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of specific emission sources. Here we propose a novel method that produces skillful seasonal forecasting of wintertime
(December to February) PM; o concentration over South Korea. The method is based on the idea that climate condition
and air quality have co-variability in the seasonal time scales and that the state-of-art seasonal prediction model will
benefit air quality forecasting. More specifically, a linear regression model is constructed to link observed winter
PM;, concentration and climate variables where the predicted climate variables were furnished from NCEP CFSv2
forecast initialized during autumn. In this case, climate variables were selected as predictors of the model because
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1. Introduction

Air quality is a significant concern in East Asia, especially China and
Korea. Fortunately, it has shown a gradual tendency to improve over the
past two decades due to government regulations to reduce emissions. For
example, the Korean government has regulated fugitive dust and exhaust
gas emissions, encouraged the use of hybrid and electric vehicles, and stim-
ulated a fuel source change toward natural gas (Ministry of Environment,
2016). Meanwhile, the Chinese government has legislated minimum
emission standards to improve air quality (Clean Air Alliance of China,
2013). However, in recent years, the tendency has been slowed, and
high-concentration particular matter (PM) episodes over South Korea
have somewhat increased (Kim et al., 2017a; Park et al., 2021). Therefore,
the air quality problem still poses tremendous social costs. In response to
this, the government and the public demand a longer-lead forecast of bad
air quality conditions to ensure long enough time for the society to mitigate
its harmful impacts.

Air quality forecasting with lead times longer than even a day or two,
however, is still a very challenging task. The most conventional method is
using a chemical transport model, or air quality model with forecasted me-
teorological input (e.g., European Center for Medium Range Forecast
(ECMWEF)'s Copernicus Atmosphere Monitoring System; Morcrette et al.,
2009). This forecast usually covers up to five days' lead time, which is
bounded by a typical limit of weather forecast skill. Alternatively, the em-
pirical relationship between meteorological and air quality variables has
been used to develop statistical forecasting systems, but its practical skill
isalso very much limited to a few days (Koo et al., 2010). Even though over-
all skill for air quality is limited, there has been a growing need to extend
the air quality forecast lead time to a few weeks and even to a season
ahead for better management and preparation.

So far, such longer-lead seasonal forecasts of air quality have been done
mostly through statistical methods. Since climate variables such as temper-
ature, wind, and atmospheric stability affect the average behavior in air
quality (Chattopadhyay et al., 2010; Lee et al., 2019; Yang et al., 2016;
You et al., 2018), a statistical forecast model for air quality can be con-
structed by using observed lead-lag relationships between climate variables
and air quality. For instance, Gao et al. (2010) and Sohn (2013) performed
seasonal forecast of East Asian spring dust using its statistical association to
climate variables. Yin and Wang (2017) attempted to predict winter haze in
North China by constructing multiple linear regression (MLR) and the gen-
eralized additive model (GAM) using atmospheric circulation as a predic-
tor. More recently, Shen and Mickley (2017) suggested a statistical model
skillfully predicting US summertime ozone air quality based on large-
scale climate patterns including the north Pacific SST in spring. Jeong
et al. (2021) recently developed a statistical seasonal forecast model for
PMS, s in East Asia using the statistical relationship and especially suggested
that factors related to El Nino-Southern Oscillation (ENSO) and AO (Arctic
Oscillation) provide predictability. Except for statistical models, successful
seasonal forecasts based on numeric-based models have not been reported
so far.

By virtue of tremendous advances in observation, data assimilation, and
climate modeling techniques, the skill of seasonal climate forecasting by dy-
namical climate models has significantly improved over the past several
centuries (Jeong et al., 2017). Although the skill of seasonal climate predic-
tion is still modest in most extratropics, it has recently shown significant
predictability in many regions directly or indirectly affected by ocean-
atmosphere and land-atmosphere interactions (Baker et al., 2021; Jeong
etal., 2017; Judt, 2020; Krishnamurthy, 2019). While predicting anthropo-
genic controls on air quality like human activities, emission, and policy is
almost impossible, air quality linked to climate variabilities may be predict-
able to some extent. This study suggests a novel method for the seasonal
forecast of regional PM concentration over South Korea based on this
idea. Combining the empirical relationship between observed winter PM
and climate variables and climate forecasts from a seasonal climate predic-
tion system, we developed a statistical-dynamical forecast model for
wintertime PM concentration of more than a month lead. This paper is
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organized as follows. Data and methods, including the model description,
are described in Section 2. Results and discussion are provided in Sections
3and 4.

