
Received 11 November 2022, accepted 6 December 2022, date of publication 9 December 2022,
date of current version 20 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3228041

Spiking Cooperative Network Implemented on
FPGA for Real-Time Event-Based Stereo System
JUNG-GYUN KIM , DONGHWAN SEO , AND BYUNG-GEUN LEE , (Member, IEEE)
Department of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Byung-Geun Lee (bglee@gist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant through the Korean Government (MSIT)
under Grant 2021R1A2C22013480, and in part by the National Research and Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant NRF-2022M3H4A1A01009658.

ABSTRACT A hardware-efficient implementation of a spiking cooperative network (SCN) for a real-time
event-based stereo correspondence system is presented. While fully utilizing the advantage of event data, the
proposed SCN design significantly reduces the amount of hardware resources by utilizing distinct properties
of the SCN, such as the repeatability of synaptic connections and operations, through physical constraints.
A stereo system consisting of a field-programmable gate array (FPGA) and a pair of dynamic vision sensors
(DVSs) is implemented to demonstrate the SCN design. Stereo livestreamed event data are generated from
the DVSs, and the SCN is implemented on an FPGA chip to process the event data. The SCN system has
four cores, each comprising an array of 32 Coincidence-Disparity units that calculate the 32-level disparity
in a semi-parallel manner. The system performance was evaluated experimentally to estimate the depth of
objects moving at different speeds. A rotating drum with a diameter of 8 cm was used in the test. The median
relative error of the estimated depth at a rotation speed of 16.7 Hz ranged from 7.3% to 10.6%.

INDEX TERMS Event-based vision, stereo, FPGA, event-driven computation, cooperative algorithm,
spiking neuron, real-time processing.

I. INTRODUCTION
The ability to process the stereo correspondence problem
in real time, which solves the input data without storing it
for later processing, is crucial in machine-vision systems
such as robots and autonomous vehicles [1]. In particular,
a high temporal resolution is required to respond quickly to
the environment, and the power consumption must be low
for portability. However, these requirements are difficult to
satisfy using conventional frame-based image sensors. The
temporal resolution is limited by the frame rate of the sensors,
and redundant frame image data introduce the number of
unnecessary computations.

To solve these problems, machine-vision systems with
an event-based sensor, which is also known as a dynamic
vision sensor (DVS), have been developed. This sensor
encodes visual information into spike events. A high tempo-
ral resolution is achieved because the DVS generates event
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data asynchronously in response to pixel contrast changes.
Because event data tend to be sparse and have far less redun-
dant information than frame-based image data, the compu-
tation energy is low. Thus, stereo systems utilizing DVSs
have recently gained popularity and have been reported in the
literature [3], [4], [5], [6], [7], [8].

In frame-based stereo systems,most stereo correspondence
algorithms find a matching point by comparing the similar-
ity between the visual features of the left and right frame
images and calculate the distance along the camera geometry
through the disparity between the two matching points [2].
A similar idea was adopted for event-based stereo systems in
previous studies [3], [4], [5], [6]. A cost function for spike
events was calculated to find a matching point by collecting
spike events within a specific time window. In [3], grayscale
images were generated by collecting spike events over 20 ms.
The normalized sum of absolute differences of local features
was used as a cost function to calculate the disparity with
the digital signal processor. In [4], grayscale images were
generated by transforming events from a panoramic view of a
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rotating pair of DVSs for 3-D 360◦ vision. The disparity maps
were computed using frame-based approaches [1], [9]. The
methods reported in [5] and [6] do not generate frame images
to compute the matching cost but compare each event with
the collected events of another DVS pair within a specified
spatiotemporal window. Event features, such as event polarity
and timestamps, are used for event matching. Although these
methods have solved stereo correspondence problems, they
cannot fully exploit the event data, because the events must
be saved in memory for a specific time.

