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Abstract

Owing to the recent technological innovations, unmanned aerial vehicles (UAVs) are

progressively employed in various civil and military applications, including healthcare.

This requires estimating an optimum route under various real-world complexities,

such as non-uniform obstacles. However, most of the reported work considers only

uniform obstacles as an object, which limit their practical applicability. Hence, Archi-

medes optimization algorithm (AOA) is examined to overcome this limitation. Further,

it is observed that many a time, AOA over-exploits the search space, resulting in

higher computational time. Therefore, the present work fuses AOA with grey wolf

optimizer (GWO) to improve the convergence capability. Also, reinforcement learning

(RL) is employed to intelligently switch between the exploration and exploitation

phases. The efficacy of the developed algorithm is statistically analysed and validated

against various metaheuristics on several benchmark functions. The simulated results

verified that the developed RLGA provides optimal or near-optimal solutions more

efficiently relative to other metaheuristics. Moreover, it also affirms the hypothesis

that the proposed modifications significantly improve the convergence speed of

AOA. Finally, the appropriateness of RLGA is tested and validated by rigorous experi-

mentation on real-world 3D-route estimation problems for UAVs. The simulated

results reveal that RLGA produces a flyable path with 51.46%, 62.06%, and 70.42%

lesser cost than RLGWO, AOA, and GWO, respectively. This ensures the employabil-

ity of RLGA for efficient medical assistance in minimum time-, energy-, and

transportation-cost with safe and smooth UAV auto-navigation for developing drone

doctors.
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1 | INTRODUCTION

Unmanned Aerial Vehicles (UAVs), popularly known as drones, are receiving significant recognition because of their manoeuvrability, cost-effec-

tiveness, and auto-navigation capability (Gigante et al., 2018; Gomaa et al., 2020). Therefore, UAVs touch almost all aspects of commercial and

scientific applications, such as disaster prediction and management (Yu et al., 2020), geomatics (Giordan et al., 2020), construction (Dupont
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et al., 2017; Tatum & Liu, 2017), security and surveillance (Ucgun et al., 2021), search and rescue operations (Sierra-Garcia & Santos, 2022), trans-

port and delivery (Gupta & Verma, 2021), and so forth. In addition, the speed and versatility of UAVs open unlimited opportunities to the

healthcare sector as well by delivering life-saving medications and life-saving medications and enhancing patient-hospital connectivity, especially

to unreached areas (Damoah et al., 2021). The potential of UAVs is already witnessed during COVID-19 for the rapid last-mile delivery of hazard-

ous and environmentally susceptible medical products, such as vaccines, blood samples, and medical kits hazardous and environmentally suscepti-

ble medical products, such as vaccines, blood samples, and medical kits (Subhan et al., 2019; Sun et al., 2021). Such developments integrated with

internet-of-things (IoT) and internet-of-vehicles (IoV) may prove to be a boon for future smart healthcare systems (Ullah et al., 2019). This smart

system may be employed to prevent life-critical incidents, such as heart failure and chronic attacks. These advancements reduce the burden on

the existing healthcare systems, which offer time- and cost-efficient follow-ups by medical practitioners. Further, the effectiveness of these coor-

dinated health solutions depends upon the auto-navigation capability, payload capacity, and flying range of UAVs. The current study investigates

the auto-navigation capability with minimum travel time and energy consumption in a real-world environment with non-uniform obstacles. The

auto-navigation ability of UAVs, particularly in a 3D environment, is considered an NP-hard optimization problem. It refers to the problem of esti-

mating the optimum path from source to destination, where length of the traversed path, fuel consumption, altitude variations, and collision

avoidance are the key constraints. Also, the variable shape and size of threats, such as mountains, buildings, trees, etc., increases the complexity

associated with the trajectory estimation of UAVs which leads to the inability in accomplishing any task autonomously. Therefore, route estima-

tion approaches are becoming indispensable for generating a predefined flyable path to achieve feasible and efficient solutions.