2. Data and methods
2.1. Observation and forecast data

Monthly mean PM;, (particulate matter diameter 10 pm or less) con-
centrations at 153 stations over South Korea for the period 2001-2020 pro-
vided by the National Institute of Environmental Research of the Korean
government are used. Finer particulates PM, 5 have been receiving a lot
of attention recently. However, in-situ observation of PM, s available
after 2015 in a large part of South Korea is too short in constructing the
statistical-dynamical model targeted in this study. For the period 2015/
16-2020/21, DJF PM;o and PM, 5 show very similar inter-annual variabil-
ity (the correlation coefficient between DJF PM; o and PM, s is 0.97). There-
fore, this study targets PM; .

The target of this prediction model is the overall winter (DJF average)
PM,;, concentration throughout South Korea. PM;, concentrations in
South Korea can sometimes surge due to yellow dust generated mainly in
Mongolia or Inner Mongolia in China (Lee and Kim, 2018). In order to elim-
inate this effect, when calculating the DJF average, data on the occurrence
of yellow dust (31 days out of 20 years of study) announced by the Korea
Meteorological Administration were excluded. Since 153 monitoring sta-
tions include large cities, small towns, and rural areas, there is a significant
difference in the average value for each station, especially in the early
2000s (Heo et al., 2017). There is also a large spatial inhomogeneity in
the spatial distribution of the stations. Therefore, instead of using the aver-
age value of 153 stations, the principal component (PC) time-series of 1st
Empirical Orthogonal Function (EOF) (Lorenz, 1956; Preisendorfer, 1988)
mode is set as a value representative of PM;, concentration throughout
South Korea.

For the seasonal forecast model of PM;,, multiple linear regression
(MLR) model based on the historical relationship between climate variables
and PM;, concentration for winter (December to February; DJF) is con-
structed. The observational climate variables such as near-surface air tem-
peratures (SAT), mean sea level pressure (MSLP), and geopotential height
at 300 hPa (GPH300) are from ERAS reanalysis, which is the fifth genera-
tion ECMWF (European Centre for Medium Range Weather Forecasts)
reanalysis of the global climate.

ERAS is global reanalysis data calculated using the most advanced
model and data assimilation system from a large amount of global observa-
tion data, and it is known that it has the best performance compared
to other existing reanalysis products such as the JRA-55, CFSRv2, and
MERRA-2 reanalysis (Hersbach et al., 2020; Jiang et al., 2021; Tarek
et al., 2020). Especially, ERA5 benefits from Coupled Model Intercompari-
son Project5 (CMIP5) (Taylor et al., 2012) radiative forcing, a consistent
historical set for sea-surface temperature (SST), sea-ice cover, and other
boundary conditions, which provide improved variability and trend of sur-
face air temperature, reduced precipitation bias, and improved hydrologi-
cal balance (Hersbach et al., 2020). Due to these advantages, it is widely
used in meteorological and climate research, and even in application fields
(e.g., Aizpurua-Etxezarreta et al., 2022; Chen et al., 2021; Ding and Wu,
2020; Klingler et al., 2021; Yu et al., 2021). SST is taken from Extended Re-
constructed SST, Version 5 (Huang et al., 2017).

The proposed statistical-dynamical seasonal forecast model utilizes the
seasonal climate forecasts from the Coupled Forecast System model version
2 (CFSv2) (Saha et al., 2014), which consists of the atmosphere (horizontal
resolution T126 of vertical 64 levels), ocean (horizontal resolution of 0.25
latitude by 0.5 longitude degree with vertical 40 levels), land surface, sea-
ice model, and their interaction. As an operational seasonal forecast system
of National Oceanic and Atmospheric Administration (NOAA), CFSv2
provides an extensive set of retrospective forecasts as well as real-time fore-
cast products. The present study used both the retrospective 9-month fore-
casts (1982-2010) and real-time operational 9-month forecasts archived
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(2011-2020). CFSv2 retrospective forecast runs four times a day (00, 06,
12, and 18 UTC) every five days from the 1st of January every year using
the initial condition taken from the NCEP Climate Forecast System Reanal-
ysis (Saha et al., 2010). The real-time operational forecast runs four times a
day, every day from April 2011 with the operational Climate Data Assimi-
lation System version 2 (Saha et al., 2014) initial conditions. We tested
two sets of forecasts; one initialized in the second half of October (18th,
23th, and 28th) and the other initialized in the first half of November
(2nd, 7th, and 12th), October and November forecast, respectively. There-
fore, 12 ensembles were averaged for each prediction, a seasonal (DJF
average) ensemble forecast. Forecasted anomalies were calculated with
respect to 2001-2019 climatology.

