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Abstract: Although cancer-therapy-related cardiac dysfunction (CTRCD) is a critical issue in clinical
practice, there is a glaring lack of evidence regarding cardiotoxicity management. To determine an
effective and suitable dosage of treatment using angiotensin receptor-neprilysin inhibitors (ARNI)
with sodium-glucose cotransporter 2 inhibitors (SGLT2i), we adopted a clinically relevant rodent
model with doxorubicin, which would mimic cardiac dysfunction in CTRCD patients. After the
oral administration of drugs (vehicle, SGLT2i, ARNI, Low-ARNI/SGLT2i, ARNI/SGLT2i), several
physiologic parameters, including hemodynamic change, cardiac function, and histopathology, were
evaluated. Bulk RNA-sequencing was performed to obtain insights into the molecular basis of a
mouse heart response to Low-ARNI/SGLT2i treatment. For the first time, we report that the addition
of low-dose ARNI with SGLT2i resulted in greater benefits than ARNI, SGLT2i alone or ARNI/SGLT2i
combination in survival rate, cardiac function, hemodynamic change, and kidney function against
doxorubicin-induced cardiotoxicity through peroxisome proliferator-activated receptor signaling
pathway. Low-dose ARNI with SGLT2i combination treatment would be practically beneficial for
improving cardiac functions against doxorubicin-induced heart failure with minimal adverse effects.
Our findings suggest the Low-ARNI/SGLT2i combination as a feasible novel strategy in managing
CTRCD patients.

Keywords: angiotensin receptor—neprilysin inhibitor; sodium-glucose cotransporter 2 inhibitor;
heart failure; doxorubicin; peroxisome proliferator-activated receptors

1. Introduction

Cancer-therapy-related cardiac dysfunction (CTRCD) is a critically relevant issue
in clinical practice; however, there is a glaring lack of evidence regarding cardiotoxicity
management [1,2]. Clinical guidelines for CTRCD management recommend angiotensin-
converting enzyme (ACE) inhibitors, angiotensin receptor blockers, and (3-adrenoreceptor
blockers as potential cardioprotective regimens [3-5]. However, angiotensin receptor—
neprilysin inhibitor (ARNI) and sodium—glucose cotransporter 2 inhibitor (SGLT2i) have
been included in the 2021 European Society of Cardiology guidelines for acute and chronic
heart failure based on recent large-scale clinical trials [6-8].

ARNI, a combined drug of valsartan and sacubitril, is currently used for managing
patients with heart failure [8]. However, the up-titration of ARNI is largely limited by
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symptomatic hypotension and can even prompt discontinuation of the drug [9]. Further-
more, we do not have sufficient evidence regarding the management of low blood pressure
in concomitant medical therapy, such as ACE inhibitors, 3-adrenoreceptor blockers, miner-
alocorticoid receptor antagonists, diuretics and SGLT2-inhibitors.

SGLT2i, a class of glucose-lowering agents, beneficially improves outcomes in pa-
tients with type II diabetes and a worsening heart failure event [10,11]. Quagliariello
et al., reported that SGLT2i improves the myocardial strain by reducing fibrosis and pro-
inflammatory cytokine levels in a rodent model of doxorubicin-induced cardiotoxicity [12].
Consistently, SGLT?2i straighten up cardiac function by elevating the levels of ketone bodies
in the same experimental model [13].

Although ARNI and SGLT2i have been proven to be the drugs of choice in treating
heart failure [6,8], the underlying mechanisms of these two classes of drugs remain largely
undefined. Efforts to fully define the molecular mechanism of the cardioprotective effect
beyond the mode of action are ongoing [14-16]. Thus, investigating the interactions
between the two drugs, which are known to have different cardioprotective mechanism, is
required to develop a novel therapeutic strategy for CTRCD.

A recent retrospective study also showed that a combination of SGLT2i with ARNI was
more effective in improving cardiac function and reducing the risks of hospitalization for
heart failure and cardiovascular death in diabetic patients with heart failure with reduced
ejection fraction compared with a single regimen of each drug [17]. However, it remains
unclear whether the combined treatment with ARNI and SGLT2i exerts a synergistic or
addictive effect on cardiac function of CTRCD.

Doxorubicin is frequently used in many types of cancers and is most widely-known
for its association with CTRCD [18-21]. In this study, we adopted a rodent model with
doxorubicin injection as a reliable preclinical model for patients with CTRCD to provide an
effective and suitable dosage for ARNI with SGLT2i for improvement of cardiac dysfunction.
Here, we demonstrated that the low-dose ARNI in addition to SGLT2i markedly improves
doxorubicin-induced cardiac dysfunction with minimal adverse effects.

2. Materials and Methods
2.1. Animals

Male, 8-week-old, C57BL/6] littermate mice were purchased from Damul Science
(Daejeon, Korea), housed in a temperature-controlled facility (22 £ 1 °C) that maintained
a 12 h light/dark cycle, and provided free access to a standard chow diet (5L79, Lab-
Diet, St. Louis, MO, USA) and water. A schematic representation of the study design
is shown in Figure 1A. Mice were randomly assigned to each study group. To prepare
the acute heart failure rodent model, mice were administered a single dose of 15 mg/kg
doxorubicin (Sigma-Aldrich, Oakville, ON, Canada) or 0.9% sterile saline. To prepare the
chronic heart failure model, serial intraperitoneal injections of doxorubicin (2.5 mg/kg)
or 0.9% sterile saline were administered every 4 days for 24 days (cumulative dosage,
15 mg/kg). One day after doxorubicin injection, the control mice were gavaged daily
with vehicle (corn oil) (Sigma-Aldrich), while the experimental mice were gavaged daily
with ARNI (ENTRESTO®; Novartis, Basel, Switzerland) (68 mg/kg/day), SGLT2 inhibitor
(Forxiga®; AstraZeneca, Cambridge, UK) (1 mg/kg/day), Low-ARNI/SGLT2i (Low-ARNI,
34 mg/kg/day; SGLT2i, 1 mg/kg/day), and ARNI/SGLT2i for 6 weeks. Dosage of ARNI
and SGLT?2i for our study was based on prior preclinical studies [22,23]. For the collection
of blood and tissue samples, animals were euthanized by isoflurane overdose followed
by exsanguination.
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Figure 1. Survival gains and the hemodynamic effects of ARNI and SGLT2i treatment in acute
doxorubicin-injected mice. (A) Schematic design of acute heart failure model (15 mg/kg i.p.). (B) Sur-
vival curves for 25 days after doxorubicin injection in indicated experimental groups (1 = 6-8 per
group). (C) Representative photoplethysmography at 4 days after doxorubicin injection. (D) Systolic
blood pressure (1 = 5-7 per group). (E) Heart rate at 4 days after doxorubicin injection (n = 5-7 per
group). * p < 0.05, ** p < 0.001, ***p < 0.0001.

