− β)θ − η2∇θLclf
19 Gclf[It ] = (∇O(U [It ])Lclf)[It ]
20 Gclf[Īt ] = 0
21 /*Step 3. Performing gradient surgery to solve

the multitask problem*/
22 for i← 1 to M do
23 if Gi · Gclf < 0 then
24 Gi = Gi −

Gi·Gclf
||Gclf||2

Gclf

25 end
26 end
27 GU = mean(Gclf,GMF)
28 end
29 /*Updating U to have consensus information for

classification from the heterogeneous multimodal
data*/

30 U = (1− β)U − η2GU
31 Lval← LCE(f (U [Iv]),Y [Iv])
32 t← t +1
33 end

through a variant stabilization normalization method, and the
batch effect was corrected using Combat [19].

The original BRCA dataset for three modalities of GE,
protein abundance (PROT), and copy number variants (CNV)

is publicly available on the Broad GDAC Firehose3 and the
National Cancer Institute GDC Data Portal,4 where details
about data generation can be found. We obtained the BRCA
data using the RTCGA R library [20]. For the KIRC dataset,
three modalities of GE (Illumina mRNAseq), ME (Illumina
HumanMethylation450 BeadArray), and MI (IlluminaHiSeq
miRNAseq) were obtained from The Cancer Genome Atlas
(TCGA). The ME dataset used in this paper was prepro-
cessed according to Ma et al. [21]. For the COAD dataset,
three modalities of GE, ME, and MI were downloaded from
http://compbio.cs.toronto.edu/SNF/SNF/Software.html [22],
whichwere originally collected from the TCGA site. For tran-
scripts with the same symbol in the GE data, its expression
values were averaged.

We performed a stratified five-fold cross-validation (CV)
strategy to evaluate classification and feature selection. The
datasets were split into a training dataset (60%), validation
dataset (20%), and test dataset (20%) in each CV. Biological
data often suffer ‘‘curse of dimensionality’’ because the num-
ber of features is much greater than the number of samples.
To alleviate this problem, we selected the top 1000, 2000, and
3000 features with the highest variances based on the training
dataset of each CV. The details of datasets and the number of
features used for training are listed in Table 2.

B. EXISTING METHODS FOR PERFORMANCE
COMPARISON
We compared the classification performance of the MMMF
with the following seven existing methods. We selected
(1) support vector machine (SVM) as a machine learning
method and (2) deep neural network (DNN) as a deep learning
method. Furthermore, as models specialized in integrating
multiple biological datasets, the (3) DIABLO, (4) Concat AE,
(5) Cross AE, (6) multitask attention learning algorithm for
multi-omics data (MOMA) [23], and (7) supervised deep gen-
eralized canonical correlation analysis (SDGCCA) [24] were
chosen. In addition, all the compared models were trained by
applying SMOTE oversampling for fair comparison.

MMMF applied oversampling to solve the imbalance prob-
lem, and gradient surgery to the multitask problem, implying
that a common basis matrix is trained by MF and classi-
fier. In order to find out whether each solution affects the
classification, we did ablation studies on: (8) MMMF with-
out oversampling and gradient surgery (MMMF-Over-GS),
(9) MMMF without oversampling (MMMF-Over), and
(10) MMMF without gradient surgery (MMMF-GS).

C. EXPERIMENTAL SETTING
Owing imbalance in the data, the balanced accuracy
(BA) [25], F1-score (F1), Matthews correlation coefficient
(MCC) [26], and area under the receiver operating character-
istic curve (AUC) were used for evaluation, which have been
also used in previous biomedical studies [27], [28], [29].

3https://gdac.broadinstitute.org/
4https://portal.gdc.cancer.gov/
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TABLE 2. Summary of datasets.

The multi-class BRCA dataset was evaluated as a weighted
average for the F1 and One-vs-One AUC. All model hyper-
parameters were selected based on the validation AUC of
each CV. The MMMF was trained using the following
hyper-parameters.

First, the following hyper-parameters were selected
through the validation AUC of each CV: Define the
dimension of i-th modality multiple coefficient matrices as
Di,1,Di,2, and define the dimension of the hidden layer of
the classifier as h. Di,1,Di,2, and h were selected to satisfy
h < Di,2 < Di,1 in [110, 90, 70, 50, 30]. As the minimum
value of Di,0 denotes 111, which is the dimension of PET
from the ADNI dataset, all the conditions of Eq. (3) are
satisfied. The initial patience for training U using only the
GMF (Tp) is 30 or 50.