To achieve the full benefit of event data, asynchronous
event-driven computations must be performed [17]. Neu-
romorphic computing systems utilizing field-programmable
analog array or field-programmable gate array (FPGA)
devices have been successfully demonstrated the advantages
of asynchronous computations [26], [27], [28]. In [7] and [8],
a cooperative stereo algorithm employing a spiking-neuron
model was presented. The cooperative stereo algorithm is
a bioinspired global matching method that finds matching
points using a predefined neural network [10]. The network
calculates a matching belief corresponding to the disparity
search range through the interaction between neurons, with-
out repeatedly comparing the features of each pixel. There-
fore, if the network operates asynchronously, each event can
immediately affect the disparity map. As spiking neurons per-
form event-driven synaptic integration asynchronously, event
data can be fully exploited by applying a spiking-neuron
model to network neurons. Additionally, the spiking nature of
the neuron model allows the network to maintain consistency
with the DVS and allows end-to-end spike-driven computing.

However, the realization of a cooperative network system
requires considerable hardware resources, because the num-
ber of neurons used in the network increases in proportion
to the range of disparity to be detected, as well as the input
size. For example, three DYNAPs [12] and one FPGA were
used for a network with a 16 × 16 input and 16 disparity
levels in [11], and six SpiNN-5 boards, which consisted
of 48 SpiNNakers [13] and three FPGAs, were used to imple-
ment a network with a 106× 106 input and 32 disparity levels
in [8].

Because all neurons in the cooperative network have the
same synaptic connections regardless of their positions, the
same synaptic integration process is performed for each input.
Finally, it is possible to implement the network simply by
configuring a single event-based-processing element that per-
forms the integration process in the system. By applying this
idea, we attempted to reduce the consumption of hardware
resources while implementing the event-based cooperative
network architecture.

In this paper, an FPGA-based spiking cooperative network
(SCN) system was presented for real-time event-based stere-
ovision. Section II presents the background of the cooperative
network. Section III presents the proposed idea for network
design. The system architecture and measurement results
are presented in Sections IV and V, respectively. Finally,
Section VI concludes the paper.

FIGURE 1. Visualization of the cooperative network: (a) original and
(b) two-layer implementation.

II. BACKGROUND
A. COOPERATIVE STEREO ALGORITHM
The cooperative stereo algorithm is a global stereo corre-
spondence approach proposed by Marr and Poggio [10] that
is inspired by the biological retina network system. Each
node or neuron constituting the network represents a stereo-
matching belief at coordinates (x, y, d) in the disparity space.
The neurons are connected systematically according to the
following two physical constraints:

(1) Uniqueness constraint—Each object has a unique phys-
ical location.

(2) Continuity constraint—The disparity of an object
varies smoothly.

Owing to the uniqueness constraint, each neuron has an
inhibitory interaction with other neurons along the same
line of sight for preventing multiple matches to the element.
In addition, owing to the continuity constraint, each neuron
has excitatory connections to nearby neurons with the same
disparity representation. The network can be expressed itera-
tively using the following equation:

Sn+1x,y,d = f (wE
∑

x ′,y′,d ′∈E

PSnx ′,y′,d ′−wI
∑

x ′,y′d ′∈I

Snx ′,y′,d ′ + S
0
x,y,d ),

(1)

where Snx,y,d represents the outputs of the neuron at node
(x, y, d) for iteration n; E and I represent the excitatory and
inhibitory connection regions, respectively; wE and wI repre-
sent the excitatory and inhibitory synaptic weights, respec-
tively; and f is the sigmoid function. The initial value of
neuron S0x,y,d is defined by the input from the stereo image.
Through iterations, the network converges to a stable fixed
point.
Fig. 1(a) shows the structure of (1). For simplicity, the

figure only shows the network on the horizontal cyclopean
plane. Each pixel of the left and right cameras has its own
line of sight (gray dotted line in the figure) and each neuron
in the network is located at the intersection of the lines. The
initial state of the neuron is determined by the line-of-sight
inputs. The neuron continues exciting and inhibiting nearby
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neurons according to the constraints (red and blue lines) until
it converges to the local point.