2.2. Tail-Cuff Plethysmography

Blood pressure was measured in conscious mice by tail-cuff plethysmography using a
two-channel BP-2000 system (Visitech System, Apex, NC, USA). To minimize stress, each
mouse was habituated to a blood pressure platform before the experiment began. Each
session involved 20-30 measurements; the initial 10 cycles were acclimation cycles that
were not included in the analysis.

2.3. Transthoracic Echocardiography

Echocardiograms were obtained using a Siemens Acuson NX3 ultrasound system
(Siemens Healthineers, Erlangen, Germany) with 16-MHz linear array transducer. Mice
were continuously monitored using a consistent isoflurane titration (1-2%) during imaging
to maintain a heart rate of 450-500 beats per minute (bpm). M-mode (2-D guided) echocar-
diographic images were acquired along the parasternal short axis. Left ventricular (LV)
internal dimensions in systole and diastole (LVIDs and LVIDd, respectively), as well as the
diastolic thickness of the LV posterior wall (LVPWd) and diastolic intraventricular septum
thickness (IVSd), were measured in at least three cardiac cycles and averaged. Fractional
shortening (FS), ejection fraction (EF), and stroke volume were calculated as follows: FS
(%) = (LVIDd — LVIDs) x 100/LVIDd; EF (%) = (LV end-systolic volume/LV end-diastolic
volume) x 100; stroke volume = (LV end-diastolic volume — LV end-systolic volume).
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2.4. Histopathological Analysis

Cross-sections of the mid-myocardium and kidney were fixed with buffer containing
10% formalin for 24 h and embedded in paraffin. Myocardial tissue sections were stained
with hematoxylin and eosin (H&E), and kidney sections were stained with periodic acid-
Schiff (PAS) reagent. To analyze the glomerular volume, 20-30 randomly selected superficial
glomeruli from each kidney were measured, and calculations were performed using the
Weibel-Gomez technique [24].

2.5. Protein Preparation and Western Blot Analysis

Protein concentration in heart tissue lysates was measured using the bicinchoninic acid
method (Thermo Scientific, 23227, Waltham, MA, USA). Equivalent amounts of each protein
extract were loaded into each well, separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis, and transferred to a nitrocellulose membrane. Blots were probed with
the following antibodies: anti-3MHC (Abcam, Cambridge, UK, ab50967), anti-MyBPC3
(Santa Cruz Biotechnology, Dallas, TX, USA, sc-137237), anti-PPAR«x (Abcam, ab34509),
anti-PPAR[ /8 (Cell Signaling, Danvers, MA, USA, 2443S), anti-CD36 (Novus Biologicals,
Minneapolis, MN, USA, NB400-144), anti-CPT1« (Abcam, ab1285568), anti-GLUT4 (Abcam,
ab33780), anti-Akt (Cell Signaling, 92725), anti-pS473 Akt (Cell Signaling, 9271S), anti-
GSK3p (Cell Signaling, 5676S), anti-pSer9 GSK3f (Cell Signaling Technology, 9336S), and
GAPDH (Proteintech, HRP-60004). Signals were visualized using the ChemiDoc Touch
Imaging System (Bio-Rad, Hercules, CA, USA). Image Lab Software version 6.0.1 (Bio-Rad)
was used to quantify the differences in the fold induction of protein expression normalized
to that of GAPDH.

2.6. RNA Isolation and Real-Time qPCR Analysis

Total RNA was extracted from heart tissues using TRIzol® reagent (Invitrogen Life
Technologies, Carlsbad, CA, USA), and 2 ug of total RNA was reverse-transcribed onto
complementary DNA (cDNA) with Transcriptor First Strand cDNA Synthesis Kit (Roche
Life Sciences, Indianapolis, IN, USA). Quantitative real-time polymerase chain reaction
(PCR) containing SYBR Green PCR Master Mix (Applied Biosystems, Austin, TX, USA) was
performed using CFX Connect Real-Time PCR Detection System (Bio-Rad). PCR primers
used in this study are listed in Supplementary Table S1.

2.7. Serum Biochemical Analysis

Blood samples were collected via cardiac puncture at the time of sacrifice. Plasma
glucose levels were measured using a glucometer (Accu-Chek Active; Roche, Basel, Switzer-
land). Plasma levels of B-type natriuretic peptide (BNP; #EIAM-BNP-1, RayBiotech,
Peachtree Corners, GA, USA), N-terminal pro-atrial natriuretic peptide (NT-proANP;
#BI-20892, Biomedica, Vienna, Austria), and neutrophil gelatinase-associated lipocalin
(NGAL) #MLCN20, Minneapolis, MN, USA) were measured using ELISA kits according
to the manufacturer’s instructions. Serum blood urea nitrogen (BUN; #K024-H1, Arbor
assays, Ann Arbor, MI, USA), creatinine (#<KB02-H1, Arbor assays, Ann Arbor, MI, USA),
and B-hydroxybutyrate (#ab272541, Abcam) levels were measured using commercial kits.

