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Abstract: The realization of an optical cloak that can hide a target object is no longer fiction,
yet distinguishing the optically cloaked surface from our illusion remains an open problem. Here,
the detection of a one-dimensional optically cloaked surface is presented by leveraging the spin
Hall effect of light, the microscopic and transverse splitting of linearly polarized light at an
optical interface into two circular polarizations. We first derive an analytical formula for the spin
Hall shift at a planar surface with a linear phase gradient and demonstrate that the spin Hall effect
of light at the cloaked surface differs from that at its perceived image. The theoretical description
and numerical computation are generalized for a curved surface with a nonlinear phase gradient.
Two approaches for examining optically cloaked surfaces are presented, in which the unknown
incident angle and phase gradient are successfully reproduced. This work suggests the potential
of the spin Hall effect of light in various applications, including anti-counterfeiting and security.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Recent advances in optics and nanofabrication have brought the concept of invisibility cloaks
into reality by manipulating the amplitude and phase of electromagnetic waves using artificially
designed structures [1–7]. Among the various methods, the most efficient is the skin cloak
[8], which renders an object with an arbitrary geometrical shape invisible by compensating the
phase using subwavelength-thick metasurfaces. Patterned on the surface of an arbitrarily shaped
three-dimensional object, the metasurface introduces an additional height-dependent phase so
that the observer perceives the object as flat [9]. Early cloaking devices operated under limited
conditions, that is, under a specific azimuth angle, polarization, and limited wavelength regime.
However, considerable efforts to alleviate the operation conditions have enabled optical cloaks
that can hide objects under polarization insensitivity [10,11] or broadband light [12–14] and
dynamic tunability [15,16], self-adaptivity [17], etc.

As optical cloaking evolves, the importance of developing a technique to reveal cloaked objects
has grown. This study begins with the question: If an ideal skin cloak that perfectly conceals
an object underneath it exists, how can one distinguish the cloaked surface from its uncloaked
counterpart? Here, we demonstrate that an ideal skin-cloaked surface with a one-dimensional
(1D) phase gradient can be revealed by exploiting the spin Hall effect of light (SHEL) [18–23].
Because the amount of splitting or so-called spin Hall shift is closely linked to the Fresnel
coefficients and incident angle [24–36] and can be measured precisely via weak measurement
[19,37], the SHEL has been used as a measurement pointer to identify unknown parameters at an
interface, such as the refractive index and number of layers [37–42] and has proven its potential
in detecting geometrical [43], chemical [44], and biological [45,46] features. However, despite its
versatility in detecting and sensing applications, SHEL has not yet been used to detect optically
cloaked regions.

While the detection using the SHEL in previous studies has thus far relied on the changes in
the Fresnel coefficients, the identification of the cloaked surface introduced here is underpinned
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by the inequality of the incident and reflected angles and its relation to the spin Hall shift. We
first derive the analytic formula for the spin Hall shift at a planar surface with a linear phase
gradient and confirm its validity using numerical simulations. Subsequently, its generalization to
detect a curved surface with a nonlinear phase gradient is introduced. The spatially nonuniform
1D height profile is fully restored by examining the transverse displacement along the reflected
beam line segment. Moreover, two methods to reproduce the unknown incident angle and phase
gradient are introduced, one by comparing the SHEL at the cloaked surface and that at its
uncloaked counterpart and the other by measuring the SHEL at the cloaked surface under two
linear polarizations. The incident angle and phase gradient are successfully estimated from the
SHEL at the planar and curved cloaked surfaces, demonstrating that the SHEL can reveal the 1D
ideal skin cloak. We believe that this work expands the practicality and potential of SHEL in
diverse areas, such as anti-counterfeiting and security applications.