2.2. Statistical-dynamical model

Fig. 1 provides the schematic of the statistical-dynamical model
constructed in the present study. The final forecast product is provided by
a multiple linear regression (MLR) model between observed winter PM; o
concentration over South Korea (predictand) and climate variables (predic-
tors). Climate variables are furnished by forecasted fields from CFSv2.
While conventional statistical forecast models for air quality rely mostly
on time-lagged relationships between predictand (PM;,) and predictors
(climate variables) for preceding months or seasons (e.g., Jeong et al.,
2021; Shen and Mickley, 2017), our model is based on simultaneous rela-
tionships. As will be described in more detail in the results, the variability
of PM, is related to various climate variables, and among them, the most
efficient variable in a specific region that best explains PM; o variability is
selected to compose the MLR. Additionally, our strategy is to select a
climate variable for which CFSv2 shows sufficient (significant) skill and
has a physical relevance to PM;, variability. The variables of sufficient
skill are chosen by CFSv2's skill matrix estimated from its hindcast and
forecast archive.

A hybrid (statistical-dynamical) forecast model is constructed based on
predictors that have both a physical relation to PM;, and reliable CFSv2
predictability. A similar approach was adopted by Gillies et al. (2010) to es-
tablish a statistical relationship between local inversion and PM, 5 over the

Step1: Screening ‘predictable’ climate variables
From dynamical forecast model

Model’s skill matrix

Dynamical
seasonal
climate
forecasts
archive

‘predictable’

climate
variables

NCEP-
CFSv2

Step 3: Making a forecast
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Intermountain West and to produce a long-rage forecast using CFSv1
(Gillies et al., 2010). More practical details on building the MLR model
are provided in the next section. By repeating retrospective forecast exper-
iments with the developed model for the period 2001,/02-2019/20, we ex-
amined the skill of the present model. In this study, forecast skill is defined
as Pearson's correlation coefficient between forecast and observation
(target variable) during the analysis period. More details on practical proce-
dures are given in the following sections.

3. Results
3.1. Time-variation of PM;, over South Korea

Fig. 2a represents the spatial pattern of the leading EOF mode (EOF1
hereafter) of the winter PM;, concentration observed over 153 stations
for the period 2001-2019 and associated PC time-series of EOF1 (PC1 here-
after). EOF1 shows positive values in most parts of South Korea. The largest
values are detected, especially in the Seoul Metropolitan area, where a pop-
ulation of twenty-five million people resides. PC1 reveals a clear negative
trend for the analysis period as well as considerable year-to-year variability.
The time-variation of PC1 is almost consistent with the average PM;, con-
centration averaged over all 153 stations (red lines denoted as PM; y-avg in
Fig. 2b). We set PC1 as the predictand of our forecast model.

Presumably, the negative trend in Fig. 2b resulted from government pol-
icies to suppress the source emission of PM (e.g., Heo et al., 2017). Because
our primary goal is to forecast the year-to-year variation of PM;, concentra-
tion only associated with climate variability, we removed the linear trend
for the studied period (2001-2020) from PM;, concentration as well as
climate variables before building a prediction model.

3.2. Relationship between PM;, and climate variables

It is assumed here that the year-to-year variation of wintertime PM; ¢
concentration is controlled largely by climate conditions. For instance, one
of the well-known features is the reduced wind speed resulting in stagnant
atmospheric conditions (Camalier et al., 2007; Jacob and Winner, 2009).

Step2: Building a multiple linear regression model
between PM,, and climate variables

Observed statistical relationship

Climate
variables

Predictable

Multiple linear regression model
between
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Fig. 1. Schematic diagram of the statistical-dynamical model for PM,, forecast.
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Fig. 2. a) The leading (1st) EOF of DJF average PM;, concentration for 153 stations in South Korea for the period 2001/02-2020/21, and b) associated leading principal
component (PC1) time-series (blue line). PM; concentration averaged for the 153 stations is also shown for comparison (red line). ¢) Same as b) but with removing linear

trend.