B. IMPLEMENTATION OF SCN FOR EVENT-BASED
SENSORS
Because (1) was designed according to frame-based images,
it cannot be directly applied to DVSs. In [14], a time-
correlated kernel was used for event-driven operations, but
this method requires recalculating the synaptic weights for
each event input, which leads to excessive computation.
Instead, if each neuron performs leaky integration, spike-
driven computations can be performed without using time-
variant synaptic weights. Therefore, an SCN based on a leaky
(LIF) neuron model was proposed:

Sx,y,d (t) = T (u)
d
dt
u (t) = −u+ wE

∑
x ′,y′,d ′∈E

Sx ′,y′,d ′ (t)

−wI
∑

x ′,y′,d ′∈I

Sx ′,y′,d ′ (t)+ wC
∑
i

δ (t − ti),

(2)

where Sx,y,d (t) represents the output of the neuron at node
(x, y, d) at time t , u is a state variable or the membrane
potential of the neuron, wC represents the synaptic weight
of the input spikes, δ(t) is the Dirac delta function, index
i indicates the event time of the line-of-sight input, and T
is a binary threshold function. T (x) = 1 if x is above
the threshold; otherwise, T (x)= 0. After a binary spike is
produced, the state variable is reset to 0.
One problem with (2) is that the original network design

was not aimed at handling event data. Because the DVS
detects the temporal contrast changes of light, it does not
output multiple spikes for a single event. Therefore, to gen-
erate a disparity spike based on (2), the SCN system must
be sensitive to the event input timing of the sensor. However,
the detection of temporal contrast changes is vulnerable to
background noise [15]. In addition, even if no contrast change
is detected, each pixel of the sensor outputs a periodic-on
event because of the leakage current of the circuit [16].
Furthermore, because the sensor operates asynchronously,
a timing error exists for every event between the left and right
sensors in the stereovision system. Equation (2) uses these
raw data directly for cooperative operations, which makes it
difficult to obtain accurate results. In [7], another method was
proposed for constructing the network, which separates the
SCN into two layers as follows:

Cx,y,d (t) = T (uc)
d
dt
uc (t) = −uc + wc

∑
ti

δ (t − ti)

Dx,y,d (t) = T (ud )
d
dt
ud (t) = −ud + wE

∑
x ′,y′,d ′∈E

Cx ′,y′d ′ (t)

−wI
∑

x ′,y′,d ′∈I

Dx ′,y′,d ′ (t), (3)

FIGURE 2. Flow chart of the end-to-end event-driven stereo
correspondence system.

where Cx,y,d (t) and Dx,y,d (t) represent the outputs of the
first layer, coincidence-layer neurons and the second layer,
or disparity-layer neurons at time t . uc and ud represent
the membrane potentials of coincidence- and disparity-layer
neurons, respectively. Fig. 1(b) shows the two-layer SCN
based on (3). The coincidence layer has a normal feedfor-
ward network structure. Each input spike excites coincidence-
layer neurons along the line-of-sight to determine all possible
matching points of the event. When a coincidence neuron is
activated, it excites the disparity-layer neurons according to
the continuity constraint. Finally, the disparity spikes inhibit
nearby line-of-sight neurons through a uniqueness constraint.
This disparity-layer inhibition process employs the Winner-
Take-All mechanism, which is frequently used in stereo
correspondence problems [17], [18]. By inhibiting all other
disparity neurons in the line of sight, false stereo matches can
be prevented. An important difference between (2) and (3)
is that the raw data are not used directly for stereo matching
in (3). Throughout the coincidence layer, the input events are
transformed into possible matching events, which are used
for cooperative operation in the disparity layer. Consequently,
the effect of noise is reduced, and more accurate results are
obtained.