2. Results and discussion

2.1. Spin Hall effect of light at a spatially uniform planar interface

SHEL refers to the microscopic and transverse spin-dependent splitting of light at an optical
interface [18–20] (Fig. 1(a)). A linearly polarized incidence is split into two circularly polarized
components, left circularly polarized (LCP) and right circularly polarized (RCP), in half, along
the direction perpendicular to the incident plane (Fig. 1(b)) through the refraction/reflection as a
result of the vectorial and transverse nature of light. Before deriving the analytic formula for the
spin Hall shift at the cloaked surface, we first revisit the reflection of a Gaussian beam at a planar
interface characterized by spatially uniform Fresnel reflection coefficients (rp and rs for p and s
polarizations, respectively). A Gaussian beam propagating along the zI-axis in the zI-xI plane is
considered (see Fig. 1(c) for coordinate definitions). The spatial profile of the reflected beam can
be obtained using the Fourier transform:

ψ̃R,c(r⃗) =
∬

ψR,c(k⃗R) exp(ik⃗R · r⃗)dkRxdkRy, (1)

of the reflected beam in the momentum space,

ψR,c(k⃗R) = MψR→ψR,cJ(k⃗I)MψI,c→ψIψI,c(k⃗I), (2)

where the subscripts I and R denote the incident and reflected beams, respectively, and the second
subscript c indicates that the quantity is expressed in the central frame.

J(k⃗I) =
⎛⎜⎝
rp(k⃗I) 0

0 rs(k⃗I)

⎞⎟⎠ (3)

is the Jones matrix that transforms the incidence to the reflected beam in the local frame
(ψI → ψR),

MψR→ψR,c =
⎛⎜⎝

1 ky
k0

cos θR
sin θI

−
ky
k0

cos θR
sin θI

1
⎞⎟⎠ (4)

is a coordinate transformation matrix of the reflected beam from the local frame to the central
frame ((x̃R, ỹR, z̃R) → (xR, yR, zR), ψR(k⃗R) → ψR,c(k⃗R)), where θI and θR are the incident and
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reflected angles, respectively. Note that kIy = kRy ≡ ky and k0 is the wave number.

MψI,c→ψI =
⎛⎜⎝

1 ky
k0

cot θI

−
ky
k0

cot θI 1
⎞⎟⎠ (5)

is a coordinate transformation matrix of the incident beam from the central to the local frame
[47] ((xI , yI , zI) → (x̃I , ỹI , z̃I), ψI,c(k⃗I) → ψI(k⃗I)), and

ψI,c(k⃗I) =
w0
√

2π
⎛⎜⎝
ψH

I

ψV
I

⎞⎟⎠ exp
[︂
−

w2
0

4
(k2

Ix + k2
Iy)
]︂

(6)

is the incident Gaussian beam, where the superscripts H and V represent the horizontal and
vertical components, respectively, and w0 is the beam waist. At this spatially uniform interface,
θI = θR according to Snell’s law, and thus, Eqs. (4) and (5) become the same. By incorporating
the wave vector deflection parallel to the incident plane using a first-order Taylor expansion,

rp,s(kIx) = rp,s(kIx = 0) + kIx
∂rp,s(kIx)

∂kIx

|︁|︁|︁
kIx=0

. (7)

The spatial profile of the reflected Gaussian beam (Eq. (1)) can be fully expressed, from which
the spin Hall shift can be obtained as

δ±H/λ = ∓
cot θI

2π
Re

(︂
1 +

r0
s

r0
p

)︂
, (8a)

δ±V/λ = ∓
cot θI

2π
Re

(︂
1 +

r0
p

r0
s

)︂
, (8b)

by taking a y position average of the intensity in the xR–yR plane [33,47,48]. The superscripts +
and − correspond to the LCP and RCP components, respectively. Note that Eq. (8) assumes that
the beam waist is sufficiently larger than the wavelength, i.e., k2

0w2
0 ≫ cot2 θI . This assumption

is satisfied in most instances except for a tightly confined beam under near-normal incidence.
In this large beam waist regime, the in-plane wave vector deflection does not affect the SHEL,
as manifested by the absence of the derivatives of rp,s in Eq. (8). Indeed, the coupling of x and
y coordinate components vanishes in this regime [37]. This implies that the SHEL, which is
the splitting along the y-axis, is attributed only to its canonical conjugate ky and the two beams
reflected at different x positions reach different xR values at a given zR.