The reported literature reveals many computationally intelligent algorithms (CIAs) for estimating the flyable path of UAVs, such as graph-

based (A star (Primatesta et al., 2018), Rapidly-Exploring Random Trees (RRT) (Shan et al., 2009), etc.), potential field-based (Artificial Potential

Field (APF) (Chen et al., 2016)), and nature-physics inspired metaheuristics (Particle Swarm Optimization (PSO) (Kennedy & Russell, 1995), ant col-

ony optimization (ACO) (Dorigo & Di Caro, 1999), grey wolf optimization (GWO) (Mirjalili et al., 2014), gravitational search algorithm (GSA)

(Rashedi et al., 2009), Archimedes optimisation algorithm (AOA) (Sreelakshmy et al., 2022), etc.). However, the inefficiency of obtaining a reliable

path in complex environmental conditions limits the widespread acceptance of earlier graph and potential field-based CIAs. On the contrary,

metaheuristics efficiently obtain feasible solutions for many real-world problems (Gupta et al., 2021). Therefore, the path optimization problem is

exhaustively investigated by employing metaheuristic algorithms, such as PSO (Kennedy & Russell, 1995), ACO (Dorigo & Di Caro, 1999), whale

optimization algorithm (WOA) (Mirjalili & Lewis, 2016), GWO (Mirjalili et al., 2014), GSA (Rashedi et al., 2009), and water cycle algorithm (WCA)

(Eskandar et al., 2012). Recently, reinforcement learning (RL) based GWO (RLGWO) algorithm was proposed to generate a reliable 3D trajectory

of UAVs (Qu, Gai, Zhong, & Zhang, 2020). Subsequently, an improved bat lagorithm (IBA) offered a feasible path in a complex battlefield environ-

ment (Zhou et al., 2021). Meanwhile, improved PSO with multiple processing steps was utilized for path planning of swarm UAVs under dynamic

threats, such as surface-to-air missiles (Shin & Bang, 2020). Furthermore, Spherical vector-based PSO (SPSO) incorporates spherical vectors to

enhance the path quality (Phung & Ha, 2021). In addition, the solution quality of PSO was improved by employing the Metropolis criterion and

RTS smoother (Wu et al., 2018). Similarly, PSO with global best path competition (GBPSO) introduces the competition strategy among the parti-

cles during evolution to achieve better performance (Huang & Fei, 2018). Later, GWO and symbiotic organisms search (SOS) were fused to ensure

a higher convergence rate and exploration capability (Qu, Gai, Zhang, & Zhong, 2020). Similarly, a hybrid PSO-SOS was utilized for the coopera-

tive route planning of swarm UAVs (He et al., 2021). Additionally, the employability of metaheuristics was also examined for dynamic route plan-

ning of UAVs (Liu et al., 2019). GWO was employed to acquire the feasible path for unmanned combat aerial vehicles in military applications

(Zhang et al., 2016). Further, the waypoint-based evaluation function approach was examined to improve the quality of the generated path (Yang

et al., 2015). Similarly, UAVs were employed to deliver medical essentials by avoiding traffic congestion using metaheuristics (PSO, ACO, and

genetic algorithm [GA]) (Khan et al., 2021). In addition, physics-inspired optimizers such as equilibrium optimizer (EO) (Tang et al., 2021),

quantum-entanglement pigeon-inspired optimization (QEPO) (Li & Deng, 2019), multiverse optimizer (MVO) (Jain et al., 2019), and GSA (Xu

et al., 2021) were successfully employed for optimal flight path generation. Recently, other physics-based algorithms, such as AOA (Hashim

et al., 2021), flow direction algorithm (FDA) (Karami et al., 2020), and artificial electric field algorithm (AEFA) (Yadav, 2019) were also introduced

and examined on benchmark functions. However, their potential in optimal path planning needs to be explored.

The earlier path-planning algorithms are time-consuming and slow because they employ graph-based methods, limiting their implementation

to real-time problems (Zhao et al., 2018). Compared with graph-based methods, metaheuristics are observed to perform faster. However, they

often get traped into local minima and produce slow convergence rates. Also, the No Free Lunch (NFL) theorem opens the opportunity to investi-

gate the possibilities of new metaheuristics. According to NFL, an optimization algorithm that results in global minima and has good convergence

rates on one class of optimization problem does not guarantee similar results on other optimization problems (Wolpert & Macready, 1997). This

motivates to explore other metaheuristics for real-world problems, such as path planning in a 3D environment. Also, previously reported literature

reveals the estimation of a feasible path with similar obstacles, which is impractical and infeasible in a real-world scenario.

The present work is an attempt to develop a hybrid algorithm for planning a safe and flyable path in the presence of various obstacles of dif-

ferent shapes and sizes in a 3D environment. The RL-based GWO-AOA (RLGA) is developed by improving the exploration stage of AOA using

GWO. Furthermore, RL is proven effective in regulating the exploration-exploitation balance in metaheuristics (Seyyedabbasi et al., 2021).
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Therefore, RL is employed to select the exploration-exploitation stages intelligently. The similarities and differences between GWO and AOA,

based on which the hybrid algorithm is developed along with the advantages of incorporating RL, are enlisted here:

1. Both are population-based algorithms.

2. AOA is physics-based, whereas GWO is a swarm intelligence (SI)-based optimization algorithm.

3. GWO depends on the best three individuals for updating their position during all the iterations. In contrast, AOA updates the position based

on a randomly selected individual during one-third of the iterations and, afterward, updated based on the best individual.