III. PROPOSED HARDWARE IMPLEMENTATION FOR SCN
An end-to-end event-driven stereo correspondence system,
which employs the SCN algorithm, has been designed.
A flow chart for explaining the overall system architecture
and data flow is presented in Fig. 2. Whenever a spike
event is generated from the DVSs, it is asynchronously
assigned to an event first-in-first-out (FIFO) buffer in
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FIGURE 3. (a) SCN design with general-purpose neuromorphic chips, (b) proposed hardware design, and (c) example of SCN realization with the
proposed hardware design.

address-event-representation (AER) format. The stored spike
event is sent to the next FIFO buffer for SCN operation after
rectification process. The SCN process is also performed
asynchronously and generates the output spike, which is used
to update the disparity map. As mentioned in Introduction,
the SCN occupies the largest portion of hardware resources
for system implementation. This section details the proposed
SCN design with reduced hardware complexity.

A. LAYER IMPLEMENTATION
In general, it is reasonable to design an SNN using a neuro-
morphic processor to obtain a networkwithmultiple synapses
and LIF neurons. In most previous studies, a processor was
used for SCN design [7], [8], [11], [17]. Fig. 3(a) shows
this implementation based on neuromorphic cores. Multi-
ple synaptic connections, which are represented as crossbar
nodes in the figure, are allocated to each neuron. However,
because all neurons in the SCN have fixed synaptic weights
owing to physical constraints, most of the synaptic nodes in
the processors are not activated. For instance, each neuron in
the coincidence layer receives only inputs from the left and
right pixels located along the line of sight. Therefore, it uses

only two synaptic nodes, and the rest are idle. Moreover,
a network-on-chip architecture is needed to transmit spike
events from each core to the correct location [19], [20].
Because neurons excite and inhibit other neurons, multiple
event routers with a specific addressing algorithm must be
implemented.

However, the implementation can be simplified by con-
sidering the structure of the SCN. Because the network is
designed to solve the stereo correspondence problem, all
neurons in the same layer perform the same operations in
each local region. Therefore, the entire operation can be
performed using a single processing element, which is called
the Coincidence–Disparity (CoDi) unit in the proposed SCN
design shown in Fig. 3(b). Each CoDi unit has a pair of coin-
cidence neurons and disparity neurons with an internal state
neuron memory. This configuration is possible because the
coincidence and disparity layers represent the same stereo-
map coordinates. By integrating two layers into one unit,
the network can be controlled using a single-event controller
inside the core. However, the use of a single element intro-
duces a significant time delay. Therefore, to achieve a trade-
off between the hardware area and the computation speed,
a semi-parallel configuration in which the CoDi units are
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FIGURE 4. Simplified description of the CoDi array operation in six steps.

arranged in arrays is proposed. The number of CoDi units
in each array determines the maximum detectable disparity
range, as described in the following paragraph.

Fig. 3(c) shows how the CoDi array implements the net-
work. Each neuron memory in the CoDi unit stores the inter-
nal state variables of the coincidence and disparity neurons in
the constant-disparity plane. Then, one CoDi unit can process
the operation of the neurons on the vertical plane in the figure.
This memory allocation allows the CoDi unit to have one
memory access for each input event in the coincidence layer,
because the sensor input is connected along the line of sight.
Therefore, by arranging CoDi units in accordance with the
disparity range to be measured, the local operation for each
input event on the coincidence layer can be processed in a
single integration cycle. For disparity-layer operation, as the
inhibition step also proceeds along the line of sight, efficient
computation can be achieved using the proposed structure
similar to the coincidence layer.

