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Abstract: In sensors, the highest precision in measurements is given by vacuum fluctuations of
quantum mechanics, resulting in a shot noise limit. In a Mach–Zenhder interferometer (MZI), the
intensity measurement is correlated with the phase, and thus, the precision measurement (∆n) is
coupled with the phase resolution (∆ϕ) by the Heisenberg uncertainty principle. Quantum metrology
offers a different solution to this precision measurement using nonclassical light such as squeezed
light or higher-order entangled-photon pairs, resulting in a smaller ∆ϕ and sub-shot noise limit.
Here, we propose another method for the high precision measurement overcoming the diffraction
limit in classical physics, where the smaller ∆ϕ is achieved by phase quantization in a coupled
interferometric system of coherence de Broglie waves. For a potential application of the proposed
method, a quantum ring laser gyroscope is presented as a quantum version of the conventional ring
laser gyroscope used for inertial navigation and geodesy.

Keywords: Sagnac interferometer; ring laser gyroscope; quantum coherence; coherence de Broglie
waves; sensing

1. Introduction

Precision measurements are at the heart of sensing and metrology [1–8]. In statistics,
a standard deviation is proportional to the square root of the number of measurements.
The minimum sensitivity of the shot noise in classical physics is caused by the uncertainty
principle of quantum physics. This is called a standard quantum limit, which determines
the sensitivity limit in classical physics. On the other hand, the diffraction limit or Rayleigh
criterion classically determines the maximum resolution of sensors. Thus, multi-wave
interference in an optical cavity is a typical method to enhance the resolution limit satisfied
by coherence optics. In contrast to classical physics, quantum mechanics offers a quantum
advantage in sensing, imaging, and metrology, where higher-order entangled photon pairs
play a major role in overcoming the standard quantum limit by a factor of the square root
of N, where N is the total number of photons in the entangled pair [3–8]. The order of
an entangled photon pair is represented by the N number of photonic de Broglie waves
(PBWs) [9–11]. Due to the indeterminacy and difficulties of PBW generations, however, the
implementation of quantum sensing for applications such as lithography [11], frequency
standards [12], imaging [13], and spectroscopy [14] has been severely limited.

Quantum mechanics is rooted in the wave-particle duality [15]. Unlike PBWs based on
the particle nature of a photon, the wave nature of coherence de Broglie waves (CBWs) [16,17]
has been recently investigated for quantum sensing applications [18]. The physics of
CBWs is in the phase-basis superposition between coupled MZIs [16,17]. Owing to the
on-demand control of the geometric scalability of MZIs and the inherent benefit of a single-
shot measurement, CBWs provide new opportunities for quantum sensing to overcome
the limitations in both quantum and classical counterparts. Such a quantum feature of
CBWs can be applied for various quantum engineering fields of sensing and metrologies.
Recently, the first application of CBWs to sensors has been proposed for a CBW Sagnac
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interferometer, whose resolution limit overcomes conventional counterparts based on cavity
interferometers [18]. So far, the Sagnac gyroscope has been implemented for optical [19]
and matter-wave [20] interferometry as well as atomic spectroscopy [21], gravitational
wave detection [22], inertial navigation [23] and geodesy [24,25]. In particular, the ring
laser gyroscope (RLG) offers a highest sensing (resolution) capability up to one part of
108 in the earth’s rotation rate Ω [26,27]. Thus, in the RLG, enhancing phase resolution is at
the heart of applications. Here, a quantum version of RLG is presented using CBWs, whose
sensing capability in phase resolution overcomes the classical limit of RLG. Compared
with the CBW Sagnac interferometer [18], the proposed quantum RLG is an active version,
whose phase resolution is greatly enhanced compared with the classical counterpart of
the RLG. Moreover, it can be applied directly to the RLG with a minimal modification of
optical geometry.

