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Abstract: Propagation and association tasks in Multi-Object Tracking (MOT) play a pivotal role
in accurately linking the trajectories of moving objects. Recently, modern deep learning models
have been addressing these tasks by introducing fragmented solutions for each different problem
such as appearance modeling, motion modeling, and object associations. To bring unification in
the MOT task, we introduce a pixel-guided approach to efficiently build the joint-detection and
tracking framework for multi-object tracking. Specifically, the up-sampled multi-scale features from
consecutive frames are queued to detect the object locations by using a transformer–decoder, and
per-pixel distributions are utilized to compute the association matrix according to object queries.
Additionally, we introduce a long-term appearance association on track features to learn the long-term
association of tracks against detections to compute the similarity matrix. Finally, a similarity matrix
is jointly integrated with the Byte-Tracker resulting in a state-of-the-art MOT performance. The
experiments with the standard MOT15 and MOT17 benchmarks show that our approach achieves
significant tracking performance.

Keywords: multi-object tracking; transformer; object detection

1. Introduction

Multi-object tracking (MOT) has a variety of applications, including autonomous
driving, sports video analysis, robot navigation, and visual surveillance. MOT helps to
analyze the behavior of moving objects, and it also estimates the trajectory of moving
objects. The applications of MOT are very essential in crowded places to analyze the
movements of people in video surveillance systems. Recently, the performance of MOT
algorithms has been significantly improved.

In the tracking-by-detection paradigm, an external detector generates the bounding box
detections, and a tracker takes those detections as input for the data association task. The main
objectives are to estimate the states of the moving objects and assign a unique identifier for each
moving object. Multi-object tracking can be performed by online or offline processing to estimate
the trajectories. Online MOT methods take the detections at the current frame and immediately
generate the trajectories [1–6], whereas near-online approaches look ahead for a certain number
of frames before linking to the trajectories [7,8]. In offline tracking, a mini-batch of detections
is formed and processed recursively to generate the final trajectories [9–12]. Recently, many
approaches have introduced a joint detection and tracking paradigm by performing end-to-end
inference [13–16] on upcoming frames. These MOT methods [13–17] use neural network
architectures for multi-object tracking and achieve state-of-the-art performance on the
public MOT benchmarks.

The common assumption in joint detection and tracking methods is to use the off-the-
shelf object detector and link the detected objects using a tracking head which results in
higher MOT accuracy due to fewer false positives. Current ROI-based approaches fail to
detect all objects when a camera scene contains small objects, and the tracking complexity
increases at the tracking head when a frame contains a large number of objects. Our
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main goal is to improve joint detection and tracking by utilizing per-pixel distributions
along with the transformer–decoder, which contributes to robust association and object
center detections.

A key challenge is the integration of multiple models, such as appearance affinity,
motion, and contextual cues for multi-object tracking. These key models are essentially
propagation and association tasks. Many approaches have introduced specific and frag-
mented solutions for each MOT task, such as improvements in Reid networks, motion
models, and different learning strategies. The transformer-based architectures have shown
promising results in object detection [18,19] and multi-object tracking [13,20,20–22]. In the
joint detection and tracking paradigm, we have introduced an end-to-end approach to
propagate and associate the moving targets. The transformer-based architecture is used
to generate pixel-wise distributions as the prominent Reid features within the network
to track the multi-objects with a ByteTrack [23] association framework. More specifically,
the consecutive frames are processed through a shared backbone network to generate the
multi-scale FPN features. Afterward, the FPN features are transformed using resizing
and concatenation functions. Finally, the transformed features are used in multi-scale
deformable encoder–decoder. We have extracted the decoder’s last layer up-sampled
pixel-wise distribution and computed the similarity matrix between detections and tracks.
The resulting similarity matrix is integrated with ByteTrack [23] association. The proposed
approach is shown in Figure 1.
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Figure 1. Our proposed architecture. The shared backbone is used to generate multi-scale feature
embeddings. An encoder generates memory of frame multi-scale features It−1 and queues it to the
decoder of It0. The encoder and decoder consist of multi-head self-attention layers, cross-attentions,
and feed-forward networks. The pixel distribution between It−1 and It0 of decoder memory is
generated to compute the similarity matrix. The similarity matrix is then integrated with state-of-the-
art ByteTrack [23] association framework, Finally, the bounding box, class score, and center offset
are generated using multi-layer perception heads. Blue arrows indicate the current frame bounding
box, size, and class score. Red and green arrows indicate the consecutive frame features used for the
reid association.