Also, large-scale climate factors such as Siberian High intensity, Arctic
Oscillation, ENSO, and Arctic-midlatitude teleconnection are known to af-
fect the air quality in East Asia (Jeong and Park, 2017; Jeong et al., 2021;
Ku et al., 2021; Wei et al., 2021; Yun and Yoo, 2019). To identify this, we

Eurasia. This is called the Warm-Arctic Cold-Eurasia pattern (Cohen
etal., 2013) of SAT, which is suggested to be related to sea ice reduction
over the Barents-Kara Sea (Honda et al., 2009; Kug et al., 2015). But, itis
cold-Arctic and warm-East Asia in the correlation map of Fig. 3a.

examined the simultaneous anomaly correlation coefficient (ACC) between 2) MSLP anomalies in northern Siberia were apparent to be closely related
winter climate variables and PM;,_PC1 in Fig. 3. Key features associated to PM; ¢ concentration in South Korea (Fig. 3b). The negative correlation
with an anomalously high level of PM;, in South Korea are summarized as in the Siberian region in Fig. 2b means the weakening of the Siberian
follows. high pressure in the winter when PM;, concentration is high. This
relation implies that the East Asian winter monsoon is weakened, and
1) The positive and negative anomalies (correlation) of SAT over central the positive SAT anomaly over East Asia is favorable for the high PM;,
Siberia to East Asia (Fig. 3a) and over the Barent-Kara Sea are the concentration.
most distinct pattern. This is likely associated with the well-known win- 3) SAT and SST warming over the Chukchi Sea (Fig. 3a and d) may indicate
tertime seesaw pattern of SAT anomaly over the Arctic and Northern a possible influence from atmospheric blockings, which often leads to
a) COR (PMyo-PC1, SAT) b) COR (PM10-PC1, MSLP)
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Fig. 3. The anomaly correlation coefficient between the PC1 of PM;, and a), b) MSLP, ¢) GPH at 300 hPa, and d) SST for winter for the period 2001,/02-2019/20. Values
statistically significant at 99 % (95 %) are indicated with black (gray) dots. All data were detrended before the analysis.
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the stagnant condition causing pollutant episodes over East Asia (Kim
et al., 2022; Takaya and Nakamura, 2005).

4) The remote influences from tropical ocean variabilities like El Nifio-
Southern Oscillation (ENSO), which presumably has a high impact on
East Asian climate variability (Kim et al., 2017b; Woo et al., 2020),
were not clearly found in this map. Instead, there are significant corre-
lations over the Atlantic Ocean. Possibly, this is connected to the Rossby
wave propagation from the tropical eastern Atlantic to the North Atlan-
tic Ocean, further invoking the teleconnection between the Barents-
Kara Sea and eastern Eurasia (Liu et al., 2022; Schubert et al., 2011).

Based on these contemporary correlation patterns, we develop a multi-
ple linear regression model accounting for the year-to-year variation of
PM,, with area-averaged indices of climate variables (predictors). This
model is going to serve as an ideal model of maximum skill, which could
be achieved by the climate-PM;, connection. Considering the forecast
skill of CFSv2, the final form of MLR forecast model is decided. Its details
are in Section 3.4.

3.3. Forecast skill of the dynamical climate model

In the above MLR model, if the chosen predictors are predictable by the
dynamical climate model, then putting forecasted predictors into the re-
gression model yields a PM;, forecast. This is a statistical-dynamical
model. Therefore, the next step is to select those variables and regions in
which the dynamical seasonal prediction model has good performance.

a) SAT skill

A L. S
180° 120°W

- T T
0° 60°E  120°E
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60°N
30°N

0°
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To this end, we assessed the forecast skills of CFSv2 from the hindcast
and forecast archives. Fig. 4 summarizes the CFSv2's skills for October fore-
cast of key climate variables that potentially affect the PM concentrations.
The key features are summarized as follows.

1) The temperature forecast skill is high in the tropical eastern Pacific,
Indian Ocean, and Northwest Pacific (Fig. 4a). The skills of MSLP and
GPH300 are significant in tropical regions, but become very low in
most extratropics (Fig. 4b—c). Outside the tropic, there is a significant
skill over the Barents-Kara Seas and North Pacific.

2) CFSv2 shows significant seasonal forecast skill of SST in almost all
oceans (Fig. 4d).

3) There is almost no skill in South Korea for all variables.