Second, the fixed hyper-parameters are as follows: Learn-
ing rate (η1) was 1e−3 and regularization rate (α) was 1e−4,
both of which were used for training multiple coefficient
matrices (Vi,r ). Learning rate (η2) was 1e−3 and regulariza-
tion rate (β) was 1e−3, both of which were used for training
the classifier (f (·)) and a common basis matrix (U ). Both U
and Vi,r were initialized based on singular value decompo-
sition (SVD) [30]. However, when using the COAD dataset,
and when Di,1 was 110, the number of samples (92) was less
than Di,1. Thus, initialization through SVD was impossible.
In this case, He initialization [31] was used.

The MMMF was implemented in the 1.7.0 version of
PyTorch and experimented on a single NVIDIA Geforce
RTX 3090 GPU. The hyper-parameters of other models are
described in Supplementary Section S1 and Supplementary
Table S1.

D. PERFORMANCE OF CLASSIFICATION
The classification performance in terms of BA is summarized
in Table 3 and F1, MCC, and AUC values are summarized
in Supplementary Table S2. In addition, the visualization of
receiver operating characteristic (ROC) curve and precision-
recall (PR) curve are presented in Supplementary Figure S1.
The proposedMMMFmethod exhibited the best performance
in 10 out of 12 cases in the ADNI dataset and 5 out of
12 cases in the BRCA dataset; thereby, proving the superior-
ity of MMMF compared to the previously developed models.

However, MMMF is the second best to MOMA on the
ROSMAP and KIRC datasets, and also second best to Cross
AE on the COAD dataset.
To estimate the statistical significance of the performance

of our model compared to other models, we performed
the Wilcoxon signed rank test by obtaining the average
of the five-fold CV classification results from all datasets
(5 datasets × 3 feature sets after preprocessing); the results
are summarized in Table 4. We found that MMMF statisti-
cally significantly outperformed other competing models in
22 out of 28 cases (p-value < 0.05).
To estimate the effect of oversampling and gradient surgery

in classification, we performed a Wilcoxon signed rank test
using the averages of five-fold CV classification results of
all metrics;, and the results are summarized in Table 5.
The performance was observed to improve statistically:
oversampling (p-value = 2.9E-12), and gradient surgery
(p-value= 3.3E-6). However, when comparingMMMF-Over
and MMMF-Over-GS, it can be seen that only 24 out of
60 performances were improved (p-value = 0.99), which
adversely affected its performance. Gradient surgery forcibly
emphasizes the gradient of a common basis matrix in the
direction of the gradient of the classifier, and if the perfor-
mance is good, it helps in classification; but in the opposite
case, it hinders the classification performance. The proposed
MMMF model solves the imbalance problem by applying
oversampling and exhibited a better performance on applying
gradient surgery to solve the multitask problem.

E. FEATURE SELECTION RESULTS
In Section III-A, we mentioned that a large quantity of clas-
sification information can be delivered to a common basis
matrix (U ) by applying gradient surgery. Hence, the method
of feature selection using the U and multiple coefficient
matrix with complementary information (gi(Vi)) was pro-
posed in Section III-B. Thus, we investigated whether the
selected features are helpful in classification.

Feature selection using MMMF trained with training data
in each CV was performed in the following three steps: First,
only the validation indices were selected from a common
basis matrix (U [Iv]) to exclude test information. Second,
we selected significant modules using ANOVA for the
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TABLE 3. Balanced accuracy of classification with the stratified five-fold cross-validation.

multi-class BRCA data and t-test for all binary class datasets
(p-value < 0.05). If there is no case which satisfies the
criterion of p-value< 0.05 (i.e., third CV with COAD dataset
and the number of features after preprocessing is 1000), one
module with the lowest p-value was selected. Finally, the
top 5, 10, 20, and 30 features with the largest absolute values
among coefficients corresponding to the significant modules
(top n) were selected. The number of selected features for
each CV is shown in Supplementary Table S3 that is calcu-
lated as the number of significant modules multiplied by the
top n after excluding duplicated features.
SVM was used as a classifier to evaluate the performance

of the selected features. For comparison, the same number
of randomly selected features and all features were used for
classification. For the randomly selected features, MMMF
was performed 100 times in each CV; subsequently, the
mean and standard deviation were measured. After the per-
formance measurement, the p-value was measured through
the t-test to check whether the selected features using
MMMF and random features showed a significant difference
(p-value < 0.05).