The details of the rest of the paper are as follows. In Section 2, related works based
on conventional and modern MOT approaches are discussed. In Section 3, our proposed
approach and its modules are introduced. In Sections 4 and 5, the ablation studies and MOT
comparison with the other state-of-the-art methods are presented. At last, we conclude our
method in Section 6.

2. Related Works

In multi-object tracking, an object’s similar appearance and unpredictable motion make
the tracking problem more challenging. The majority of solutions have been proposed to
solve these MOT challenges [2,4–6,9,11,13,14,17,24–30]. We review the conventional and
transformer-based joint detection multi-object tracking frameworks.
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2.1. Conventional Online Propagation and Association in MOT

Several Bayesian motion models have been proposed for target tracking, and they have
achieved significant success in sonar-based multi-target tracking. The visual-based multi-object
tracking approaches have been using Bayesian models for motion predictions, and most of the
works are proposed by combining the appearance and motion models [8,31–33]. However,
neither the appearance information nor the motion information is sufficient to perform
multi-object tracking. In motion-based tracking, a simple Kalman filter [34] has been widely
used for prediction and estimation. After significant success in sensor-based tracking [35],
many motion-based approaches [2,3,23,31,32,36] use a Kalman filter as a basic predictor
in their method. The motion models help to reduce the search space for the appearance
model by predicting likelihood positions, which increases the overall speed of the tracker.

After the potential growth of the deep learning era, the majority of researchers [37,38]
have been using convolution neural networks as an appearance model in MOT. Many
approaches use conventional and deep appearance models for object appearance discrim-
ination [7,15,36]. DeepSORT [17] used the bounding box overlap and deep appearance
features from the neural network to associate bounding boxes with the generated tracks.
In [1], to handle appearance, motion, and object interaction, three different RNNs have
been modeled and trained separately for each different task. Recently, a Bilinear LSTM
architecture has been used with the MHT framework [7]. This approach processing is
semi-online, and it uses recurrent architecture as a regressor for the gating. The LSTM
output is formulated as a least square regression, and the candidate is assigned to the
tracklet based on the tracklet’s score. CenterTrack [16] predicted the previous location by
using center offsets, and it reduced the post-processing overhead by jointly detecting and
tracking moving objects [39,40].

2.2. Transformer-Based Multi-Object Tracking

Initially, a transformer model was introduced in natural language processing research.
The transformer showed significant performance in computer vision tasks, such as image
classification, segmentation, object detection, pose estimation, and 3D recognition. As object
detection is a seminal step in the tracking, a similar end-to-end model named DETR was
proposed in [18], and later it was extended to the object-centric approach by [19]. In [41],
TransVOD used a temporal query encoder to aggregate the transformer output queries
from different frames. Later, MOTR [21] used a vanilla transformer to update the track
queries from frames by a tracking-by-attention scheme. TrackFormer [42] applied a similar
approach to the MOT domain and handled newly appearing objects and tracks using a
transformer. The Transcenter [13] computed the offset prediction from the previous frame
and performed object associations.

Use of pixel-wise features in the vision domain has shown significant performance for
different applications. The PAFormer [43] utilized a flow-guided approach by wrapping
the pixel decoder features with the optical flow. The bi-linearly transformed features with
an optical flow are used to detect the object inside the frame. It is noted that our approach
used only up-sampled pixel distributions without optical flow. As result, it reduced extra
computational overhead of our tracker.