2.8. RNA-Sequencing and Analysis of Transcriptome Data

Total RNA was extracted from frozen LV tissues using the RNeasy® Mini Kit (Qiagen,
Hilden, Germany). RNA samples (RNA integrity number > 8) were used for library
preparation and sequencing. Poly(A)-enriched cDNA libraries were prepared using the
Ilumina TruSeq RNA Library Preparation kit. Library templates were then sequenced on
NovaSeq 6000 sequencing system at a read length of 151 nt paired end, with a depth of
approximately 50 million per sample (Illumina, San Diego, CA, USA). Four to five mice per
drug-treated condition were used for subsequent data analysis.
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2.9. Statistical Analysis

Quantitative data were analyzed using GraphPad Prism version 9.0 (San Diego, CA,
USA). Between-group comparisons were performed using one-way or two-way analysis of
variance followed by Tukey’s post hoc test for multiple comparisons based on the design of
the experiment. Log-rank test was used to compare survival distributions. In the gene set
enrichment analysis (GSEA), adjusted p-values corresponding to each normalized enrich-
ment score (NES) were applied by Benjamini-Hochberg method. Statistical significance
was set at p < 0.05.

3. Results
3.1. Combined Treatment with Low-ARNI/SGLT2i Prolongs the Overall Survival of Acute
Doxorubicin-Injected Mice

To evaluate the beneficial effect of ARNI plus SGLT2i on chemotherapy-induced
cardiomyopathy, we administered experimental drugs in rodent model of acute doxoru-
bicin heart failure (Figure 1A). In pilot study for determining the appropriate combined
dosages, we found that high doses of ARNI (136 mg/kg/day) aggravated the status of
mice rather than protecting them. Drug down-titration is common for agents with a narrow
therapeutic index to minimize the risk of adverse effects [25]. Based on the toxic side
effects of high-doses of ARNI, we decided to add 50% of ARNI (34 mg/kg/day) to our
experimental model.

In acute doxorubicin experiment, the drug-treated groups (ARNI, SGLT2i, Low-
ARNI/SGLT2i, ARNI/SGLT2i treatment) showed improved survival rates compared with
doxorubicin + vehicle group. Kaplan-Meier survival curves showed significant mortality
(75%) in doxorubicin + vehicle group at experiment completion compared with that in
the control mice. Additionally, the median survival time in doxorubicin + vehicle group
was only 10 days (Figure 1B). In contrast, mortality in doxorubicin + Low-ARNI/SGLT2i
group was significantly lower than that in doxorubicin + vehicle group (doxorubicin +
Low-ARNI/SGLT2i: 14.2% vs. doxorubicin + vehicle: 75%, p < 0.05). Moreover, the survival
rate of other groups, including SGLT2i only, ARNI only, and ARNI/SGLT2i combination,
in acute doxorubicin-injected mice increased up to 66.7%, 50%, and 66.7%, respectively,
compared with that of doxorubicin + vehicle group. However, Low-ARNI/SGLT2i group
showed the highest survival (85.7%) compared with other three groups. Furthermore,
an improvement in survival rate accompanied with weight gain in drug-treated groups
(Supplementary Figure S1). Treatment with doxorubicin + vehicle resulted in significant
body weight loss (—23.8%) during the early course of study. Besides improved survival
rate, treatment with Low-ARNI/SGLT2i markedly attenuated body weight loss (—15.9%)
in doxorubicin-injected mice. Taken together, these results suggest that combined treatment
with Low-ARNI/SGLT2i improves both survival rate and body weight in acute model of
doxorubicin-induced heart failure.

Due to the anti-hypertensive effect of ARNI, blood pressure and pulse rate were mea-
sured to determine hemodynamic changes after ARNI and SGLT?2i treatment in acute heart
failure model. At 4 days after bolus injection of doxorubicin, systolic blood pressure of dox-
orubicin + vehicle group was lower than that of control mice (control: 114.8 £ 5.4 mmHg
vs. doxorubicin + vehicle: 98.9 &+ 5.1 mmHg, p < 0.05) (Figure 1D). Unexpectedly, treatment
with ARNI showed dramatic dipping in systolic blood pressure to 66.7 + 6.3 mmHg com-
pared with other groups in acute model of doxorubicin-induced heart failure. Nonetheless,
the dipping of blood pressure after combined treatment with SGLT2i, with either Low-
ARNI (94.3 + 9.3 mmHg) or ARNI (80.6 £ 14.5 mmHg), was alleviated in the presence of
SGLT2i. Despite the hypotensive effect of ARNI in acute model of doxorubicin heart failure,
the addition of ARNI along with SGLT2i significantly improved heart rate compared with
that in the doxorubicin + vehicle group (control: 531 & 37 bpm; doxorubicin + vehicle:
391 + 44 bpm vs. doxorubicin + ARNI: 476 4 27 bpm, p < 0.05; doxorubicin + vehicle
vs. doxorubicin + Low-ARNI/SGLT2i: 482 £ 46 bpm, p < 0.05; doxorubicin + vehicle
vs. doxorubicin + ARNI/SGLT?2i: 487 £ 65 bpm, p < 0.05; Figure 1E). These observations
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indicate that combining of ARNI with SGLT2i help to maintain proper blood pressure and
heart rate rather hypotension and bradycardia shown in acute doxorubicin-injected mice.