The origin of the SHEL can be understood as a combination of three contributions: (i)
local rotation of the polarization basis at the interface, (ii) polarization-dependent transmis-
sion/reflection under oblique incidence, and (iii) reorientation of the central wave vector. The
first originates from the finite beam waist of the incident Gaussian beam, which enforces the
existence of deflected wave vector components that are not parallel to the incident plane. The
local transformation between the deflected wave vector and the central wave vector results in
a local polarization difference; that is, a purely p-polarized incidence may have s-polarized
components locally (Fig. 1(f), (i) and (iii)). This contribution is described solely by the incidence
itself, such as θI (Eq. (5)), and is irrelevant to the interface properties.

The second rescales the two polarization components (manifested in Eq. (3)) and consequently
largely affects the spin Hall shift. More specifically, p- and s-polarized components of the
incident beam at the optical interface are rescaled by rp and rs, respectively (Fig. 1(f), (ii) and
(iv)). For example, suppose a p-polarized incidence is injected into an interface with rs dominant
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Fig. 1. SHEL-based detection of a cloaked surface. (a) Schematic of the SHEL and (b)
beam profile of incident and reflected beams. (c) Microscopic illustration of Gaussian
beam reflection with central (blue for incident and red for reflected beam, respectively)
and noncentral (light blue for incident and magenta for reflected beam, respectively) wave
vector components. The center and local coordinates follow the directions of the central and
noncentral wave vectors, respectively. (d, e) Illustration of reflection at (d) a cloaked surface
and (e) its uncloaked counterpart. Only the central wave vectors are plotted. (f) Spatial
field profiles of the p- and s-polarized components of the incident and reflected beams at the
optical interface.
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over rp. The relative strength of the s-polarized components to the p-polarized components will
be significantly enhanced, leading to a large SHEL. Naturally, the overall field strength can be
treated as a constant term and does not affect the SHEL; therefore, only the relative ratio between
the Fresnel coefficients is important. This implies that if the Fresnel coefficients of p and s
polarizations have the same additional phase gradient for polarization-independent skin cloaking,
the two contributions are canceled out and have zero net effect in this rescaling process.

The last contribution usually appears only in transmission, particularly when the input and
output media are different, as are the incident and transmitted angles (θI ≠ θT ). If the angles
are different, the local rotation in the transmitted/reflected beam is different from that in the
incidence. This can be understood as the inequality of Eqs. (4) and (5). However, as θI ≠ θR
on the cloaked surface, this contribution survives and affects the spin Hall shift of the reflected
beam. Considering that the polarization-insensitive phase terms are canceled out in the second
contribution, the third one, that is, the inequality of θI and θR, is the only factor that differentiates
the SHEL at the cloaked surface from that at the uncloaked counterpart.

2.2. Spin Hall effect of light at a planar surface with a linear phase gradient

During the derivation of Eq. (8), θI = θR is used. Therefore, whereas a cloaked surface with an
additional phase term and θI ≠ θR (Fig. 1(d)) cannot be visually distinguished from its perception
(Fig. 1(e)) via a simple observation, the SHEL of the cloaked surface appears different from that
of the uncloaked counterpart. In this and the following sections, the SHEL at a planar surface
with a linear phase gradient (Figs. 2(a) and (b)) and that at a curved surface with a nonlinear
phase gradient (Figs. 2(c) and (d)) are explored, respectively.

Now, we imagine a cloaked surface with a 1D linear phase gradient along the x-axis, i.e.,
rp,s(k⃗I , r⃗) = r0

p,s(k⃗I)eiφx where ϕ is a constant. Note that the direction along which the phase
gradient is defined is parallel to the incident plane in our study. The additional phase term eiφx

introduces the translation along the kRx-axis by ϕ as ψR(k⃗R) = ψ
0
R(k⃗R − ϕk̂x), where ψR(k⃗R) is the

reflected beam in the local momentum space and ψ0
R(k⃗R) is the same without the phase gradient.

This can be understood as the anomalous reflection induced by the phase gradient, also known as
generalized Snell’s law [9], kRx − kIx = ϕ (Fig. 2(a)). This phase continuity equation results in
inequality between the incident and reflected angles.