2. Materials and Methods

Figure 1a shows a schematic of the proposed CBW-based quantum RLG. Figure 1b
is the unfolded scheme of Figure 1a and shows two cavity modes. As in conventional
RLGs, these two modes are independent. The two modes are, however, coherent within
the cavity due to the shared path length and control parameters of the cavity. Figure 1c
is an equivalent scheme of Figure 1a for one mode of either left or right directed light,
where the modified region with green MZIs (non-shaded) plays the function of phase-basis
quantization via superposition between consecutive MZIs (yellow region) across the BS
(dotted region) in Figure 1a (see the green-dotted box) [16]. The green dotted region of
Figure 1a with a nonpolarizing 50/50 beam splitter, a path-length controller (piezoelectric
transducer 1, PZT 1), and a pair of cavity mirrors represents a modified scheme of RLG for
the quantum RLG. Here, PZT 1 represents a control parameter of the phase ϕ to control
the cavity length. PZT 2 is another control parameter of the quantum RLG, where the
phase ζ is for the ring cavity condition with the asymmetric (counter propagating light-
caused ±ψ; Sagnac effects) MZI configuration [16]. The ψ-asymmetric MZI configuration is
automatically accomplished by the Sagnac effect for the counter-propagating fields [28,29].
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Figure 1. Schematic of quantum ring laser gyroscope (RLG). (a) Schematic of RLG based on ring
cavity of CBWs. (b) Unfolded scheme of (a). (c) Equivalent scheme of CBWs for one mode. L: gain
medium, D: photo-detector, BS: 50/50 nonpolarizing beam splitter, M: mirror, PZT: piezo-electric
transducer, Ω: rotation rate. The green dotted area with a BS is the modification for CBWs. Both
ϕ and ζ are control parameters for the quantum ring gyroscope. The ψ is the Ω-induced Sagnac
effect. Due to the inserted BS, each counter-propagating (solid and dotted arrows) field pair has both
transmitted (black arrow) and reflected (blue arrows) components. The numbers are the sequence of
the light propagation across the BS.
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Compared with the original CBW scheme [16], this ±ψ configuration is an essential
part of the proposed scheme. Compared with the CBW Sagnac interferometer [18], Figure 1
is an active version of it with an optical gain [30,31]. Here, the optical gain has no direct
relation to the enhanced phase resolution due to their independence. In each round of
circulation by the dotted region in Figure 1a, the CBW mode increases linearly [16,17]. In an
ideal optical cavity, this mode goes to infinity. Unlike the Fabry–Perot (FP) interferometer
in conventional RLGs, however, the wavelength λCBW of CBW is linearly doubled. Thus,
the optical gain of each ordered CBW is just for a one time pass in each mode. Instead, all
CBWs are linearly superposed resulting in interference in the cavity. Detailed discussions
of the nonlinear effects in the gain medium are beyond the scope of the present paper.
Due to the gain-induced high signal-to-noise ratio (SNR), the optical gain should affect the
sensitivity in a classical regime. Analysis of quantum sensitivity is also beyond the scope
of the present research. The dithering [30] in RLG due to the imperfect mirror scattered
coupling with its original light can also be studied elsewhere, but may not be effective due
to different CBW modes.

For the numerical simulations in Figures 2 and 3, we have made a Matlab program for
two dimensional calculations of both output fields’ amplitudes in Equation (2). The CBW
order m is practically set with respect to the cavity Finesse, where the reflection coefficient
‘r’ of the mirror plays an important role. For this, both parameters of m and ψ are varied,
where the m-based ordered fields E(m)

A and E(m)
B are linearly added for each ψ value for the

final EA and EB. For this, the one-time pass gain effect is added. The increment step of ψ is
set at 0.0001π. Finally, the output intensity IA (IB) is obtained via conjugate products of
EA and E∗A (EB and E∗B). For the mechanical noise effects on CBWs, a Mabtlab commend
rand (1) is used for random number generation in Figure 3b.
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Figure 2. Numerical calculations for Equation (2). (a,b) Output intensities. (c–f) Output amplitudes.
Amplitudes and intensities are normalized. Reflection coefficient is set at r = 0.999. The ring laser
gain is not included. FP: Fabry–Perot interferometer.
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3. Results