3.2. Combined Treatment with Low-ARNI/SGLT2i Recovers Doxorubicin-Induced Cardiac
Dysfunction in Mice

We employed an established model of chronic cardiotoxicity to examine whether
Low-ARNI/SGLT?2i affects progressive cardiac dysfunction to mimic the clinical manifes-
tations of CTRCD, as described in Figure 2A. We performed serial echocardiography to
assess the cardiac function of mice before and after drug treatments. After doxorubicin
injection, vehicle-treated mice had been developed progressive systolic dysfunction com-
pared with control mice, evidenced by reduced left ventricular FS (control: 40.1 &= 1.0% vs.
doxorubicin + vehicle: 29.8 £ 1.1%; p < 0.001) and left ventricular ejection fraction (LVEF)
(control: 71.5 £ 1.2% vs. doxorubicin + vehicle: 58.1 £ 1.6%; p < 0.001) in a time-dependent
manner (Figure 2C). In contrast, a single treatment with either ARNI or SGLT2i mitigated
doxorubicin-induced reduction in LVEF (doxorubicin + ARNI: 67.5 + 1.7%; doxorubicin
+ SGLT2i: 66.5 £ 0.5%). Additionally, combined treatment with Low-ARNI/SGLT2i al-
leviated LVEF reduction at 9 weeks in doxorubicin-injected mice (doxorubicin + Low-
ARNI/SGLT2i: 73.8 £ 1.8%). Specifically, LVEF was comparable with baseline (baseline:
74.5 £+ 1.6% vs. doxorubicin + Low-ARNI/SGLT2i: 73.8 &+ 1.8%; p > 0.05) or the control
group at 9 weeks (control: 71.5 £ 1.2% vs. doxorubicin + Low-ARNI/SGLT?2i: 73.8 &+ 1.8%;
p > 0.05). Conversely, combined treatment with ARNI/SGLT2i in doxorubicin-injected mice
failed to prevent this decline to baseline levels, whereas treatment with Low-ARNI/SGLT2i
was effective in recovering FS and LVEF (FS, doxorubicin + Low-ARNI/SGLT2i: 41.5 & 0.9%
vs. doxorubicin + ARNI/SGLT2i: 36.4 + 1.3%, p < 0.001; LVEF, doxorubicin + Low-
ARNI/SGLT2i: 75.2 £ 0.8% vs. doxorubicin + ARNI/SGLT2i: 67.0 &+ 1.7%, p < 0.001)
(Figure 2C).

Furthermore, LV wall thinning after doxorubicin injection was significantly reduced
in mice treated with either SGLT2i only or Low-ARNI/SGLT2i compared with that in
doxorubicin + vehicle group (doxorubicin + vehicle: 0.99 & 0.04 mm vs. doxorubicin
+ SGLT2i: 1.26 £ 0.08 mm, p < 0.001; doxorubicin + vehicle vs. doxorubicin + Low-
ARNI/SGLT?2i: 1.17 & 0.05 mm, p < 0.01) (Figure 2D).
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Figure 2. Recovery effects of Low-ARNI/SGLT?2i treatment on doxorubicin-induced cardiac dys-
function. (A) Schema of chronic heart failure model (15 mg/kg total). (B) Representative M-mode
echocardiography images after 9 weeks in indicated experimental groups. (C) Fractional shorten-
ing (FS%) and ejection fraction (EF%) at baseline and 3, 7, and 9 weeks after doxorubicin injection.
(D) LV wall thickness. (E) LV end-diastolic volume. (F) LV end-systolic volume 9 weeks after dox-
orubicin injection. (G) Stroke volume at baseline and 3, 7, and 9 weeks after doxorubicin injection
(n=6-8/group). * p < 0.05, # p < 0.01, ¥ p < 0.0001 compared to doxorubicin + vehicle group.
*p <0.05,*p <0.01, ***p < 0.0001.

At baseline, there was no difference in LV end-diastolic volume (LVEDV), LV end-
systolic volume (LVESV), and stroke volume in the control and experimental groups. After
doxorubicin injection, stroke volume significantly declined compared with that in the
control group (control: 44.3 £ 1.7 uL vs. doxorubicin + vehicle: 27.6 = 1.8 uL, p < 0.001)
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(Figure 2E-G). Along with changes in systolic function, a time-dependent decline in stroke
volume compared with baseline was observable after doxorubicin injection in the vehicle
group (baseline: 45.1 £ 4.3 puL vs. 9 week: 27.6 £ 1.8 uL, p < 0.001), ARNI group (baseline:
44.8 + 4.8 uL vs. 9 week: 33.0 £ 2.8 uL, p < 0.01), SGLT2i group (baseline: 45.2 & 4.3 uL
vs. 9 week: 36.5 + 0.6 uL, p < 0.01), and ARNI/SGLT2i group (baseline: 45.4 & 5.5 pL vs.
9 week: 38.6 = 2.2 uL, p < 0.05). In contrast, after Low-ARNI/SGLT2i treatment, stroke
volume recovered to a value comparable to that at the baseline (baseline: 44.8 £ 5.0 uL vs.
9 weeks: 41.6 & 1.4 uL, p > 0.05; Figure 2G). Altogether, these results indicate that Low-
ARNI/SGLT2i treatment significantly improves cardiac systolic function and LV structural
remodeling in doxorubicin-injected mice.

3.3. Combined Treatment with Low-ARNI/SGLT2i Attenuates Doxorubicin-Induced Cardiotoxicity

We next tested the effect of combined treatment on cardiac structure in doxorubicin-
injected mice. There was a significant decrease in the ratio of heart weight and tibial length,
indicating that doxorubicin injection caused progressive cardiac atrophy in the vehicle
group. Conversely, treatment with Low-ARNI/SGLT2i exerted significant increases in
the ratio of heart weight and tibial length as compared with doxorubicin + vehicle group
(doxorubicin + vehicle: 56.5 + 2.1 vs. doxorubicin + Low-ARNI/SGLT2i: 61.0 £+ 2.1,
p < 0.05) (Figure 3A,B).
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Figure 3. Protective effects of ARNI and SGLT2i treatment on doxorubicin-induced cardiotox-
icity. (A) Whole-heart photograph. (B) The ratio of heart weight to tibia length (HW/TL)
(n =7-8/group). (C) Representative hematoxylin and eosin staining. (D) Quantitative myofibrillar
thickness (n = 6-7/group) (E) Representative cytoplasmic vacuolization. (F) Quantitative number of
cytoplasmic vacuoles (n = 6-7/group). (G) Representative immunoblots of BMHC, MyBPC3, and
GAPDH and graphical quantification at 9 weeks after doxorubicin injection in indicated experimental
groups (n = 4-5/group). * p < 0.05, **** p < 0.0001.