3. Proposed Approach

The transformer-based architectures have shown significant improvements in detect-
ing and tracking multiple objects in the form of bounding boxes [15] or center points [16].
Different from [13], the object locations are propagated using a transformer-based meta-
architecture. Afterward, the long-term similarity function is used to associate the object
with the tracks.

3.1. Transformer-Based Propagation

Our method uses a ResNet50 [44] to compute the multi-scale feature pyramid network
features, and the transformer encoder produces the latent memory features as follows.
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The consecutive image frames from the video are the input to our architecture. We
process I(t−1) and I(t) through backbone architecture to generate the low resolution features
Ft = backbone(I(t)). The Ft ∈ RdXHxW contain the height H and width W of the multi-scale
features, and d is the dimensions. Similarly, F(t−1) features are extracted from the I(t−1) by
using the same backbone network with the shared model parameters.

Our approach uses a transformer-based encoder to compute the internal latent mem-
ory between two consecutive frames. The transformer encoder consists of a multi-layer
attention head which takes the backbone features F(t) in dXHW dimensions for each FPN
layer. We supply the positional encoding, which is added with the input feature vector [19].
Inspired by the recent works [45,46], masked attention is used to deal with small objects.
These attentions are useful to compute the center local representations. The encoder has
computed the hidden state using multi-scale deformable DETR, which has learned the
context information by self-attention. The mask-based attention [45,47] mechanism can be
represented as follows,

Xl = so f tmax(Ml−1 + QlKT
l ), Vl + Xl−1 (1)

The Xl ∈ RNXC are the query features at the index layer l, and Ml is the mask
matrix and the linear transformation. The mask matrix has initialized as a zero matrix,
and the linear transformation has been used as query features Ql = fQ(Xl−1). The key
Kl = fK(Ft) and value Vl = fV(Ft) are computed using image features under the transfor-
mation fQ(.), fK(.) and fV(.). The masked attention features are passed through a standard
self-attention mechanism and feed-forward network. We have propagated the last 2048
dimension channel by using bi-linear interpolations over the last FPN layer. The head for
each layer output is constructed, and for each index l, the query embeddings are decoded
by using multi-layer perceptron to obtain the object classes, object bounding boxes, and the
per-pixel pixels distributions according to query features as follows,

Oclass
l = MLPclass(Ql), (2)

Oscore
l = MLPscore(Ql), (3)

Ocenter
l = MLPcenter(Ql) (4)

Osize
l = MLPsize(Ql) (5)

where the MLP is multi-layer perceptron. The per-pixel distributions from the standard
deformable transformer–decoder [19] is utilized to compute the pixel distribution using
object center Ocenter

l as follows,

Pl [i, h, w] = sigmoid(Ftrs.
l [h, w, :], Ocenter

l [i, :]) (6)

Featk = Pl [i] (7)

where Pl are the center maps of the pixels, h and w are the height and width of layer-wise
feature maps; and Ftrs.

l per-pixel feature map from the decoder which is highlighted by the
center maps Ocenter

l ; and the Reid features Featk are selected from the Pl by using class i-th
index after the post-processing for the k-th detection.

The association score is computed between track and detection as follows,

Scorek
T = Euclidean_Distance(FeatT

j , Featk
t ) (8)

where FeatT
j is the features of object j-th at trajectory T, and Featk is the detected object’s

features at time t. As our method takes two consecutive images, we process the above
same operation for the F(t−1). The resulting object features of consecutive frames from the
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transformer–decoder are processed by a center offset head to propagate the object center
locations for each detected target.