According to previous studies (Jeong et al., 2021; Kumar et al., 2021),
wintertime temperature over East Asia shows a significant negative correla-
tion with seasonal PM concentration in association with the strength of East
Asian winter monsoon circulation. Unfortunately, CFSv2 has very limited
skills in South Korea and East Asia; temperature forecasts of CFSv2 show
a marginal skill (r = —0.04) for the analysis period (Fig. 4e). Otherwise,
it could be selected as a predictor for the hybrid model. Therefore, all se-
lected variables are from outside East Asia.

3.4. Linear regression model and skill assessment

In the next step, the final form of the regression model was constructed
by considering both the climate-PM;, relationships (Fig. 3) and the

b) MSLP skill
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Fig. 4. CFSv2's skill (correlation coefficient between forecast and observation) for October forecast of winter a) SAT, b) MSLP, ¢) GPH at 300 hPa, and d) SST. Values
statistically significant at 99 % (95 %) are outlined with a yellow-line (black-dotted pattern). e) Time-series of forecasted (CFSv2, dashed) and observed (ERA5, solid)

SAT averaged over South Korea (34°-42°N, 124°~130°E).
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corresponding forecast skill of CFSv2's (Fig. 4). Fig. 5 synthesizes the
two factors altogether. Despite limited skills of CFSv2 over land and
extratropics, we were able to find quite a few notable spots where both
the ACCs and the skill are statistically significant for the objective selection
of predictors. We applied three conditions for determining the predictors
objectively: 1) both the ACC and CFSv2's skill need to be statistically signif-
icant, 2) the chosen predictors should be physically independent as much as
possible, and 3) there should be some explainable physical relationship be-
tween the selected regional variables and the East Asian climate. We could
identify three potential predictors: 1) MSLP over the South American conti-
nent near the South Atlantic (AT-MSLP1 in Fig. 5b), 2) GPH at 300 hPa over
the Laptev Sea (LAP-GPH in Fig. 5¢), and 3) SST over the Bering Sea (BE-
SST1 in Fig. 5¢). Several extratropical climate factors that were previously
known to have strong influences on East Asian PM;, like Siberian High
and East Asian jet stream (Jeong and Park, 2017; Ku et al., 2021; Wei
et al., 2021; Yun and Yoo, 2019), couldn't go through the screening of the
CFSv2 skill and were not chosen for a predictor. Similarly, tropical and sub-
tropical factors like ENSO and Western Pacific SST were not chosen despite
high skills because there is no significant relationship with PM;, in South
Korea. Note that CFSv2 has significant negative skill (i.e., forecasts opposite
consistently) for the predictor LAP-GPH. Such significant negative skill is
occasionally found in the dynamical seasonal climate forecast, which oc-
curs when there is a potential skill, but the forecast model has misplaced
the signal geographically. In most cases, this negative skill is ignored, but
in case of multi-model ensemble seasonal forecasting, sometimes this nega-
tive skill is utilized by applying negative weight (DelSole et al., 2013;
Wanders and Wada, 2015; Weigel et al., 2008) Therefore, with the idea
of drawing out the maximum possible skill, we decided to use LAP-GPH
for the forecast model.

Because the length of PM;, observations is not so long (20 winters), we
choose two among the three above potential predictors for the regression
model following the rules of thumb. LAP-GPH and BE-SST1 were finally
chosen as predictors because it's the most statistically independent combi-
nation among the three potential predictors (see Table 1). They are almost
independent in CFSv2 forecasts as well.

ra) COR (PM1q, SAT), SAT skill (gray)
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Table 1

Correlation coefficients between the observed PM;, concentration and climate
variables for the potential predictor of MLR model of October forecast. Values in
parentheses are for values from the CFSv2 hindcasts. Climate variables are denoted
in Figs. 5 and 7. Values significant at 95 % confidence level are in bold.