4. In GWO, exploration and exploitation balance is maintained by parameter at which decreases linearly from 2 to 0. Depending on at, the param-

eter A varies in the range �2at, 2at½ �. jAj< 1 indicates exploitation and jAj>1 represents exploration. However, AOA performs global search in

30% of the iterations and local search in rest of the iterations, which is maintained by transfer operator (TO).

5. The convergence speed of AOA is less since it is in the global search for one-third of the iterations. During this phase, the acceleration and

position are updated based on random selection of the individuals. On the contrary, the convergence rate of GWO is better since it depends

only on the leader group for updating the positions. However, the dependency on the best three wolves limits diversity of the population and

might lead to local minima solutions. Further, the population update based on the best three wolves results in good exploitation capacity.

6. To enhance the local search abilities of AOA, GWO is incorporated during the exploration stage of AOA. Further, RL (Q learning) agent is

employed to balance the exploitation-exploration stage. This intelligent selection between global and local search may improve the conver-

gence rate of AOA.

7. Further, Q learning agent selects the action (exploration or exploitation) based on the Q table values. A positive or negative reward is assigned

depending on the obtained cost function values during each iteration. The agent tries to maximize the reward signal by selecting appropriate

action based on the Q table values.

In a nutshell, GWO is employed to enhance the exploration phase of AOA. The slow convergence rate of AOA results from the 30:70 global–

local search ratio. RL is exhaustively investigated in the proposed algorithm to adaptively select the exploration-exploitation stages, resulting in

higher convergence rates. The exhaustive evaluation of RLGA is initially carried out on four sets of benchmark functions. The first and second set

contains unconstrained and constrained single objective real parameter optimization problems from CEC 2017, the third set includes single objec-

tive real parameter optimization problems from CEC 2019, whereas the last set consists of 22 selected benchmark functions. Subsequently, the

effectiveness of RLGA is investigated for 3D path estimation of UAVs. The major contributions of the present work are listed below:

1. Analysis of main bottlenecks for slow convergence in AOA.

2. Development of RLGA with improvement in the exploration phase of AOA using GWO.

3. Enhancement of the convergence rates of RLGA by utilizing RL to control the exploration-exploitation balance.

4. Exhaustive performance comparison of RLGA with other metaheuristics based on benchmark functions.

5. Employment and validation of RLGA for 3D path estimation of UAVs to endorse its successful applicability in real-world healthcare tasks.

Thus, the present study aims to develop and validate a hybrid algorithm based on metaheuristics and RL to provide an efficient and obstacle-

free path for UAVs. Section 2 briefly describes the RL, GWO, and AOA. The development process of RLGA is presented in section 3. Section 4

comprises the benchmark function evaluation. The route estimation in the 3D environment is discussed in section 5, along with the problem for-

mulation, cost function, and simulated results. Finally, concluding remarks and the scope of future research are presented in the last section.

2 | BASIC KNOWLEDGE

2.1 | Reinforcement learning

Reinforcement learning (RL) is a branch of Machine Learning (ML) and recently gained significant interest in the research fraternity. In RL, an agent

automatically unleashes an optimal policy to maximize the reward by interacting with the environment. The RL can be categorized into policy-

based and value-based approaches. Popularly, policy gradients indicate the policy-based RL in which the policy function directly maps a state into

action. In contrast, the RL approach, popularly known as Q learning, represents the value-based RL in which the agent performs an action based

on the highest values in the Q-table to learn the optimal policy during training. It is an off-policy Temporal Difference (TD) learning algorithm

where Q represents the action-value function. The update policy of the Q table is mathematically formulated as in Equation (1),

Qitþ1 sit, aitð Þ¼Q sit, aitð Þþμ Ritþ1þ γ
max
a

Q sitþ1, aitð Þ�Q sit, aitð Þ
� �

, ð1Þ
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where, s and a denote states and actions, respectively. μ depicts the learning rate, R is the reward, γ is the discount factor, and it represents the

current iteration. Pseudocode 1 illustrates the informal implementation of the Q learning algorithm.

2.2 | Grey wolf optimization

Grey wolf optimization (GWO) is one of the most popular community-hunting behaviour-based SI algorithms. Grey wolf groups follow a strict

social hierarchy that can be categorized as the α, β, δ, and ω wolves. α (the best), β(the second best), and δ (the third best) wolves represent the

leader groups with the best information on the prey position (optimal solution). Therefore, all the individuals update their position according to

the position of leader wolves during position updates. Equations (2)–(9) represents the position (Zoi) update equations for individual wolves during

each iteration (it).