According to the original CBWs [16], the basic building block is composed of the
green-yellow MZIs as denoted by ‘p’ number [17] (see Figure 1c). In the yellow MZIs,
however, PZT 2 (ζ) (see Figure 1a,b) caused by environmental noises such as vibrations,
temperatures, and air turbulences does not affect the Sagnac effect due to exact phase
cancelation by the counter-propagating fields. Such a self-phase maintenance has been
experimentally demonstrated in a quantum version of the Sagnac interferometer [32]. In the
modified region (see the green-dotted box in Figure 1a), there is no net Sagnac effect, either,
due to the geometrical symmetry. Compared with the Sagnac scheme of [32], the double
unitary transformation of CBWs gives a much subdued phase stabilization, whose phase
noise is from the phase difference between forward and backward MZIs [33]. Thus, the
Sagnac effect in the proposed scheme has a great benefit of environmental noise reduction
compared with RLG [23–25]. As a result, any rotation rate Ω induces a time delay between
the counter-propagating fields inside the ring, resulting in the Sagnac effect as in the
original passive version of CBW-RLG [18]. This is the passive form of CBW-RLG, where
the Sagnac effect appears as a phase shift. In the present active form of CBW-RLG with
an embedded gain medium L in Figure 1a, the rotation-caused phase shift in the passive
CBW-RLG now appears as a frequency shift under a lasing mode [34]. Between them,
i.e., the phase shift (ϕ) in the passive RLG and the frequency shift (∆ω) in the active RLG,
an exactly equivalent relation is satisfied [23]: ∆ω = ϕ c

L , where c is the speed of light and
L is the perimeter of a ring cavity. Meanwhile, the Ω-induced Sagnac effect is neglected in
the following analysis of the proposed stand-still quantum RLG for simplicity to prove the
quantum gain in phase resolution.

Using coherence optics of a BS [35], the output fields A and B in Figure 1a for the round
trip of the optical cavity are obtained via matrix representations for Figure 1c as follows:[

EA
EB

]
= [MZI]+[ϕ][MZI]−eηeiξ

[
E0
0

]
= (−1)1eiξ E0eη

[
cos ψ
sin ψ

]
(1)

where [MZI]+ = [BS][ψ+][BS] = 1
2

[
1− eiψ i

(
1 + eiψ)

i
(
1 + eiψ) −

(
1− eiψ)] and [MZI]− = [BS][ψ−][BS]

= 1
2 eiξ

[
1− e−iψ i

(
1 + e−iψ)

i
(
1 + e−iψ) −

(
1− e−iψ)], respectively. Here, [BS] = 1√

2

[
1 i
i 1

]
, [ψ+] =

[
1 0
0 eiψ

]
,

and [ψ−] =

[
1 0
0 e−iψ

]
.The global phase ξ caused by the added region for quantum su-

perposition (see the green-dotted box) is slowly varying. For simplicity, a laser gain in
the ring cavity is denoted by eη , where η is the gain coefficient for a round trip of each
mode. This gain effect has no quantum influence in the phase resolution but may give a
classical advantage, where E0 is determined by the embedded gain medium L. The phase

ψ is due to the rotation (Ω)-induced Sagnac effect, and [ϕ] =

[
1 0
0 1

]
is set with ϕ = 2nπ

(n = 1, 2, 3, . . . ) by controlling PZT 1. The PZT 2 is for the ring cavity, where the phase ζ is
invariant to the Sagnac effect. Unlike the original CBWs [16], the ψ in the basic building
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block of Figure 1c is induced by the Sagnac effect. The global phase eiξ in Equation (1)
has no effect on measurements. For CBWs, however, ϕ = 0 must be satisfied, otherwise
E11 = −eiξ E0 and E12 = 0. Thus, the general solution of the mth ordered CBW is as follows
(m = 2p): [

EA
EB

]m

= eimξ emηE0[CBW]m
[

E0
0

]
= (−1)meimξ emηE0

[
cos(mψ)
sin(mψ)

]
(2)

where [CBW]m =
(
[MZI]+[MZI]−

)m
= (−1)m

[
cosψ −sinψ
sinψ cosψ

]m

, resulting in

E(m)
A = (−1)meimξ emη cos(mψ)E0 and E(m)

B = (−1)meimξ emη sin(mψ)E0. This is the phase-
basis quantization of CBWs with ψm ∈

{
0, ±π

m
}

[17]. Here, the CBW order m is given by
the round-trip number in Figure 1a. As mentioned in the Methods section, the gain is one
time for each CBW mode, and thus the nonlinear optics of lasing are excluded.

Regarding the output intensities IA and IB in Figure 1a detected by D1 and D2,
respectively, where the corresponding amplitudes are EA = E0 ∑m(−1)meimξ emη cos(mψ)
and EB = E0 ∑m(−1)meimξ emη sin(mϕ), the following analytical solutions are obtained.

(i) mψ = ± (2n−1)π
2 , where n = 1, 2, 3, . . .

For all m, E(m)
A = 0. E(m)

B = 0 is also satisfied due to the (−1)m effect. Thus, IA = IB = 0.