TABLE 4. Pairwise comparison of classification performance between
MMMF against other models based on the Wilcoxon signed rank test
(5 datasets × 3 feature sets after preprocessing).

Figure 3 shows the performance of models with selected
features and the visualization of ROC curves and RP
curves are depicted in Supplementary Figure S2. For ADNI
(Figure 3 (a)), MMMF exhibited a greater performance com-
pared with using all the features and significantly outper-
formed randomly selected features in 37 out of 48 cases.
It was also observed that the performances of randomly
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FIGURE 3. Classification performances with selected features. Results of the (a) ADNI dataset, (b) ROSMAP dataset, (c) BRCA dataset, (d) KIRC dataset,
(e) COAD dataset. mp denotes the number of features after preprocessing. The top n is the number of features with the largest absolute value among the
coefficients corresponding to the significant modules selected using MMMF. ‘‘MMMF’’, ‘‘Random’’, and ‘‘All’’ indicate the results of using features selected
by MMMF, the same number of randomly selected features as MMMF, and all features (mp), respectively. * indicates that the performance difference
between ‘‘MMMF’’ and ‘‘Random’’ measured by the t-test was significant with a p-value < 0.05.
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TABLE 5. Pairwise comparison of classification performance for the estimation of effects of oversampling and gradient surgery based on the Wilcoxon
signed rank test (5 datasets × 3 feature sets after preprocessing × 4 metrics).

TABLE 6. Pairwise comparison of classification performance between
MMMF against other models based on the Wilcoxon signed rank test
(5 datasets × 3 feature sets after preprocessing).

selected features were better than those using all the features.
This can be attributed to the interference of the features
with each other for classification. For the ROSMAP and
KIRC datasets (Figure 3(b), Figure 3(d)), the classification
performances using all the features were the highest for most
cases. However, MMMF significantly outperformed ran-
domly selected features for 40 out of 48 cases for ROSMAP
and 34 out of 48 cases for KIRC. For BRCA (Figure 3(c)),
MMMF outperformed randomly selected features and using
all features for 47 and 46 out of 48 cases, respectively. For
COAD (Figure 3(e)), comparative performances of MMMF,
randomly selected features, and all features differ depending
on cases and none of the approaches significantly outperform
other approaches. This could be attributed to the insuffi-
ciency in the number of samples in COAD compared to other
datasets.

To estimate the statistical significance of the performance
of MMMF compared to the case of using randomly selected
features, we performed the Wilcoxon signed rank test using
the average of five-fold CV feature selection results from
all datasets;, the results are summarized in Table 6. The
features selected using MMMF statistically outperformed
randomly selected features in 14 out of 16 cases. Among
the 12 average of five-fold CV test AUCs (3 feature sets
after preprocessing× 4 top n) for each dataset, the best
performance feature sets were described in Supplementary
Tables S4-8.

F. OVERSAMPLING AND GRADIENT SURGERY
EFFECTS IN FEATURE SELECTION
To examine the effect of oversampling and gradient surgery
on feature selection, we compared performances of selected

features when MMMF-Over-GS, MMMF-Over, MMMF-
GS, and MMMF were used. For each approach, the top
50 features corresponding to the module with the lowest
p-value were selected. The SVMwas evaluated as a classifier.
Randomly selected features were also compared, where the
same numbers of features as MMMFwere randomly selected
100 times and the average and standard deviations were
calculated in each CV. Performances of other methods were
measured by obtaining the average of five-fold CVs.

Supplementary Figure S3 shows the performance com-
parison of selected features using these methods. To esti-
mate the effect of oversampling and gradient surgery in fea-
ture selection, we performed a Wilcoxon signed rank test
using the averages of five-fold CV feature selection results
of all metrics, and the results are summarized in Table 7.
When oversampling was applied, 78 out of 120 performances
were significantly improved statistically (p-value = 2.9E-4).
However, when gradient surgery was applied, only 62 out
of 120 cases exhibited an improved performance; therefore,
the improvement was deduced to be statistically insignifi-
cant (p-value =0.7). When gradient surgery was used with-
out oversampling, only 18 out of 60 performances were
improved, exhibiting a statically significantly reduced perfor-
mance (p-value=3.0E-5). Nonetheless, similar to the results
of Section IV-D, the gradient surgery improved the perfor-
mance in 44 out of 60 cases and showed a significant p-value
of 3.6E-3 on the application of oversampling.