To evaluate histopathological changes, we measured myofibrillar width and cytoplas-
mic vacuolization in heart section by H&E staining. As expected, doxorubicin + vehicle
group exhibited the most severe abundance of cytoplasmic vacuoles (control: 4.8 £ 1.3 vs.
doxorubicin + vehicle: 52.7 £ 5.7, p < 0.001) and thin myofibrils (control: 15.4 + 1.3 um
vs. doxorubicin + vehicle: 9.0 £ 1.0 um, p < 0.001) compared with the control group
(Figure 2C,D). Both massive vacuolization and myofibrillar thinning shown in doxorubicin-
injected mice decreased after treatment with SGLT2i only, ARNI only, and combination of
two drugs (Figure 2C,E). Notably, the effects of Low-ARNI/SGLT?2i on cytoplasmic vacuole
and myofibrillar thinning were more pronounced than those of a single treatment with
either ARNI or SGLT2i in doxorubicin-injected mice (doxorubicin + Low-ARNI/SGLT2i my-
ofibril thickness: 13.9 & 1.1 um, p < 0.001; doxorubicin + Low-ARNI/SGLT?2i cytoplasmic
vacuoles: 13.3 = 1.8, p < 0.001).

We further measured the expression of cardiac structural proteins, including 3-myosin
heavy chain (3MHC) and myosin-binding protein C3 (MyBPC3). As shown in Figure 3G,
a decrease in expression of MHC and MyBPC3 after doxorubicin was recovered by
treatment with Low-ARNI/SGLT2i. These data suggest that combined treatment with
Low-ARNI/SGLT2i efficiently attenuates the pathological remodeling of cardiac structure
in rodent model of doxorubicin-induced heart failure.

3.4. Combined Treatment with Low-ARNI/SGLT2i Stimulates the Secretion of Heart-Driven
Hormones to Coordinate Kidney Function

To assess the pharmacological effect of ARNI, we measured the plasma levels of
NT-proANP and BNP. As shown in Figure 4A,B, treatment with ARNI increased the
circulating level of BNP, whereas it decreased NT-proANP levels compared with those
in doxorubicin + vehicle group (NT-proANP: 2.3 + 0.3 nmol/L vs. 1.3 £ 0.3 nmol/L,
p < 0.001; BNP: 8.2 &+ 2.4 pg/mL vs. 11.9 £+ 2.4 pg/mL, p = 0.16). Among the other
groups, Low-ARNI/SGLT2i group showed the highest value of BNP (doxorubicin + vehi-
cle: 8.2 £ 2.4 pg/mL vs. doxorubicin + Low-ARNI/SGLT2i: 13.0 + 1.8 pg/mL, p < 0.05;
doxorubicin + ARNI: 11.9 £ 2.4 pg/mL, doxorubicin + SGLT2i: 10.5 & 2.0 pg/mL, doxoru-
bicin + ARNI/SGLT?2i: 11.1 £+ 5.4 pg/mL). Additionally, cardiac gene expression of ANP
and BNP were decreased in the Low-ARNI/SGLT2i group (Figure 4C).
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Figure 4. Effects of ARNI and SGLT?2i treatment on heart-driven hormones in chronic doxorubicin-
injected mice. (A) Plasma concentration of NT-proANP and (B) BNP 9 weeks after doxorubicin
treatment initiation (n = 5-6/group). (C) mRNA expression of BNP and (D) ANP (n = 4-5/group).
(E) Representative PAS staining of kidney cross-sections. (F) Quantitative mean glomerular volume
(n = 6-7/group). (G) Plasma concentrations of BUN, (H) creatinine, and (I) NGAL 9 weeks after
doxorubicin injection (n = 4-6/group). ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001,
% < 0.0001.

Next, we assessed the PAS staining and biomarkers of kidney injury. Kidney sec-
tions from control mice exhibited normal structure and size in PAS staining. In con-
trast, prominent damages in both glomerular and tubulointerstitial regions were observed
in doxorubicin-injected mice (control: 19.5 & 8.2 X 10* um3 vs. doxorubicin + vehicle:
12.6 & 6.3 x 10* pum3, p < 0.001). Administration of either ARNI or SGLT2i significantly ame-
liorated the shrinkage of glomerular volume (doxorubicin + ARNI: 14.9 + 6.7 x 10* um?,
doxorubicin + SGLT2i: 15.0 + 6.4 x 10* um?). Consistently, the best recovery of glomerular
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shrinkage was shown in the Low-ARNI/SGLT2i group among all experimental groups (dox-
orubicin + vehicle: 12.6 + 6.3 x 10* pm3, doxorubicin + Low-ARNI/SGLT2i:
17.1 £ 7.1 x 10* um3, p < 0.001) (Figure 4E,F). A tendency of decline in serum BUN
(17.4 £ 1.0 vs. 15.8 £ 0.9, p = 0.37) and creatinine levels (0.52 & 0.12 vs. 0.50 £ 0.09, p = 0.9)
was observed in the Low-ARNI/SGLT2i group, which was not statistically significant com-
pared with that of doxorubicin + vehicle group (Figure 4G,H). Then, we measured serum
NGAL, which is an early renal biomarker rapidly secreted by tubular cells in response to
inflammation or nephron injury. A significant decline in serum NGAL level was observed
in the Low-ARNI/SGLT?2i group compared with that of doxorubicin + vehicle group (dox-
orubicin + vehicle: 127.8 + 9.2 vs. doxorubicin + Low-ARNI/SGLT2i: 97.5 £ 11.0, p < 0.05)
(Figure 4I). Collectively, our data imply that optimizing ARNI dosage in combined therapy
would provide the most favorable protective effects through cardiorenal axis.