3.2. Long-Term Discriminative Appearance Matching

We have introduced a simple yet effective long-term feature learning technique that
works as a long-term association function. For each frame, the transformer–decoder
generated local features for each object in an up-sampled pixel-wise distribution map.
Afterward, these features are used to compute the Euclidean pairwise distance between
the tracks and objects, respectively. Since we rely more on the history instead of the recent
distance scores, the long-term appearance function is proposed as follows,

App(Tj, Featk
t ) =

[
1
K

L

∑
t=L−K

Scorej
t

]recent_ f eatures

(1− λ) +

[
1

L− K

L−K

∑
t=1

Scorej
t

]history_ f eatures

(λ) (9)

where Tj is a j-th trajectory, λ = 0.90 is a learning parameter, and Scorej
tt is a memory

tracklet’s similarity score of the object belonging to that trajectory against the matched
detection. Featk

t are detected features at the current time t. The details of our proposed
matching function are illustrated in Figure 2. The (L− K) represents the history length,
as shown with the red color edges in Figure 2, and K represents the recent history length as
shown with the green color edges in Figure 2. If the recent history is unreliable, then the
history portion contributes to the score and vice versa. The long-term appearance module
is used to produce the similarity matrix. Finally, the computed similarity matrix is used for
the Byte association. In the ByteTrack algorithm, we have used a matching score m = 0.65
on the similarity matrix to make non-matching candidates score zero. The track initiation
and deletion threshold are used to control the track’s birth and death.

�

�

�

��

�

��

����������	


�

�

���
��)

Figure 2. In long-term appearance matching, the comparison is conducted between
(t11, t1), (t11, t2), ..., (t11, t10) at the time of track append. The edges show the comparison be-
tween detected features and tracks. The red-colored edges are history features, and the green-colored
edges are the recent features, respectively. The features of tracked and detected objects are extracted using
a pixel-decoder.

3.3. Training Objects

The bipartite Hungarian matching is a popular method to train the transformer-based
object detectors [18,19], and its main objective is to match the ground truth objects with
the predicted objects. The Mask2Former [45] used the pixel-wise distributions for the
Hungarian matching. Discussed in [43], the ground truth has been modeled into Gaussian
centers [16] in the heatmap, and the size of the target is modeled as the radius of Gaussian
centers. The predicted heatmap by the transformer–decoder H′l

i and the class distributions
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C′l
i of i-th object are associated with the ground truth heatmap Hi

l with the class distributions
Ci

l . The pixel-wise cost is computed as follows,

Lcost = ∑
l

∑
i

(
− log C′l

i(Pi
l ) + 1Pi

l 6=NOB

∣∣∣H′l i − Hi
l

∣∣∣) (10)

where NOB is the no-object category. To match the ground truth objects with the detected
objects, the cross-entropy for the object classes, focal-loss [16] for the heatmaps, and L1 loss
for the object sizes [16] are used for the architecture training. At last, we sum up all three
losses and backpropagate the entire architecture for the training.

4. Experiments

We used the MOT15 and MOT17 datasets [48] to train our approach with public
benchmarks. Afterward, the dataset was converted into training and validation sets.
At the initial stage, the pretrained tracking model was used, which was trained using
CrowdHuman and CityPerson object detection datasets Table 1. In our work, similar
experiment protocols are followed as proposed in [13]. Finally, all datasets are converted
into popular COCO style format.

Table 1. Sequences mentioned in the table are used to train the deep neural network.

Sequences Training Validation

MOT15 Sequences{1,2,3,4,5,6,7,10,11} 50% 50%
MOT17 Sequences{2,4,5,9,10,11,13} 50% 50%

CityScapes 16 Sequences 5 Sequences

Crowdhuman 15,000 Frames 4370 Frames

4.1. Implementation Details

We used a popular ResNet50 [44] architecture to compute the backbone features in the
form of feature pyramid networks with the dimensions of 128, 256, 512, and 2048. Next,
the state-of-art object detector deformable Detr [19] was built using a multi-scale deformable
transformer. The multi-scale features from the backbone architecture are processed with
a multi-scale deformable transformer, which is a pixel decoder. A total of six deformable
attention layers were used to generate feature maps, and we kept the resolutions the same
as Mask2Former [45]. These features are then forwarded to the transformer–decoder to
attain the queries with the cross attentions and feed-forward network. The layer-wise
features are then extracted using object centers which map the input image bounding box
locations against the feature heatmap. For each object, the channel-wise indexing is then
used to generate the feature vector. We use Adam optimizer [49] to optimize our achitecture.
Initially, we set the learning rate to 5× 10−4, and adapt the scheduler learning rate with
weight decay. Our model trained with 180 epochs on a single RTX 3090 GPU for six days
with batch size four.