B. COOPERATIVE OPERATION OF CODI ARRAY
Fig. 4 presents the operation of the CoDi array in six steps.
The description is simplified by reducing the disparity range
of the network from two to zero. The horizontal gray dotted
lines are the constant-disparity lines. All operations in the
network can be expressed in three CoDi units by accessing the
corresponding memory for each event. All synaptic weights
of the same type are set to the same value so that all possible
matches have the same effect on the network. In Step 1, the
event generated by the second pixel of the right sensor excites
the coincidence neurons along the line of sight, and the same
operation is performed in Step 2 by the event from the third
pixel of the left sensor. The dotted circle indicates the excited
neuron at the node. The coincidence neuron at the intersection
of the two lines of sight can be activated if the two events
coincide. The red circle in Step 2 indicates that the neuron at

TABLE 1. Hardware resource comparison.

the node is activated. If no spike is generated, the previous
steps are repeated for the next input. From Step 3 to Step 4,
nearby disparity neurons on the same disparity line as the
activated coincidence neuron are excited. As the neurons on
the constant-disparity line are integrated into a single CoDi
unit, the excitation process must proceed step-by-step. Simi-
lar to Step 2, the dotted circle indicates the excited disparity
neuron and the red circle in Step 4 indicates the activated
disparity neuron. After the disparity neuron is activated, other
neurons along the same line of sight are inhibited, as shown in
Steps 5 and 6. Dotted circles indicate the positions of inhib-
ited neurons. When the inhibition process ends, the operation
restarts, and the steps are repeated.

C. COMPARISON OF IMPLEMENTATIONS
To determine the efficiency of the proposed design, a resource
comparison among SCN implementations with a neuromor-
phic processor, the proposed design, and a single neuron
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FIGURE 5. Block diagram of the CoDi unit.

was performed, and the results are presented in Table 1. For
simplicity, the synaptic operation time per event was assumed
to be equal to N for all the implementations. In the table, K2

and d represent the size of the input and the detectable dis-
parity range, respectively. W represents the excitation range
of the coincidence-neuron spike. The value was set as 7 in the
experiment.

As the neuromorphic processor is designed to be fully
parallel, it performs all synaptic operations of neurons within
the same layer for each event in a single operation cycle.
However, as the size of the SCN increases by K2 for each
disparity level, a large amount of hardware is required for
high-resolution systems. The proposed design balances the
hardware area and computation time with a semi-parallel
architecture. While the required number of neuron units is
equal to d, the computation time is not dependent on d.
Therefore, the proposed method is more efficient in a high-
resolution system than fully parallel or serial designs. For
a quantitative comparison, we set K as 128 and d as 32
(identical to the values of our experimental environment).
The proposed design with a single core required 16384 times
fewer neurons than the fully parallel design, and the compu-
tation time was only increased by a factor of 3.3.

D. NEURON IMPLEMENTATION
While (3) is designed according to the LIF neuron model
for generalization, the proposed neuron implementation is
simplified considering the SCN structure to further reduce the
amount of hardware resources. Fig. 5 shows a block diagram
of the CoDi unit. The signals and memory indicated by
dotted lines in the figure are controlled by an event controller
external to the CoDi unit.

As no lateral interaction exists in the coincidence layer,
the output of each coincidence neuron is determined only by
the time correlation of the left and right events. Therefore,
instead of leaky integration, the coincidence neuron simply

compares the timestamps of the current input event TCurr
and the previous input event TPrev. The current timestamp is
saved in the timestamp memory for the next operation. While
the operation is simple, redundant matching may occur in a
single event if events rapidly come alternately from the left
and right. Thus, if the time difference is within a specified
time τ , an additional event blocking process is conducted.
Instead of membrane potential integration, the internal state
memory of the coincidence neuron is used to prevent multiple
matchings to the event. A 1-bit state memory EPrev is used to
determine whether the neuron was activated in the previous
step (1 if activated; 0 otherwise). If so, the neuron activation is
blocked, and only the state variable is updated. Another 1-bit
state memory PPrev is used to prevent homolateral excitation,
which occurs when a series of spike events are generated
by a single pixel. This causes multiple false matches in the
coincidence layer along the line of sight of the pixel if not
prevented. PPrev stores the camera position information for
the previous event (0 for the left camera and 1 for the right
camera). and blocks the activation if the camera position of
the current event PCurr is the same as that of the previous
one. After the coincidence spike EC is generated, the 4-bit
membrane potential of the disparity neuron stored in the neu-
ron memory is accumulated by fixed weight wE . Whenever
the potential exceeds the threshold θ , the disparity spike ED
is activated, and the potential is reset to 0. The spike then
inhibits the other disparity neurons along the line of sight.
Lateral inhibition is designed to reset the potential to 0. As it
eliminates the remainder of the false matches, changing the
bias for the post-events, the leakage operation is unnecessary.