3.5. Effects of Combined Treatment with Low-ARNI/SGLT2i on Cardiac Energy Metabolism
during Doxorubicin-Induced Cardiac Dysfunction

We performed bulk RNA-sequencing to obtain the mechanical insights of heart in
response to ARNI and SGLT2i in chronic doxorubicin-injected mice. Principal compo-
nent analysis of differentially expressed genes (DEGs) showed that the control, doxoru-
bicin + vehicle, doxorubicin + ARNI, doxorubicin + SGLT2i, and doxorubicin + Low-
ARNI/SGLT2i samples were clustered closely, indicating their similarity (Supplementary
Figure S2A) [26,27]. Similarly, hierarchical clustering analysis also indicated that these
samples were well grouped with each other (Supplementary Figure S2B) [28,29]. To under-
stand the implications of global gene expression changes affected by combined treatment
with Low-ARNI/SGLT2i, we performed GSEA [30]. GSEA showed that gene set was
positively enriched with PPAR signaling pathway (NES 1.75, p.adjust = 0.008) and fatty
acid degradation pathway (NES 1.67, p.adjust = 0.037) in doxorubicin + Low-ARNI/SGLT2i
group compared with doxorubicin + vehicle group (Figure 5A). Genes in the k-means
cluster 3 in hierarchical clustering, which are strongly upregulated in combined treatment
with Low-ARNI/SGLT2i (228 genes), uncovered significant over-representation of DEGs in
fatty acid metabolic process. The two dominant pathways were PPAR signaling (Angpti4,
Cptla, Cptlb, Hmgcs2, Plin4, Scd4, and Slc27a1) and fatty acid degradation (Aldh9al, Cptla,
and Cpt1b) in Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis
(Figure 5B). Based on enrichment analysis, we examined the gene expression patterns of
doxorubicin + Low-ARNI/SGLT2i groups according to Kyoto Encyclopedia of Genes and
Genomes terms (“PPAR signaling pathway”) by comparing the control and doxorubicin +
vehicle groups. Heat maps of relative mRNA expression of gene sets in PPAR signaling
pathway are shown in Figure 5C. Fatty acid transport-related genes (Slc27a1, Slc27a6, Acsbgl,
Acsl3, Acsl4, Fabp4, and Fabpb), fatty acid oxidation-related genes (Cptla, Cptlb, Acaala,
and Ehhadh), ketogenesis-related genes (Hmgcs2), and gluconeogenesis-related genes (Pck1,
Pck2, and Aqp7) were upregulated in the Low-ARNI/SGLT2i group. Furthermore, re-
covery of dysregulated genes (Rxrb, Acsl5, Dbi, Plinl, Acaala, Acox3, Sorbs1, Apoa2, and
Slc27a4) after doxorubicin injection was observable in doxorubicin + Low-ARNI/SGLT2i
group. Thus, our transcriptome analysis suggests that combined treatment with Low-
ARNI/SGLT2i improves metabolic flexibility in doxorubicin-injected heart through PPAR
signaling pathway.
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Figure 5. Effects of ARNI and SGLT2i treatment on cardiac energy metabolism in doxorubicin-
induced cardiac injury. (A) GSEA plots associated with Low-ARNI/SGLT2i-treated groups. (B) Sum-
mary plot for over-representation analysis with Kyoto Encyclopedia of Genes and Genomes pathway
of cluster 3 in hierarchical clustering. (C) Heat maps of relative mRNA expression of indicated
genes in PPAR signaling pathway from control, doxorubicin + vehicle, and doxorubicin + Low-
ARNI/SGLT2i groups. (D) Urine glucose, (E) plasma glucose and (F) plasma 3-hydroxybutyrate
levels (n = 5-7 per group). (G) Representative immunoblots of PPAR«, CD36, and CPT1« protein at
9 weeks after doxorubicin injection in indicated experimental groups and graphical quantification
(n = 4-5 per group) (H) mRNA levels of 3-oxidation and ketogenesis-related genes are determined
by gRT-PCR (1 = 4 per group). * p < 0.05, ** p < 0.01, ** p < 0.001.
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To further validate the functional relevance of identified genes associated with cardiac
metabolism from RNA-sequencing data, we studied energy utilization in doxorubicin-
induced cardiac injury. Initially, we examined renal glycosuria by measuring urine glucose
levels of mice to assess the pharmacologic effects of SGLT2i. As expected, treatment with
SGLT2i significantly increased glucose levels in urine (Figure 5D). Furthermore, to un-
derstand the resultant metabolic changes, we measured plasma glucose following drug
administration. Treatment with doxorubicin resulted in a relatively low level of plasma
glucose compared with the control (control: 244.7 & 19 mg/dL vs. doxorubicin + vehicle:
190 £ 18.7 mg/dL, p < 0.001). Since SGLT2i is an anti-hyperglycemic agent that acts through
glycosuria, it showed the lowest glucose levels among experimental groups. However,
glucose level in SGLT2i group was not statistically significant compared with that of dox-
orubicin + vehicle group (doxorubicin + vehicle: 190 £ 18.7 mg/dL vs. doxorubicin +
SGLT2i: 186 £ 20.6 mg/dL, p = 0.9). Interestingly, ARNI-treated group showed relatively
higher levels of plasma glucose than doxorubicin + vehicle group (doxorubicin + ARNI:
209 £ 22.5 mg/dL, doxorubicin + Low-ARNI/SGLT?2i: 222 + 11.1 mg/dL, doxorubicin +
ARNI/SGLT?2i: 218 + 20.2 mg/dL). However, only Low-ARNI/SGLT2i group was signifi-
cantly different (p < 0.05) (Figure 5E). Since glucose is derived either exogenously or from
glycogen stored intracellularly in heart, we assessed the level of glucose transporter type
4 (GLUT4) and glycogen synthase kinase 33 (GSK3[3). GLUT4 expression was increased
whereas inactivation of GSK3f through the protein kinase B (PKB/Akt) signaling path-
way was up-regulated in the heart tissues from doxorubicin + Low-ARNI/SGLT2i group
(Supplementary Figure S3).