PM;, LAP-GPH AT-MSLP1 BE-SST1
PM;o 1 —0.42 0.52 0.68
LAP-GPH1 1 —0.54(-0.16) —0.26 (—0.23)
AT-MSLP1 1 0.56 (0.38)

Possible physical mechanisms liking the predictors and PM; both for
observation and forecast were examined (Fig. S1). LAP-GPH is associated
with higher pressure over the Arctic, and warmer Arctic sea vs. colder east-
ern part of Eurasia pattern. This is similarly found in CFSv2 as well. This ex-
hibits the anticorrelation between the Arctic Sea and eastern Eurasian
continent, the Warm Arctic Cold Eurasia (Mori et al., 2014; Woo et al.,
2020). BE-SST1 seemingly represents the tropical connection on East
Asian winter monsoon — a positive relationship between eastern Pacific
SST and East Asian temperature (Wang et al., 2000; Wang et al., 2010;
Woo et al., 2020). It shows a positive SST pattern over the central Pacific,
and its pattern resembles SST anomalies during the decaying phase of El-
Nino. These physical linkages are found similarly in CFSv2 forecasts as
well. BE-SST1 shows the correlation between the tropical Pacific and the
Bering Sea created by atmospheric telecorrelation.

We first constructed a one-variable linear regression model with BE-
SST1, then constructed an MLR using two variables, LAP-GPH and BE-
SST1. The linear regression model with LAP-GPH and BE-SST1 as
Egs. 1-2 below.

y = al * BEgsry + bl (€3]

y= a2 * LAPgpy + a3 * BEgsy| + b2 2

,b) COR (PM1g, MSLP), MSLP skill (gray)

90

<= = — -

0 60 120 180 240 300

Significant
level [%]

Fig. 5. Color shading represents the anomaly correlation coefficient (ACC) between the PC1 of winter PM;, and climate variables, same as Fig. 3. Gray shading highlights the
region for which CFSv2's October forecast skill for corresponding climate variables are statistically significant (90, 95, and 99 % significance level). Dotted patterns (magenta,
yellow, green) indicate the region where both the ACC and skill are statistically significant at 90, 95, and 99 %. The three potential climate predictors are indicated with

rectangles with numbers.
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When the data for the entire period were used, we gotal = 0.05, bl =
0.00, a2 = 0.06, a3 = 0.16, and b2 = 0.00. Note, in hindcast, the regres-
sion coefficients change slightly every year as the leaved-one-out cross-
validation method (Hastie et al., 2009) was applied.

In the final step, applying every year's CFSv2 October forecast as predic-
tors to the regression model, we produced PM;, forecasts for the period
2001/02-2020/21. Fig. 6 summarizes the results from 20 years of
hindcasts. Here we compare observed PM;, (PC1, gray bars) and forecasted
(red line). Here we compare the perfect model forecast for which the
observed (i.e., perfect) LAP-GPH and BE-SST1 were used as the input of
the regression model. This can be considered the best forecast achievable
from the climate-PM;  relationship. Observed PM;, includes non-climatic
factors, which are unpredictable in our model, so we used the perfect
model forecast as a benchmark. The correlation coefficient between the
perfect model forecast and observed PM;q is 0.62.

Science of the Total Environment 848 (2022) 157699

Despite the long lead-time, the statistical-dynamical model reasonably
well captures the perfect model. For the regression model using one vari-
able, BE-SST1, the correlation coefficient (r) between the perfect model
and hybrid model is 0.49, which is statistically significant. If we include
the linear trend for the period, which is not realistic for the real forecast
though, then the correlation becomes 0.72. The MLR model using the two
predictors, LAP-GPH and BE-SST1, has slightly lower skill (r = 0.40), but
its significant. This suggests our method can provide a skillful seasonal
PM;, forecast if the non-climatic factors can be realistically considered
altogether.

In the same manner, we construct a statistical-dynamical model based
on November (2nd, 7th, and 12th)'s forecast of CFSv2 and calculate
hindcasts for the same period (Table 2). Fig. 7 summarizes the climate-
PM;, relationship and CFSv2 prediction skills for November forecasts.
Here we were able to identify three potential predictors: 1) temperature
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Fig. 6. Time-series of forecasted and observed winter PM; o concentrations in Korea for the October forecasts. Forecasts from the regression model with BE-SST1 (a-b) and the
MLR model with LAP-GPH and BE-SST1 (c-d). Results for the detrended model (a, ¢) and with (b, d) a linear trend for the entire period added. The gray bars indicate the PC1
of observed PM; . The blue line indicates the perfect model result, where the observed values were used for the input of the MLR model. The red line indicates the forecasted
values from the statistical-dynamical model with the CFSv2's October forecast. Note all the forecasts were done with leave-one-out cross-validation.
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Table 2
Same as Table 1 but for the November forecast.
PM;o KA-SAT AT-MSLP2 BE-SST2
PM;, 1 -0.51 0.61 0.69
KA-SAT 1 —0.40 (—0.28) —0.34 (—0.24)
AT-MSLP2 1 0.55 (0.08)