(ii) mψ = ±2nπ, where n = 1, 2, 3, . . .

For all m, E(m)
A = 0 at ψ = ±2nπ due to the (−1)m effect, resulting in destructive

interference. E(m)
B = 0 is automatically satisfied. Thus, IA = IB = 0.

(iii) mψ = ±(2n− 1)π, where n = 1, 2, 3, . . .

For all m, all E(m)
A is zero. Thus, IA = 0. However, E(m)

B constructively interferes at
ψ = ±(2n− 1)π due to the (−1)m effect, resulting in IB = e2mη I0, where the η is the gain
in each pass. These output features of Figure 1 are definitely different from conventional
cavity optics of RLG (see Figure 2). Now, we need to clarify whether Equation (2) is rooted
in coherence optics of multi-wave interference or quantum optics with the phase-basis
quantization to show the novelty of the proposed quantum RLG.

For the detailed analysis, numerical calculations are as shown in Figure 2 for Equation (2).
Figure 2a shows the normalized output intensity IB detected by D2 in Figure 1a. For the
calculations, the gain coefficient emη is not considered for simplicity for the minimum effect of
the quantum advantage in phase resolution. As analyzed above in (i)–(iii), the constructive
interference appears at ψ = ±(2n− 1)π for EB. This π-shifted fringe with respect to the
conventional cavity optics is due to the inserted BS, as shown in Figure 1b, resulting in a π
phase shift between two identical cavities. As analyzed IA = 0 is achieved at ψ = ±(2n− 1)π
(see the red curve of Figure 2b).

Figure 2b is an expanded (unfolded) version of Figure 2a for both output intensities,
where IA (IB) is denoted in red (blue). For comparison purposes, the green dotted curve
which is π phase shifted shows the classical resolution limit of a Fabry–Perot (FP) interfer-
ometer. The enhanced phase resolution of IB with respect to the reference is at least three
times. Thus, the nonclassical breakthrough in phase resolution is demonstrated, where
the reference of FP is the classical limit in resolution of conventional RLG. Thus, Figure 1a
shows the quantum advantage of the proposed quantum RLG, where the breakthrough
in Figure 2b is due to quantum superposition of the phase quantized CBWs [17]. This
quantum advantage cannot be obtained from classical physics.

Figure 2c,d illustrate destructive and constructive interferences in EB. For this, some
neighboring samples are shown for the mth and (m + 1)th ordered amplitudes in E(m)

B .
From the symmetric distribution, the destructive interference at ψ = ±2nπ in Figure 2c is
due to the (−1)m effect in Equation (2). In contrast, there is a constructive interference at
ψ = ±(2n− 1)π in Figure 2d, as analyzed above: neighboring curves are overlapped.
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Figure 2e,f show all ordered amplitudes up to m = 5000 as a function of ψ. As the order
m increases, the amplitudes of both E(m)

A and E(m)
B decrease. Considering the cavity gain

(emη), however, the m number can be increased for higher-order amplitudes (discussed in
Figure 3), where this increasing effect may be equivalent to increasing reflection coefficient
‘r’, as usual. The sum of amplitudes for all modes of E(m)

B constructively interfere only at
ψ = ±(2n− 1)π, as shown in Figure 2b. Due to the independency between two modes of
the oppositely directed lights from the embedded gain medium L in Figure 1, there is no
phase coupling by the other mode. Due to the shared cavity and coherently ordered CBWs
at λCBW , no random phase fluctuations occur in E(m)

A and E(m)
B .

Figure 3a shows contrast-based phase resolution change for Figure 2b. For this, the
m proportional intensity decrease is assumed, resulting in less CBWs. From the reference
with m = 5000 (blue curve), the collection efficiency decrease is represented for decreased
CBW numbers to m = 2000 (red), m = 1000 (green), and m = 500 (black). This may also be
related with decreased signal level close to the shot noise limit for the same cavity. Thus,
the passive quantum ring gyroscope in [18] should result in less resolution only due to less
collection efficiency in all possible CBWs in Figure 1.

Figure 3b is for the purpose of comparison between no-noise (red) and noise-allowed
(green) ring cavities. The given phase noise is assumed to be random within ±0.2π,
resulting in a blurry resolution (see the green band). This noise effect is of course classical.
However, it can be reduced in the present CBW-based quantum ring gyroscope due to the
double unitary transformation of CBWs. Theoretical analysis of noise cancellation has been
recently conducted for an optical link of unconditionally secured classical key distribution
in a CBW scheme [33].