Moreover, the level of plasma -hydroxybutyrate, an alternative fuel source in a failing
heart, in both SGLT2i only and Low-ARNI/SGLT2i groups was significantly increased
compared with that of doxorubicin + vehicle group (doxorubicin + vehicle: 245 + 125 uM
vs. doxorubicin + SGLT2i: 708 & 206 uM, p < 0.01; doxorubicin + vehicle vs. doxorubicin +
Low-ARNI/SGLT2i: 684 4 180 uM, p < 0.05) (Figure 5F).

To ascertain whether the cardioprotective effect observed in the Low-ARNI/SGLT2i
treatment was related to fatty acid metabolism, we evaluated the expression of proteins
involved in fatty acid metabolism, including PPAR alpha (PPARw), fatty acid transporter
(CD36), and carnitine palmitoyl transferase (CPT1«), from heart tissues. Immunoblot
analysis showed that the expression of PPARx, CD36, and CPT1x was markedly increased
in the Low-ARNI/SGLT2i group compared with doxorubicin + vehicle group (Figure 5G).
Furthermore, quantitative RT-PCR revealed that the expression of genes, including Cptla,
Ehhadh, Acadl, and Hmgcs2, involved in (3-oxidation and ketogenesis was significantly
upregulated after Low-ARNI/SGLT?2i treatment (Figure 5H). Altogether, combined treat-
ment with Low-ARNI/SGLT2i exerts protective effects on heart by modulating metabolic
pathway, including glucose, ketone bodies, and fatty acids, in doxorubicin-induced model
of heart failure.

4. Discussion

To the best of our knowledge, this study is the first observation to report the efficacy
and suitable dosage of ARNI combined with SGLT2i in a preclinical model of CTRCD, and
to show that low-dose ARNI in addition to SGLT2i exhibits a favorable effect on hemody-
namic changes and enhanced myocardial metabolism through PPAR signaling pathway.

In our experiment, along with better survival, Low-ARNI/SGLT2i-treated group
exhibited remarkable weight loss after doxorubicin injection (Supplementary Figure S1).
Early weight loss in patients with cancer negatively affects clinical prognosis [31]. Thus, we
assumed that improved survival by Low-ARNI/SGLT2i may also be related to maintenance
of weight and muscle mass. Although there is a limit in terms of inability to measure food
and water intake, an increase in the plasma glucose levels of Low-ARNI/SGLT2i group
may support this possibility. Since blood glucose levels vary according to dietary intake,
Low-ARNI/SGLT2i groups may have taken sufficient nutrition to have increased blood
glucose levels more than doxorubicin + vehicle group (Figure 5E).
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In addition, reduced myocardial mass loss, augmented myofibril thickness, and an
improvement of cardiac function by Low-ARNI/SGLT2i may be a result of either reduced
degradation or enhanced synthesis of heart structural proteins, including FMHC and
MyBPC3 (Figure 3G). In patients with CTRCD, cardiomyocytes are injured by the direct
toxicity of chemotherapeutic reagents [32]. To overcome this issue, Low-ARNI/SGLT2i
combination may support the possibility of regulating cardiac myocyte protein turnover for
cardioprotection [33]. In this regard, it is important to elucidate the underlying molecular
mechanisms through in-depth research.

Heart failure shares many risk factors and numerous pathophysiological pathways
with acute and chronic kidney disease through hemodynamic, neurohormonal, and car-
diovascular disease-associated mechanisms [34]. The most well-established heart-derived
hormones are ANP and BNP, which regulate the whole-body balance of water and elec-
trolytes through target tissues [35]. As the kidney is a main target organ for natriuretic
peptides, we tested PAS staining and serum NGAL level to assess kidney injury. In our
study, the renal protective effect was obvious in combined Low-ARNI/SGLT2i treatment
than in single treatment of either ARNI or SGLT2i (Figure 4E-I). In contrast to Low-
ARNI/SGLT2i combination, ARNI/SGLT2i treatment induced marked renal impairment
compared with others. Clinical trials such as Dapagliflozin and Prevention of Adverse
Outcomes in Chronic Kidney Disease (DAPA-CKD), and Prospective Comparison of ARNI
with ARB Global Outcomes in HF with Preserved Ejection Fraction (PARAGON-HF) re-
ported that beneficial outcomes of ARNI and SGLT2i on kidney function. However, adverse
event cases of acute kidney injury associated with SGLT2i and even ARNI/SGLT2i com-
bination were also reported [36,37]. Major declines in kidney function under SGLT?2i are
often accompanied by acute illnesses such as diarrhea and/or sepsis [38]. Inappropriate
ARNI doses induce a hemodynamically unstable condition and SGLT2i may lead to acute
kidney injury by excessive intravascular volume depletion, due to diuresis and induction
of renal medullary hypoxic injury [39]. Hence, we propose that combined administration
of these two drugs in suitable doses would preserve organ function during chemotherapy
through cardiorenal crosstalk.