IV. EVENT-BASED SCN SYSTEM
Fig. 6 shows the hardware architecture of the SCN system.
Intel DE2i-150 evaluation board was used for the system
implementation. It contains a Cyclone IV GX FPGA device
with 149,760 logic elements and 810 kB of block RAMs.
The main clock frequency of the system is 50 MHz. All the
memories in the system were embedded in the FPGA chip.
Stereo event data were transmitted in real time from a custom-
built, non-commercial DVS with a resolution of 128 × 128.
For every event generation, the DVS sent a 14-bit pixel
address to the FPGA. Event polarity was ignored because it
depends on the background [8]. The FPGA stored the event
information using the FIFO with a 1-bit sensor position (0 for
the left and 1 for the right) and 16-bit event timestamps from
the internal counter. The timestamp was incremented by one
every 1 ms.

In a stereo rectifier, rectified address information for all the
pixels in the stereo sensors is stored as a lookup table (LUT).
The Caltech Camera Calibration Toolbox in MATLAB was
used for stereo rectification. Traditionally, stereo pairs of
checkerboard images have been used for calibration. Because
the DVS is unable to generate a frame image for the tool-
box, we displayed a blinking checkerboard pattern on a PC
monitor and converted the collected event data into the image
[21], [22]. Figs. 7(a) and (b) show the monitor pattern and the
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FIGURE 6. Block diagram of the FPGA-based cooperative network system.

FIGURE 7. (a) Blinking checkerboard pattern on the PC monitor and
(b) stereo image pair of the pattern reconstructed from DVS spike
sequences.

converted images, respectively. The rectified addresses in the
LUT were rounded for one-to-one event mapping.

After rectification, events were sent to the cooperative
network block. Four processing cores were used in parallel.
While the entire network can be handled by a single core,
multiple cores were implemented accounting for the trade-
off between the hardware area and the computation speed.
A quarter of the network along the y-axis was allocated

FIGURE 8. Experimental setup for the event-based stereo system.

to each core. In this implementation, owing to the limited
size of the FPGA embedded memory, 32 CoDi units were
arranged for each core to detect the disparity in the range of
0 to 31. Each core stored the timestamp of the most recent
event for each pixel of the sensors in the timestamp memory.
Since the network is divided into 4, the memory of each
core stores a quarter of the total pixels. As explained in the
previous section, the timestamp memory is used for synaptic
operations with state variables stored in the neuron memory
of each CoDi unit. For each spike input, the core loads
the timestamp information of the previous event from the
memory and updates the network state using the CoDi array.
Whenever the core outputs a disparity spike, the address and
disparity value of the spike are sent to PC for disparity map
generation.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
Fig. 8 shows the setup for the stereo system experiment.
The custom DVS pair was directly connected to the FPGA
board through IDC cables. The FPGA received live DVS data
to process the SCN in real time. A system evaluation was
performed by collecting the disparity spikes of the moving
object and calculating the precision. The rotating drum with
a diameter of 8 cm shown in Fig. 9(a) was used to compare the
performance of the system at different speeds. The accuracy
of the system was expressed as the median relative error, i.e.,
the difference between the ground truth and the estimated
depth divided by the ground truth. Ground-truth data were
obtained by projecting the measured distance of the object
fixed on the optical table.