Zoi itþ1ð Þ¼ Z1þZ2þZ3ð Þ=3, ð2Þ

Z1 ¼Zα itð Þ�A1Dα ð3Þ

Z2 ¼Zβ itð Þ�A2Dβ ð4Þ

Z3 ¼Zδ itð Þ�A3Dδ, ð5Þ

Dα ¼ jC1Zα itð Þ�Zoi itð Þj ð6Þ

Dβ ¼jC2Zβ itð Þ�Zoi itð Þ j ð7Þ

Dδ ¼jC3Zδ itð Þ�Zoi itð Þ j ð8Þ

Ck ¼2r1k
Ak ¼2at:r2k�at

ð9Þ

where, at decreases linearly during each iteration 8at � 0, 2½ �, r1k and r2k represent random numbers used to calculate Ck and Ak , respectively,

k¼1,2,3. The updated position is represented by the mean of Z1, Z2, and Z3 which depends on leader group positions, Zα, Zβ , and Zδ,

respectively.

2.3 | Archimedes optimization algorithm

The physics-inspired optimization algorithm, Archimedes optimization algorithm (AOA) is emanated from Archimedes' Principle. AOA assumes

that the initial population is constituted based on different objects with diverse densities and volumes immersed in a particular fluid. The objective

is to achieve neutral buoyancy for all the objects.

If liq and obj represent the liquid and object floating in the liquid, F(.) indicates the force exerted, then at equilibrium Equation (10) is satisfied,

which can be re-written as Equation (11),

Pseudocode 1 The Q learning

Initialize Q(s, a) arbitrarily

while the terminal condition is not satisfied

Choose an initial state

Choose an action for the initialized state

Take action, return the reward, and next state

Update Q table using Equation (1)

End while
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Fliq ¼ Fobj, ð10Þ

ρliqV liqaliq ¼ ρobjVobjaobj, ð11Þ

where, ρ :ð Þ, V :ð Þ, and a :ð Þ depict the density, volume, and acceleration, respectively. Acceleration is obtained by rearranging Equation (11) as shown

in Equation (12),

aobj ¼
ρliqV liqaliq
ρobjVobj

, ð12Þ

Further, for externally influencing forces, such as collision with other objects, Equations (10) and (11) are modified to Equations (13) and (14),

respectively.

W liq�Weo ¼ Fobj, ð13Þ

ρliqV liqaliq�ρeoVeoaeo ¼ ρobjVobjaobj, ð14Þ

where, eo corresponds to the external object that is interacting and W :ð Þ depicts the weight.

Positions of the objects, Zoi are initialized using Equation (15) where lbo and ubo indicate the lower and upper bounds, respectively, and r1 is a

random number in the range [0, 1]. Also, the densities and volumes are initialized randomly in the range [0, 1].

Zoi ¼ lboþ r1 ubo� lboð Þ ð15Þ

Acceleration is initialized as shown in Equation (16), acloi and r2 indicate an acceleration of the ith object and random number, respectively.

acloi ¼ lboþ r2 ubo� lboð Þ ð16Þ

From the initial population, the object with the best position, Zα is computed and correspondingly aclα, ρα, and Vα are assigned. The TO

(Equation 17) defines the search from exploration to exploitation. Additionally, the density factor (df) indicates the exploration to exploitation

shift, which is calculated using Equation (18). Here, it and Max_it depict the current iteration and the maximum number of iterations, respectively.

TO¼ exp
it�Max_it
Max_it

� �
, ð17Þ

df¼ exp
it�Max_it
Max_it

� �
� it

Maxit

� �
, ð18Þ

Further, the densities and volumes are updated using Equations (19), (20), r3 and r4 represent random numbers and ρoi itþ1ð Þ and Voi itþ1ð Þ
indicate the updated densities and volumes during the iteration it, respectively.