Due to the anti-hypertensive effect of ARNI, extreme blood pressure dipping with
ARNIwas observed in acute doxorubicin-induced model of cardiac dysfunction (Figure 1D).
Although the dosage of ARNI was a human equivalent dose and comparable to that in
previous preclinical studies, these results may need to be interpreted under highly vir-
ulent conditions induced by a single high-dose bolus injection of doxorubicin. Acute
doxorubicin-induced model of heart failure mimics acute decompensated heart failure
and similarly shows a vulnerable physiological state; therefore, even the modest amounts
of anti-hypertensive agents can cause large drops. In Comparison of Sacubitril-Valsartan
versus Enalapril on Effect on NT-proBNP in Patients Stabilized from an Acute Heart Failure
Episode (PIONEER-HF) trial, ARNI group showed a higher tendency for symptomatic hy-
potension than ACE inhibitor group, although the difference was not statistically significant
(ARNI: 15% vs. ACEi: 12.7%) [40]. These comparable rates of symptomatic hypotension
may have critically affected the non-significant differences in secondary efficiency and
safety outcomes in the PIONEER-HF trial. Therefore, ARNI dose modulation should be con-
ducted with extreme caution in intra-hospital drug management of acute decompensated
heart failure.

Furthermore, SGLT2i combined with ARNI reduced the risk of hypotension in acute
doxorubicin model, implicating a clinical benefit for hemodynamically unstable patients
with heart failure. Our result was consistent with the findings of Empagliflozin Outcome
Trial in Patients with Chronic Heart Failure with Reduced Ejection Fraction (EMPEROR-
Reduced), demonstrating a slight early increase in placebo-corrected systolic blood pressure
among patients in the “<110 mmHg systolic blood pressure” group during the early phase
of the trial [7]. In addition to the study by Bohm et al. [41], our study reassures the
hemodynamic tolerability of SGLT2i, which seems to be a novel therapeutic intervention
for managing low blood pressure.
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The heart, an organ with a high metabolic rate, utilizes a wide range of substrates,
including fatty acids, and glucose. During end-stage heart failure, the efficiency of fatty
acid oxidation is significantly reduced [42]. To compensate for and increase the total
energy supply, glucose and ketone bodies may be used for cardiac metabolism [43]. Tran-
scriptome analysis employed in this study suggested that potential mechanisms in the
Low-ARNI/SGLT2i group involve modulating cardiac metabolism through PPAR signaling
pathway, mainly through fatty acid catabolism. PPARs are fatty acid sensors that regulate
whole-body energy metabolism [44]. PPAR«x plays a crucial role in the body’s adaptive
response to fasting by modulating fatty acid transport, oxidation, and ketogenesis [45].
PPARf /6 activate both lipid and glucose metabolism, and are associated with body mass
index, fasting glucose levels, and insulin resistance [46].

PPAR activation induces the expression of several protein-encoding genes involved in
transmembrane transport and mitochondrial 3-oxidation of fatty acids [47]. As shown in
Figure 5C, Low-ARNI/SGLT2i treatment increased the expression of PPAR target genes
involved in fatty acid transport (Slc27al, Slc27a6, Acsbg1, Acsl3, Acsl4, Fabp4, Fabp5) and
oxidation (Cptla, Cptlb, Acaala, Ehhadh). Consistent with our transcriptomic data, im-
munoblotting and quantitative RT-PCR (Figure 5G,H) revealed that PPAR«, CD36, and
Cptla were increased in the Low-ARNI/SGLT2i group, which may contribute to the in-
creased oxidation rates of myocardial fatty acid. This preservation of fatty acid oxidation
suggests the promotion of catabolism for energy production, thereby improving myocardial
energetics. Moreover, Low-ARNI/SGLT?2i treatment induced myocardial expression of
3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2), a mitochondrial enzyme involved
in the second rate-limiting step of ketogenic pathway. Ketone bodies are an alternative fuel
source for failing hearts [48]. Our transcriptomic data of increased expression of Hmgsc2
and elevation of circulating 3-hydroxybutyrate in the Low-ARNI/SGLT2i treatment group
indicate that ketones are also potential contributors to improving myocardial energetics
(Figure 5F). Moreover, increased expression of GLUT4 and inactivation of GSK3f may
influence the re-partitioning of glucose metabolism, which might have enhanced energy ef-
ficiency by generating higher ATP levels (Supplementary Figure S3). Altogether, combined
treatment with SGLT2i and suitable dosage of ARNI potentiates myocardial energetics
through the utilization of fatty acid, glucose, and ketone bodies.

We acknowledge the limitations of our study. Healthy animals were used in our study
to yield the effect of ARNI and SGLT2i on doxorubicin-induced heart failure, but these
drugs may interfere with chemotherapeutic efficacy. Furthermore, we could not measure
diastolic function; therefore, it was not possible to evaluate whether diastolic function was
changed by the combination of two drugs. Moreover, further investigations are needed
to test the ability of ARNI and SGLT2i combination by metabolite profiling to identify the
dynamic metabolic changes in the heart.

5. Conclusions

We report that the addition of low-dose ARNI with SGLT2i resulted in greater benefits
than single treatment with either ARNI or SGLT2i in protecting cardiac function against
doxorubicin-induced cardiotoxicity through PPAR signaling pathway. Our data may offer
novel mechanistic insight into the benefits observed with Low-ARNI/SGLT2i combination.
Even though future investigations are required to confirm the favorable role of ARNI and
SGLT2i combined therapy in CTRCD, our findings would be applicable in developing
optimized CTRCD management.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /pharmaceutics14122629 /s1, Figure S1: Low-ARNI/SGLT2i treat-
ment prevents body weight loss during acute doxorubicin administration; Figure S2: Transcriptomic
analysis during ARNI and SGLT2i treatment in the chronic doxorubicin model of heart failure;
Figure S3: ARNI and SGLT?2i treatment effects on glucose metabolism re-partitioning in chronic
doxorubicin-injected mice; Table S1: Primer sequences used in the present study.
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