Because the output of the cooperative network is the stereo-
matching belief of the entire disparity range for each node of
the network, the disparity value cannot be determined by a
single disparity spike. To determine the disparity at a specific
moment, the disparity neuron with the highest belief should
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FIGURE 9. (a) Multi-object test scene, (b) disparity map of the scene and
(c) histogram of spike activity from SCN.

be found through the disparity spike sequence accumulated
up to that moment. We set an event time-surface map [23]
for each disparity level and considered the surface with the
maximum point as the disparity value at each address. If the
maximum surface did not exceed the specified threshold,
the disparity of that address was ignored. In this manner,
a disparity image frame was obtained at a certain moment.
Fig. 9(b) shows the disparity map of the multiple-object
scene in Fig. 9(a). A rotating drum, small fan, and human
were located in the scene. The rotating drum was closest to
the stereo setup, followed by the fan and then the human.
As shown in Fig. 9(b), the disparity level decreases as the dis-
tance increases. Fig. 9(c) shows a histogram of the SCN spike
activity of the scene. As expected, spikes are highly activated

FIGURE 10. Performance of the rotating drum with three different
rotation speeds.

at each disparity level of the objects. Three different peaks
indicate that the system can solve the stereo correspondence
problem.

B. EVALUATION
Power and precision measurements were performed for the
system evaluation. The power performance of the FPGA
board was estimated using Powerplay power analyzer in the
Intel Quartus Prime Lite Edition. The power estimation was
done in three steps: First, stereo events are randomly gen-
erated at the maximum bandwidth of the system for every
pixel. This allows to estimate the worst-case or maximum
power dissipated by the board. Second, the signal activities
are stored in a VCD file including the post place and route
simulation data. Finally, the power analyzer estimates the
power consumption of the system using the VCD file.

Precision measurements were performed with a rotating
drum.Most previous studies demonstrated the precision error
of a moving object. However, as mentioned in Section I, the
DVS can achieve a high temporal resolution. Consequently,
the DVS is excellent for detecting high-speed objects. There-
fore, we used an object whose rotational speed can be pre-
cisely controlled by a motor, to prove that the system can
still achieve reasonable accuracy in the detection of high-
speed objects. The measurements were performed at rota-
tional speeds of 1, 8.3, and 16.7 Hz at multiple distances,
as shown in Fig. 10.

C. RESULTS
The results obtained are summarized in Table 2 along with
other event-based stereo vision implementations. The esti-
mated power was 188 mW and system latency was 2ms.
Since the disparity data generated from SCN is frameless,
the latency was estimated using the amount of SCN spikes
and rate of change of edges as proposed in [7]. The median
relative error ranges were 6.9 to 13.1%, 5.6 to 10.7%, and
7.3 to 10.6% at 1, 8.3, and 16.7 Hz, respectively. Com-
pared with other ASIC approaches [3], [17], our FPGA-based
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TABLE 2. Comparison with prior works.

implementation achieved considerable accuracy and power
performance with lesser hardware. Estimated power of our
system is about 3.3 times less compared to [17]. The average
median errors of the depth estimates at 1, 8.3, and 16.7 Hz
were 7.3%, 6.6%, and 7.8%, respectively. Even at a speed of
16.7 Hz, which is approximately the rotational speed of the
fan, high accuracy was achieved.

VI. CONCLUSION
A stereo system employing a hardware-efficient SCN design
for real-time processing of event-based data was developed
and experimentally evaluated. For increasing the hardware
efficiency, the proposed design has a semi-parallel structure
with an array of CoDi units, which utilizes the unique proper-
ties of the SCN. The system implemented on an FPGA target-
ing a 128× 128 resolution of the DVS and 32-level disparity
only consists of 128 CoDi units (4096 times less than the fully
parallel design). Table 2 presents the experimental results in
comparison with other real-time event-based stereo systems.
Themedian relative error range achieved at 16.7 Hzwas 7.3%
to 10.6%, comparable to the other systems with less hardware
resources.

Although SCN has been successfully validated, it has lim-
itations in the detection of motion-in-depth stimuli, since the
algorithm assumes a surface as fronto-parallel [24]. Imple-
menting the existing analog-valued solutions, which can
solve the stereo correspondence with slanted surfaces, in a
spiking manner is required to further improve the system.
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