θR = sin−1
(︂
sin θI +

ϕ

k0

)︂
, (9)

where θI and θR are defined with respect to the normal vector of the interface and are constants
throughout the interface (Fig. 2(a)). Note that θI and θR are determined by the local slope angle
of the cloaked surface and the incidence’s propagation direction. The inequality of the incident
angle reflected angles originating from the phase gradient should be distinguished from the
angular Goos-Hänchen and Imbert-Fedorov shifts [49]. This polarization-independent phase
gradient only alters the propagation direction of the reflected beam but preserves the remaining
characteristics of the local reflected beam, such as the two-dimensional field profile in the
xR–yR plane. Therefore, without further information, the observer perceives the cloaked surface
(Fig. 1(d)) as its uncloaked counterpart and the incident angle as θ̃I = (θI + θR)/2 (Fig. 1(e)).

However, the spin Hall shift at the cloaked surface is distinct from that at the uncloaked
counterpart. Similar to the derivation of Eq. (8), taking the y position average of the reflected
beam in the xR-yR plane in the circular polarization basis gives an analytic formula for the spin
Hall shift as

δ±H/λ = ∓
cot θI

2π
Re

(︂ cos θR

cos θI
+

r0
s

r0
p

)︂
, (10a)

δ±V/λ = ∓
cot θI

2π
Re

(︂ cos θR

cos θI
+

r0
p

r0
s

)︂
, (10b)
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Fig. 2. SHEL at planar and curved cloaked surfaces. (a) Illustration of reflection at a
planar surface with linear phase gradient and (b) the reflected beam profile. (c) Illustration
of reflection at a curved surface with nonlinear phase gradient and (d) the reflected beam
profile. y position average of the 1D intensity profile at each xR is a constant for (b) and is a
function of xR for (d).

when k2
0w2

0 ≫ cot2 θI is satisfied. The only difference between the derivation of Eq. (10) and that
of Eq. (8) is that θI = θR is used in the latter case, but not in the former. A typical profile of the
reflected beam is shown in Fig. 2(b). In the absence of a phase gradient (ϕ = 0 and thus θI = θR),
Eq. (10) reduces to the well-known formula of the spin Hall shift (Eq. (8)).

2.3. Generalization to a curved surface with a nonlinear phase gradient

Equation (10) can be generalized to a curved surface with a nonlinear phase gradient, rp,s(k⃗I , r⃗) =
r0
p,s(k⃗I)eiΦ(x) (Fig. 2(c)). In such a case, the normal vector of the curved surface is defined locally

and varies along the x-axis. Then, θI and θR, which are defined in terms of local normals, are not
constant but are functions of x. This causes the transformation between the local and central
frames (Eqs. (4) and (5)) to be defined in both k⃗- and r⃗-spaces, whereas they are defined purely in
k⃗-space for the linear phase gradient case. Because the operations in k⃗- and r⃗-spaces are in terms
of ky and x, respectively, which are not a canonically conjugated pair, two operations can be
performed separately. Furthermore, considering that the deviation of the incident and reflected
angles of the deflected beams affects only the in-plane displacement but not the transverse
displacement and that the xR position of the reflected beam has a one-to-one correspondence
to the x position at the interface, the SHEL can be obtained following a similar procedure but
x-dependently (Fig. 2(d)). More specifically, y position average of the 1D intensity profile along
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the yR-axis at each xR follows:

⟨ψR,H(xR)|yR |ψR,H(xR)⟩

⟨ψR,H(xR)|ψR,H(xR)⟩
= ∓

cot θI

2π
Re

(︂ cos θR(x)
cos θI(x)

+
r0
s

r0
p

)︂
, (11a)

⟨ψR,V (xR)|yR |ψR,V (xR)⟩

⟨ψR,H(xR)|ψR,H(xR)⟩
= ∓

cot θI

2π
Re

(︂ cos θR(x)
cos θI(x)

+
r0
p

r0
s

)︂
, (11b)

where the braket integrates the inner expression along the yR-axis for a fixed xR, instead of the
entire xR-yR plane, as in conventional cases. In short, at a curved cloaked surface with a 1D
nonlinear phase gradient, the linearly polarized incidence that is split into two opposite circularly
polarized components exhibits xR-dependent displacement along the yR-axis (Fig. 2(d)). The
amount of splitting is related to the local incident and reflected angles (θI(x) and θR(x)), and
consequently, to the height profile h(x) and phase Φ(x) (Fig. 2(c)).