over the Kara Sea (KA-SAT), 2) MSLP over the South American continent
near the South Atlantic (AT-MSLP2, slightly different location compared
to AT-MSLP1), and 3) SST over the Bering Sea (BE-SST2, slightly different
location compared to BE-SST2) (Fig. 8). Through the same approach for
the October forecast, BE-SST2 and KA-SAT, showing insignificant mutual
correlation were chosen as the best predictors for the MLR model. The
newly identified potential predictor, AT-MSLP2 may represent the relation-
ship between the PM;, and tropical variability over the Western Pacific. It
correlates positively with the pressure anomalies over southern China, the
Western Pacific, the Indian Ocean, and the South American continent.
However, it was excluded as predictors for the MLR model because corre-
lates significantly with BE-SST2. As winter approaches, LAP-GPH in the
Arctic was dropped from the potential predictor due to its low skill in
CFSv2.

Similar to October forecast case, we first constructed a one-variable
linear regression model with BE-SST2, which has highest correlation with
observed PCl1, then constructed an MLR using two variables, BE-SST2 and
KA-SAT. The linear regression model with BE-SST2 and KA-SAT as
Egs. 3-4 below.

y = al « BEssy + bl 3

y= a2 x BESSTZ + a3 x KATemp + b2 (4)

When the data for the entire period were used, we gotal = 0.32,bl =
0.00, a2 = 0.11,a3 = —0.19, and b2 = 0.00. With a shorter (about 15
days) lead though, the model shows slightly lower skill compared to the
October forecast, but still statistically significant. For the regression
model using BE-SST2, the correlation coefficient between the perfect
model and hybrid model is 0.44 and becomes 0.62 along with the linear
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trend. The MLR model using the two predictors, BE-SST2 and KA-SAT,
has a comparable skill of 0.45, and 0.71 along with the linear trend.

In this study, considering the relatively short observation period (20
years) and limited skill of CFSv2, the model was trained using data from
the entire period excluding the forecast year. Even though a substantial
skill is achieved by applying such a leave-one-out cross-validation, it is
highly possible that the performance of the model can change with time.
To examine this aspect even a little, we established a regression model by
setting the training period to 2001-2015, and conducted forecasts with
the model for the test period 2016-2020. The results for the October fore-
cast from this test are shown in Supplementary Fig. S2. The models still per-
form well in this case and exhibit very high skill in the testing period
although the period is only five years.

4. Summary and discussion

Here we propose a statistical-dynamical model for seasonal forecasting
of wintertime PM concentration over South Korea. By combining the ob-
served statistical relationship between winter PM and climatic variables,
and seasonal climate prediction products from NCEP CFSv2, this model
produces a skillful seasonal forecast of wintertime PM;, concentration.

A chemistry-climate coupled model with realistic initialization and
emission scenario will be the most desirable method providing a seasonal
forecast of air quality as well as climate predictions. However, it's still far
beyond our current modeling technology and observational capability. By
virtue of tremendous advances in climate modeling techniques and obser-
vations, skillful seasonal forecasting from the dynamical climate model be-
came feasible to some extent in recent decades (Alizadeh, 2022; Jeong
et al., 2017). However, coupling complex chemistry to climate models
and assimilations techniques is still in its infancy (Bocquet et al., 2015).
The accurate estimation of emission for the chemistry-transport model is
not sufficient yet. Until the performance of such a complete coupled
model is sufficient, this intermediate-level model in the present study can
be a good alternative. Although the hybrid model predicts PM variability
that can be explained by only climate variability, it's relatively easy to
implement only if a dynamical forecast model and its hindcast are avail-
able. As the dynamical model's skill improves, which is often the case
with updates in model physics and dynamics and observations, the hybrid

b) COR (PM1g, MSLP), MSLP skill (gray)

90

60

30

0 60 120 180 240 300

d) COR (PM1q, SST), SST skill (gray)

0 60 120 180 240 300

Significant
level [%]

Fig. 7. Same as Fig. 5, but gray shadings are for the November forecasts/hindcast of CFSv2.
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Fig. 8. Same as Fig. 6 but for the November forecast.

models' skill likely improves. Applying multi-model ensembles techniques
may provide additional skill for this method.
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