Figure 3c is for the gain effect. For analytical consistency, the gain coefficient η
compensates the cavity loss, resulting in increased m number in the same cavity. This effect
is the same as increasing ‘r’ for the same m=5000 in Figure 3b. Compared with the red
curve in Figure 3b, which is the average of the noise effect, an enhancement in resolution is
demonstrated in the blue curve. This enhancement is of course classical.

4. Discussion

A general advantage of the active RLG compared with passive one is the better sensitiv-
ity in phase resolution owing to the lasing mode difference excited by counter-propagating
light fields [23]. Due to different frequencies ∆ω caused by the Sagnac effects, it is well
known that a heterodyne detection technique gives much better detection resolution com-
pared with the phase-shift measurement in the passive form [23,30,31]. The disadvantage
of the active RLG compared with a passive one is, however, is the size independence due
to the perimeter-independent scale factor [23]. Thus, the ratio of RLG’s angular velocity Ω
to the wavelength λ becomes inaccurate for small Ω due to the lock-in effect. In the present
active design of CBW-RLG, the wavelength λ is replaced by λCBW

(
= λ

m

)
effectively, where

m is the unit of CBW as shown in Equation (2) and Figure 1c [16,17]. Thus, the RLG’s
main disadvantage may be alleviated with this m factor in addition to the enhanced phase-
resolution demonstrated in Figure 2. Due to the equivalence relation between the phase
shift in a passive RLG and the frequency difference in the active RLG, the demonstration of
breakthrough in phase resolution represents the same breakthrough in frequency resolution
for heterodyne detection [23].

Compared with conventional diffraction-limited RLGs, the proposed quantum RLG is
based on quantum superposition of CBWs in a modified ring cavity. Due to the embedded
gain medium, two independent cavity modes exist, where in the present paper, only one
mode is investigated. Regarding each mode of optical fields oppositely directed, both
counter-propagating CBWs are generated in the modified region of Figure 1, resembling
both modes of the conventional RLG. As shown in Figure 2b, thus, only one detector is
sensitive to the CBW fringes. The opposite mode of light from the gain medium L in the
cavity gives a swapped result according to MZI physics, where the input field direction is
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reversed to the side in Figure 1c. Thus, the sensing detector is also swapped from D2 to D1,
in which both detectors show the same feature due to the input swapping. However, the
intensity product between two detectors should be doubly enhanced in sensing compared
with one detector capability as in the two-photon intensity correlation. To prove these
analyses, experimental studies may be followed.

The Sagnac effect caused by counter-propagating fields in an optical cavity is denoted
by the phase shift ψ for the present analysis. This phase shift can also be represented by the
frequency difference between them, resulting in the normal beating signal in conventional
RLG detection methods. In Figures 2 and 3, however, the phase shift ψ has been used to
demonstrate the enhanced phase resolution, i.e., the quantum advantage of the present
method. The analytical tool of linear optics in Equations (1) and (2), and the following
numerical calculations result in general solutions under the coherence optics of multimode
CBWs. Unlike conventional cavity optics, CBW’s amplitude gain is for one time at each
mode of CBWs, satisfying liner superposition. The sensitivity issue is beyond the scope of
present research because it is a completely different matter from the phase resolution in
quantum sensing [4].

5. Conclusions

In conclusion, an active quantum RLG was presented for enhanced phase-resolution
capabilities overcoming the classical limits of RLG. The quantized CBW modes due to
linear superposition of coupled MZIs in an optical cavity were analyzed for the quantum
advantage in phase resolution, where the enhanced resolution was numerically confirmed.
Compared with cavity optics-based conventional RLG, the proposed quantum RLG showed
a quantum advantage in the phase resolution overcoming the diffraction limit three times
greater than that of the RLG limit. However, this quantum gain can be enhanced more due
to the cavity gain-caused amplitude increase in the higher order CBWs. Eventually, the
general advantage of using a beating signal between two counter-propagating different
lasing modes in the active RLG can be enormously enhanced due to the m factor in the
effective wavelength λCBW for a beating signal count. Although the CBW-RLG physics
belongs to the many-wave interference as in coherence optics, the discrete frequency-
ordered CBWs should behave differently from conventional cavity optics limited to the
same frequency. Further research on sensitivity and nonlinear optics of the CBW-RLG
will follow.
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