As explained earlier, the discordance between the spin Hall shift at the cloaked surface and
that at its uncloaked counterpart originates from θI ≠ θR. This conforms to the fact that Eqs. (10)
and (11) differ from Eq. (8) only by the first expression inside the parenthesis that contains only
θI and θR. Therefore, by measuring the SHEL at the two surfaces, we can quantify θI , θR, ϕ, and
h and consequently detect whether the surface is cloaked. Our approach, however, is devised
exclusively for the 1D skin cloak and is not applicable to other optical cloaking techniques such
as transformation optics because the detection principle relies on a single reflection process and
the inequality of the incident and reflected angles.

2.4. Numerical demonstration at the cloaked surface with the linear phase gradient

To numerically demonstrate the SHEL at a cloaked surface, the angular spectrum method

ψ̃(r⃗′) = F −1
[︂
F [ψ̃(r⃗)]eikzz′

]︂
, (12)

is used, where F is the Fourier transform and kz =
√︂

k2
0 − k2

x − k2
y . At the interface r⃗ = (x, y, z),

the Jones matrix is multiplied in real space as

ψ̃R(r⃗) = J(r⃗)ψ̃I(r⃗), (13)

to address spatially nonuniform reflection coefficients at the interface. Note that the k⃗ dependence
of J is neglected as k2

0w2
0 ≫ cot2 θI (which enforces kx/k0 ≪ 1). First, we examine a planar sur-

face with a linear phase gradient. For numerical confirmation, the complex reflection coefficients,
r0
p and r0

s , are randomly assigned as r0
p = 0.314 exp(−i0.456π) and r0

s = 0.466 exp(−i0.054π)
(Fig. 3(a)) and then multiplied by a linear phase factor as rp,s(x) = r0

p,seiφx (Fig. 3(b)). The
parameters are given as λ = 633 nm, w0 = 50λ, θ̃I = 25◦, and h = x tan 10◦. To make this
surface be perceived as flat, we use ϕ = 0.31k0 according to [8] △ϕ = −2k0h cos θ̃I + π, which
gives θI = 15◦ and θR = 35◦ (Eq. (9)). A spatial area of 0.15 µm × 0.15 µm (approximately
4.74 w0 × 4.74 w0) is considered, and the propagation distance is 5λ for both incident and
reflected beams. The intensity profile of the reflected beam proves that the incidence is split
into two circularly polarized components along the yR-axis oppositely (Fig. 3(c)). The splitting
is indistinguishable by the human eye because of its subwavelength scale but can be detected
experimentally with high precision by adopting weak amplification [19]. The spin Hall shifts
obtained by taking y position average of the reflected beam agree perfectly with the analytical
value obtained by Eq. (10) under both horizontal and vertical polarizations (Figs. 3(d) and (e)).
The spin Hall shifts at the cloaked and uncloaked surfaces are different, proving that the SHEL
is a viable candidate for detecting optical cloaking in a nondestructive manner. The numerical
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estimation can deviate from the analytical value due to the discretization by up to ±dx/2 where
dx is the spatial grid size in the simulation (indicated by the error bars in Figs. 3(d) and (e)) and
the deviation can be reduced by decreasing dx (Fig. 3(f)).

2.5. Revealing the cloaked surface with a linear phase gradient

This section presents two individual scenarios for revealing an unknown cloaked surface by
measuring its SHEL (Table 1). First, we consider a cloaked surface with rp,s(k⃗I , r⃗) = r0

p,s(k⃗I)eiφx

where r0
p,s and ϕ are unknown (Fig. 1(d)). This surface cannot be distinguished from its uncloaked

counterpart with r0
p,s and a different slope angle via simple observation (Fig. 1(e)). However,

analyzing the SHEL of the beam reflected at the two surfaces under a given polarization (either
horizontal or vertical) provides a route to distinguish them (Method 1 in Table 1). Without loss
of generosity, we set the incident polarization as horizontal. Subsequently, because δH/λ at
the cloaked and uncloaked surfaces are distinct (Eqs. (8a) and (10a)), the two surfaces can be
discriminated by comparing their SHEL. Indeed, this is a solvable problem because the number
of known equations (Eqs. (8a) and (10a)) and unknown variables (θI and Re(r0

s /r0
p)) are the same.