4.2. Metrics

We have learned the MOT metrics used by many state-of-the-art approaches for MOT
performance evaluation. The meaning of each term is as follows; Multiple Object Track-
ing Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), Correctly Identified
detections (IDF1), Mostly Tracked (MT), Mostly Lost (ML), and ID Switch (IDSW).

4.3. Ablation Studies

Discriminative appearance matching is used to formulate the similarity matrix from
the reid features. We experimented with different lengths L and K for the long-term
appearance matching and showed the performance on the MOT17 training benchmark in
Figure 3. In order to select a correct length, we tune the (L = 5 and K = 3), (L = 10 and
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K = 3), (L = 15 and K = 3), and (L = 20 and K = 3) and observe the MOT accuracy and ID
switching on the dataset. In Figure 3, we have demonstrated the performance of different
lengths on the MOT15 training dataset. We observed the ID switching and MOT accuracy
metrics to choose a correct L = 15 and K = 3.
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�

���
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Figure 3. The effectiveness of our appearance model on the MOT17 training dataset for different
lengths L and K.

In our experiments, we set the track initiation length the same as ByteTracker [23].
In the proposed tracker, the Kalman’s constant linear velocity model [34] is used as a motion
predictor. A simple Kalman motion model is independently created for each track, which
predicts and updates the motion of objects. The λ = 0.90 is the update ratio of appearance
similarity cost. We have chosen K = 3 because K = 1 makes the target’s recent history
unreliable when an object starts to occlude or there is a sudden appearance change.

Matching threshold is used to assign the object to tracks in the association matrix.
The association matrix cells represent the association between tracks and detected objects
after using a threshold on the similarity matrix. We demonstrate the effectiveness of our
approach on the matching thresholds in Figure 4a, and threshold 0.65 achieved the highest
MOTA on the MOT17 training dataset.

Track initiation was used to generate the initial track by comparing the initial object
score, which is the starting point of any arbitrary track. This initiation procedure tackles the
track fragmentation and avoids false positives. We have reported track matching threshold
in Figure 4b, and 0.8 threshold shows better MOTA performance.
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Figure 4. Effectiveness of our method on the MOT17 Training dataset: (a) MOTA of matching
thresholds in Reid function; (b) effective track initiation thresholds on MOTA; (c) effective track death
thresholds on MOTA; (d) average inference time; (e) effectiveness of Reid features.

Similarly, the track death flag is enabled when an object disappears longer in the
upcoming frames. In Figure 4c, 20 thresholds show better MOTA performance, and our
approach waits longer for an object to reappear in the camera scene.

Inference Time Our approach held memory features of 20 frames for each track,
and it contributed towards higher inference time. Due to the larger number of model
parameters, it is challenging to speed up the entire architecture. The inference time is
shown in Figure 4d.

ReID features in ByteTrack The Reid features from the class index are mapped into
pixel-wise distribution from the last layer of the transformer–decoder. These features are
used to compare the similarity between tracks and detected objects by using Equation (9).
These features represent uniqueness for each object where no special metric learning
is required during the training phase. The effectiveness of Reid features in ByteTrack
association is shown in Figure 4e. The MOTA significantly improved after integrating the
Reid-based association matrix with the ByteTrack algorithm.

5. Experiments with Public MOT Benchmarks

In this section, we demonstrate the performance of our approach on MOT15 and
MOT17 public datasets. To compare quantitative results, we have chosen state-of-the-art
trackers from the MOT challenge benchmark. In Tables 2 and 3, we have used short names
of the trackers and have partitioned them into private and public detection categories.
Public detections are used to maintain the fairness of benchmark protocols.