The results of Section IV-E and those of this section not
only show that MMMF is not a model wherein the perfor-
mance is largely determined by a classifier, but also one in
which the classification information is well transmitted to a
common basis matrix (U ). In addition, it can be seen that
oversampling has a great influence on the process of transmit-
ting classification information, which can be emphasized by
applying gradient surgery in situations where classification
performance is improved through oversampling.

G. BIOMARKERS IDENTIFIED BY THE MMMF
We further examined whether selected features by MMMF
are previously known disease related genes for ADNI and
BRCA datasets, in which MMMF had the best performance
compared to other 11 models in the classification experiment.
For each dataset, one module with the best AUC among the
15 experiments (3 feature sets after preprocessing x 5 CVs)
in Section IV-F was used. From the module, five genes
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TABLE 7. Pairwise comparison of feature selection performance for the estimation of effects of oversampling and gradient surgery based on the
Wilcoxon signed rank test (5 datasets × 3 feature sets after preprocessing × 4 metrics).

TABLE 8. Average number of parameters, GPU memory usage, and computational time required to train models.

with the largest absolute values were selected. The following
genes were selected through this process: DSC1, CARD16,
METTL7B, RGMB, and CHEK1 for ADNI and NLRP3,
PRAM1, ZNF804A, SFRS9, and GNG10 for BRCA.

In AD pathogenesis, DSC1 is known to be a poten-
tial involvement of the adrenergic signaling pathways [32].
The overexpression of METTL7B is known to reduce Aβ
generation [33], [34]. CSF levels of RGMB were decreased
in AD and Aβ negative mild cognitive impairment (MCI) and
plasma levels of RGMB were decreased in AD and Aβ posi-
tive MCI. [35]. CHEK1 is related to cognitive function in the
APP/PS1mousemodel andmediates tau/APP hyperphospho-
rylation in primary neurons [36]. Although the association of
CARD16 to AD is not known, it was differentially expressed
in both Parkinson’s disease and bipolar disorder [37].

In breast cancer, NLRP3 is a well known inflammasome
involving in inflammatory and immunity [38], [39]. SFRS9
is an mRNA splicing factor protein and phosphorylation
of SFRS9 was found in ErbB2-overexpressing breast and
ovarian cancer cell lines. Moreover, the depletion of SFRS9
reduced the migration rate of ErbB2-overexpressing ovar-
ian cancer cells [40]. GNG10, PRAM1, and ZNF804A were
not well studied in breast cancer, but they were known
to be related to other cancer types. In a recent study,
GNG10 is known to be involved in the prognosis of lung
adenocarcinoma (LUAD) and efficacy of chemotherapy in
LUAD [41], and its overexpression is related to the progres-
sion of colorectal cancer [42]. PRAM1 was suggested as one
of the 10-gene signature for tumor immune microenviron-
ment related to prognosis of non-small cell lung cancer [43].
Finally, ZNF804A was found to be correlated with the sur-
vival of pancreatic cancer patients [44].

H. COMPARISON OF MEMORY AND
COMPUTATIONAL TIME
We comparedMMMF and other DNN-basedmodels to check
the GPU memory and computational time during the classi-
fication experiment. Moreover, MMMF-Over-GS, MMMF-
Over, andMMMF-GSwere compared to check the additional

increase in GPUmemory and computational time when over-
sampling and gradient surgery were used. Supplementary
Table S9 summarized the number of parameters of the model,
GPU memory, and computational time for each model for
all the datasets. Table 8 shows the average of all datasets.
The other multi-omics models, Concat AE and Cross AE,
employ the decoder to ensure that the number of parameters is
twice that of DNN, andMOMAusing attention has the largest
number of parameters. However, for MMMF, the number of
parameters is comparable to that of DNN, although it requires
larger GPU memory. In addition, it can be seen that when
oversampling and gradient surgery are applied, there is no
increase in GPU memory; however, the computational time
increases.

V. CONCLUSION
In this study, we defined two challenges when modeling
using multiple biological datasets: data heterogeneity and
imbalanced classes of samples. To address these challenges,
we proposed the MMMF method that performs oversam-
pling and gradient surgery for multimodal biological datasets.
MMMF significantly improved classification performance
compared to other biomedical classification models when it
was applied to five biomedical tasks. Furthermore, it exhib-
ited a significantly enhanced feature selection performance
compared to using random or all features. Thus, MMMF
is a prominent model that can be used to extract important
features for classification tasks in the field of biomedicine.
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