One can find straightforwardly from Eqs. (8a) and (10a) that the local incident angle can be
obtained explicitly as

θI = cot−1
[︂ 2πδ+H/λ + sin 2θ̃I

2πδ̃+H/λ cot θ̃I − cos 2θ̃I + 1

]︂
, (14)

where δ̃+H is the spin Hall shift of the LCP component at the uncloaked counterpart. The local
reflected angle and phase gradient can be obtained using θR = 2θ̃I − θI and ϕ = k0(sin θR − sin θI),
respectively. As a proof-of-concept, we demonstrate that θI , θR, and ϕ of a planar surface with a
linear phase gradient can be identified (Fig. 4). The parameters are the same as in the previous
study (λ = 633 nm, w0 = 50λ, θ̃I = 25◦, h = x tan 10◦, and ϕ = 0.31k0). First, for a given
surface, δ is computed numerically using the angular spectrum method (Section 2.4). Then, we
assume that only λ and θ̃I are known, whereas the other parameters are unknown. θI is deduced
using Eq. (14), from which θR can be directly obtained (Fig. 4(a)). These results prove that θI
and θR can be estimated successfully. The incident and reflected angles differ from each other
due to the nonzero phase gradient along the x-axis (Fig. 4(b)). The estimation of θI and θR also
allows us to evaluate ϕ (Fig. 4(c)).

Table 1. Two techniques to reveal the cloaked surface.

Method 1
(Uncloaked counterpart exists)

Method 2
(Only the cloaked surface exists)

Incident
polarization

Horizontal Vertical Both

Measurement
target

δH at the
cloaked/uncloaked
surfaces

δV at the
cloaked/uncloaked
surfaces

δH and δV at the cloaked surface

Corresponding
equations

Eqs. (8a) and
(10a) for a planar
cloaked surface;
Eqs. (8a) and
(11a) for a curved
cloaked surface

Eqs. (8b) and
(10b) for a planar
cloaked surface;
Eqs. (8b) and
(11b) for a
curved cloaked
surface

Eqs. (10a) and (10b) for a planar
cloaked surface; Eqs. (11a) and
(11b) for a curved cloaked surface

Known
variables

θ̃I θ̃I θ̃I , |rp | and |rs |

Unknown
variables

θI and Re(r0
s /r0

p) θI and Re(r0
p/r0

s ) θI and arg(r0
s /r0

p)



Research Article Vol. 30, No. 25 / 5 Dec 2022 / Optics Express 45138

a

-8 8

8

-8 -π

π

b

d e

Re

Im

1

r0
p

r0
s

c

0 0.1
90

100

110

dx/λ

RCP

LCPAc
cu

ra
cy

 [%
]

-100 100
0

1

-10 0 10

0

1

|δ
H

+ /λ
|

0

1 f
Cloaked

Analytic
(Numerical)

RCP UncloakedLCP Analytic
(Numerical)

RCP UncloakedLCP

x/λ

y/
λ

yR/λ

|ψ
R
|2

|ψR
+|2

|ψR
−|2

Cloaked
|δ

V+ /λ
|
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shows the analytic spin Hall shift of the uncloaked counterpart (ϕ = 0, Eq. (8)). Error bars
denote the spatial grid size. (f) Accuracy of the numerical simulation evaluated by the
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A limitation of this technique is that there should be an uncloaked surface with the same r0
p,s

for comparison. Cloaking can still be unveiled without the uncloaked counterpart by measuring
the SHEL under two linear polarizations, horizontal and vertical (Method 2 in Table 1), and their
efficiencies. Given that the amplitudes of the reflection coefficients, |rp | and |rs |, can be deduced
from the efficiency of the SHEL [31] (ϵH = |rp |

2 and ϵV = |rs |
2), two unknown variables (θI and

arg(r0
s /r0

p)) can be identified from the SHEL under two linear polarizations at the cloaked surface.
The local incident angle can be calculated as follows:

θI = cot−1
[︂2πδ+H/λ + sin 2θ̃I

cos 2θ̃I

α − η2

α(η2 − 1)

]︂
, (15)

where η = |rs/rp | and

α =
2πδ+H/λ + sin 2θ̃I

2πδ+V/λ + sin 2θ̃I
. (16)