Comparison with the Baseline Approach

From the baseline to our method, we utilized a joint-detection and tracking framework.
To check whether our trained model works well with the pixel distribution from the
transformer–decoder, we have shown the comparison including the most recent state-
of-the-art trackers in Tables 2 and 3. The entire MOT paradigm is shifting towards the
joint-detection and tracking paradigm, where a detector is playing the pivotal role in
efficiently localizing the objects, and association methods are functioning as tracking heads.
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Our pixel-based distribution head utilizes deep features from the transformer–decoder.
For a fair comparison, we have used the detection queries and mapped against the object
queries to evaluate our approach on public detections.

Table 2. Performance of our tracker on the MOT15 benchmark. Our proposed approach is in bold text.

Tracker MOTA%↑ IDF1%↑ MT%↑ ML%↓ FP↓ FN↓ IDSW↓
Private Detector

GSDT [39] 60.7 64.6 47.0 10.5 7334 16,358 477

FairMOT [14] 60.6 64.7 47.6 11.0 7854 15,785 591

Tube_TK [50] 58.4 53.1 39.3 18.0 5756 18,961 854

RAR15 [51] 56.5 61.0 45.1 14.6 9386 16,921 428

Public Detector

MFI_TST [52] 49.2 52.4 210 176 8707 21,594 912

GNNMATCH [53] 46.7 43.2 157 203 6643 25,311 820

KCF [54] 38.9 44.5 120 227 7321 29,501 720

TrctrD15 [55] 44.1 46.0 124 192 6085 26,917 1347

Pixel-Guided 40.6 51.9 294 86 15,027 17,352 1129

Table 3. Performance of our tracker on the MOT17 benchmark. Our proposed approach is in bold text.