Other parameters, such as θR and ϕ, can be obtained similarly to Method 1. The results of
Method 2 for the same given parameters agree perfectly with those of Method 1 but are not
shown here because they are the same as in Fig. 4. The detection of the 1D cloaked surface
is also possible by examining the change in the beam waist (see Fig. 2(a)). However, our
SHEL-based method provides a precise and quantitative investigation by combining it with a
weak measurement.
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Fig. 4. Revealing the cloaked surface with linear phase gradient using the SHEL. (a) θ̃I
(gray), given (dark) and predicted (light) θI and θR and (b) their graphical illustration. (c)
Given (solid) and predicted (markers) phase ϕx of the interface.

These two methods can be generalized to identify cloaked surfaces with a 1D nonlinear
phase gradient by conducting the same process for each xR point. In this a case, dΦ/dx =
k0(sin θR − sin θI), from which full information on the height profile can be deduced. Detailed
results are presented in the following section.

2.6. Revealing a cloaked surface with a nonlinear phase gradient

This section demonstrates that the height profile of a curved surface with a nonlinear phase
gradient can be identified by investigating SHEL. The angular spectrum method presented in
Section 2.4 is used to calculate the spin Hall shift at the curved surface. Because the transformation
between the local and central frames can be applied purely in neither r⃗- nor k⃗-space and the
Fourier transform between x and kx and that between y and ky are mutually independent, the
beam is expressed as ψ̃(x, z)ψ(ky) during the coordinate transformations. The computation area
is 1.24 mm × 1.24 mm (approximately 40 w0 × 40 w0), and the height profile of the cloaked
surface is assigned as h(x) = 10λ sin(2πx/p + π/4) where p = 400λ. The other parameters are
given the same.

The numerically obtained spin Hall shifts perfectly match the theoretical values (Eq. (11))
under both horizontal and vertical polarizations (Figs. 5(a) and (b), black curves and markers).
The cloaked surface can be detected by comparing the SHEL at the cloaked surface with that at
the uncloaked planar counterpart (blue). In addition, the local incident and reflected angles (θI
and θR) and, importantly, the height profile (h(x)) can be obtained by analyzing the SHEL of the
reflected beam along the xR-axis (Figs. 5(c) and (d)). For the numerical demonstration, Method
2, shown in Table 1, is applied at each x point. The predicted values of θI and θR (Fig. 5(c)) and
h (Fig. 5(d)) show excellent agreement with the given. The crossing points of the black and blue
curves do not indicate the failure of this detection method but imply that the local phase gradient
at these points is zero, as confirmed by the zero slope of h(x) (Fig. 5(d)). Note that h can be
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obtained only as a relative value instead of an absolute one; the numerical result of h shown in
Fig. 5(d) is translated to have a center at zero. In real measurements, the reflected beam signal at
|xR |>2w0 (equivalent to |xR |>100λ) is extremely low and the results in this regime may not be
accurate. The detection area can be widened using incidence with a larger beam waist.
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Fig. 5. Revealing the cloaked surface with nonlinear phase gradient using the SHEL. (a,
b) Spin Hall shift under (a) horizontal and (b) vertical polarizations at each xR. Black
curves and markers represent analytic and numerically obtained spin Hall shifts. Blue curves
show that at uncloaked surface with the same reflection coefficients (Eq. (8)) as a reference.
Background profiles are the intensity profile of the reflected beam. (c, d) Given (solid) and
predicted (markers) (c) θI and θR and (d) height. Background profiles are the intensity
profile of the incident beam.

3. Conclusion

In conclusion, we have demonstrated that the SHEL can reveal an optical interface with a 1D
phase gradient from its illusion with a different geometric shape. The inequality of the incident
and reflected angles in this 1D cloaked surface differentiates the SHEL at the cloaked surface
from that at its uncloaked counterpart. The SHEL at the optical interface with either a linear
or nonlinear 1D phase gradient is theoretically studied, followed by numerical confirmation.
Two methods to reveal the incident angle and phase gradient of an unknown cloaked interface
are presented. This detection based on SHEL will be a powerful technique to confront optical
camouflage or illusion.
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