Tracker MOTA%↑ IDF1%↑ MT%↑ ML%↓ FP↓ FN↓ IDSW↓
Private Detector

FairMOT [14] 73.7 72.3 19.5 36.6 12,201 248,047 2072

PermaTrack [56] 73.8 68.9 43.8 17.2 28,998 115,104 3699

CorrTracker [57] 76.5 73.6 47.6 12.7 29,808 99,510 3369

ByteTrack [23] 80.3 77.3 53.2 14.5 25,491 83,721 2196

Public Detector

SiamMOT [58] 65.9 63.3 34.6 23.9 14,076 200,672 2583

CenterTrack [16] 67.8 64.7 34.6 24.6 18,498 160,332 3039

QuasiDense [6] 68.7 66.3 40.6 21.9 26,589 146,643 3378

LSST17 [59] 52.7 57.9 421 863 22,512 241,936 2167

Tracktor [15] 53.5 52.3 459 861 12,201 248,047 2072

TransCtr [13] 68.8 61.4 867 564 22,860 149,188 4102

ByteTrack [23] 67.4 70.0 730 735 9939 172,636 1331

Pixel-Guided 69.7 68.4 903 615 26,871 140,457 3639

MOT 15 In Table 2, our tracker has achieved 40.6 MOTA, 51.1 IDF1, and 1129 IDsw.
We have achieved excellent MT and ML measures due to the center object propagation
ability of our tracker against the other SOTA trackers. The MFTST [52] has achieved higher
MOTA which is currently the SOTA method for online tracking with public detections.
The GSDT [39], FairMOT [14], Tube_TK [50], and RAR15 [51] achieve significantly higher
performance due to private object detectors, and it proves that the tracking performance is
dependant on detection quality. The private detection alignment is used with the public
detections for a fair comparison by converting detection queries as object queries. Our
method achieved better performance at MT, ML, and FP measures.
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MOT 17 We compared our results with the SOTA trackers, CenterTrack [16], LSST17 [59],
Tracktor [15], SiamMOT [58], QuasiDense [6], TransCenter [13], and ByteTrack [23]. Com-
pared to the LSST17 method, our tracker surpasses the MOTA by 17% due to higher MT,
lower ML, and lower IDSW measures. We then compare our method with the Tracktor [15]
which is joint detection and tracking framework. The Tracktor is heavily dependent on
a private object detector which is lower in MT objects, and we achieve +16.2 % MOTA.
Compared to our baseline TransCenter [13], we achieve higher MOTA performance as it
utilizes entire memory-based queuing within the encoder and decoders, and our pixel
distribution has contributed towards lower MT, FP, and FN against TransCenter. We sur-
pass the ByteTrack in MOTA, MT, and ML due to the detection of small objects where the
ByteTrack association method works with state-of-the-art detectors. The CenterTrack and
TransCenter detect center position with center offset, which does not use Reid features from
the pixel distribution. After combining pixel-wise distribution features with the ByteTrack
association, we achieved higher MOTA performance. The output frame samples are shown
in Figures 5–7 to show the effectiveness of our tracker.
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Figure 5. Effectiveness of our tracker in the occlusion case-1. As from the above frames, an object
with the ID (10) is passing behind the pole and from frame number 103 to 110, it has no detection
response due to occlusion. Our tracker re-assigns that object with the same ID (10) at frame 113.

Strength and Limitations To focus on the strength of our approach, we used the
deformable DETR [19] and pixel-wise distribution as a Reid feature. More specifically,
the prominent backbone FPN features are utilized to resolve the limited spatial resolution
which is a key problem in standard DETR [18]. The object-centric attention over multi-
scale features contributes to detecting small objects in the camera frame. As a result, our
approach shows lower MT and ML performance in both MOT17 and MOT15 benchmarks.
Furthermore, the pixel-wise distribution from the center heat map is mapped using class
index 7. These features represent each object’s embedding which is used to compute the
association matrix between tracks and objects. Table 3 shows how our approach surpasses
ByteTrack in MOTA performance.
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Figure 6. Effectiveness of our tracker in the occlusion case-2. In this case, moving objects are getting
far and close to the camera view. An object with the ID (1), moving away from the camera view along
with the occlusion by another object from frames 17 to 24. Our tracker re-assigns that object with
the same ID (1) at frame 25. Due to the long-term appearance method, it shows that our tracker is
consistent at ID keeping.

Figure 7. Effectiveness of our tracker in the case of moving camera. Our tracker is effectively tracking
the multi-objects without becoming drifted on anchors by camera motion with the small objects
inside the scene. The detected bounding box and the unique ID are demonstrated in yellow color.

Due to a large number of model parameters and complex transformer-based archi-
tecture, our approach takes a second to process five frames which is far from real-time
processing. Another downside of our approach is the multi-stage training procedures for
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the different datasets. Our approach uses an off-the-shelf private object detector named [19]
modules where large-scale pretraining is required, and it is challenging to directly apply to
MOT application. Due to the inductive biases of the pretrained modules, it is difficult to
detect all the small objects of unknown domains.

6. Conclusions and Future Work

In this paper, we have presented the pixel-guided MOT approach, which uses transformer-
based architecture to extract the pixel-wise up-sampled features for multi-object tracking. First,
the consecutive frames are passed to build FPN features. Second, the robust local represen-
tation in the deformable transformer encoder–decoder is used to detect small objects in the
joint detection and tracking framework. Third, the up-sampled pixel-wise features from the
transformer–decoder are used to build Reid appearance features. Finally, the Reid features are
integrated with a long-term appearance learning function to compute the similarity matrix.
The similarity matrix is integrated with the ByteTrack association framework, which results
in better MOT performance. The extensive experiments on standard MOT benchmarks have
shown the effectiveness of our pixel-guided approach for multi-object tracking.

Our per-pixel distribution can extend to multi-object segmentation tasks. The transformer-
based architecture can be integrated into the Yolo and faster RCNN backbone features, which can
improve the performance of MOT algorithms. We will also study the lightweight transformer
architectures to maintain speed and accuracy tradeoffs of MOT algorithm.
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