ρoi itþ1ð Þ¼ ρoi itð Þþ r3 ρα�ρoi itð Þð Þ, ð19Þ

Voi itþ1ð Þ¼Voi itð Þþ r4 Vα�Voi itð Þð Þ, ð20Þ

During the exploration phase that is, when TO≤0:5, the acceleration and position are updated using Equations (21) and (23), respectively. Before

updating the position, the acceleration is normalized using Equation (22).

acloi itþ1ð Þ¼ ρor þVoraclor
ρoi itþ1ð ÞVoi itþ1ð Þ , ð21Þ

norm_acloi itþ1ð Þ¼ u�acloi itþ1ð Þ�min aclð Þ
max aclð Þ�min aclð Þ þ l, ð22Þ
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Zoi itþ1ð Þ¼Zoi itð Þþc1� r5�norm_acloi itþ1ð Þ�df� Zor �Zoi itð Þð Þ, ð23Þ

where, c1 is a constant, r5 is a random number and or represents the random object.

when TO>0:5, the search is in exploitation, and acceleration is updated using Equation (24). After normalizing the acceleration using

Equation (22), the position is updated using Equation (25).

acloi itþ1ð Þ¼ ραþVαaclα
ρoi itþ1ð ÞVoi itþ1ð Þ , ð24Þ

Zoi itþ1ð Þ¼Zα itð ÞþFlag�c2� r6�norm_acloi itþ1ð Þ�df� TF�Zα�Zoi itð Þð Þ, ð25Þ

where, c2 is a constant, r6 is a random number, TF is given using Equation (26) and Flag by Equation (27).

TF¼ c3�TO, ð26Þ

Flag¼ þ1, ifF ≤0:5

�1, otherwise
,

�
ð27Þ

where, c3 is another constant, and F is given using Equation (28).

F¼2� r7� c4, ð28Þ

where, c4 is a constant, and r7 is a random number.

3 | THE PROPOSED RLGA

The above discussions enlighten that the AOA performs exploration during the initial 30% of the iterations and updates the parameters based on

a random selection of objects. Therefore, the algorithm is considered to search the unexplored regions of the search space, which yields slow con-

vergence. On the contrary, the GWO offers good convergence speed because of selection of the best three wolves. Still, the unified search

behaviour may not always guarantee a global solution; therefore, the present work proposes to enhance the exploration capability of AOA derived

from GWO. Moreover, in AOA, TO controls the switching between exploration-exploitation and forces the algorithm to continue in exploration

for one-third of the iterations. Therefore, many times, the AOA may over-exploit the search space, resulting in a large computational time. This

necessitates the employment of intelligent techniques for optimum switching, and the embedding of Q learning-based RL may accomplish this

task efficiently. Hence, the proposed RLGA enhances the exploration of AOA by employing GWO and obtains optimum switching by incorporat-

ing Q learning, which may uplift the overall solution quality and reduces the computational time of AOA.

As discussed earlier, Q learning is an RL where Q indicates the action-value function. During each operation, the Q table is updated by

Equation (1). This Q table in the proposed RLGA consists of two actions and states: exploration and exploitation. The present study employs the ε

greedy policy to balance the exploration-exploitation in RL (Liu et al., 2021; Tapia et al., 2021). The probability of exploitation or local search is ε,

and exploration or global search is 1� ε. Here, the learning rate (μ), as mentioned in Equation (1), also updates using Equation (29), which controls

the rate of learning during each iteration.

μ¼ μinitialþμfinal
2

� μinitial�μfinal

2� cos π 1� it
Maxit

� �� � , ð29Þ

where, μinitial and μfinal depict the initial and final values of μ, respectively. The value of μ decides the dependency on the current and new informa-

tion. When the value of μ is decreased adaptively during each iteration, the Q table will become more influenced by the current Q values. Further,

the reward (R) (Equation 1) is assigned to the learning agent based on the attained cost function value, as shown in Equation (30).

R¼ þ1, if cost function is improved

�1, otherwise
:

�
ð30Þ
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Inspired by GWO, the acceleration of the particle during exploration is calculated using the densities and volumes of the best three objects as

denoted in Equation (31).

acloi itþ1ð Þ¼ ρeplþVepl�aclepl
ρoi itþ1ð Þ�Voi itþ1ð Þ , ð31Þ

where, ρoi and Voi are obtained using Equations (19), (20), ρepl, Vepl, and aclepl are computed using Equations (32)–(34) based on the best three

objects α, β, and δ, respectively.

ρepl ¼
ραþρβþρδ

3
, ð32Þ

Vepl ¼VαþVβþVδ

3
, ð33Þ

aclepl ¼ aclαþaclβþaclδ
3

, ð34Þ

Then, the acceleration obtained using Equation (31) is normalized using Equation (22). Consequently, the position is getting updated using GWO

as presented in Equation (35).

Zoi itþ1ð Þ¼Zepl itð Þþ c1� r5�normacloi itþ1ð Þ�df� Zepl itð Þ�Zoi itð Þ� �
, ð35Þ

where, c1 is a constant, r5 is a random number, and Zepl is calculated based on Equations (36)–(44).

Zepl ¼ x1þx2þx3
3

, ð36Þ

x1 ¼Zα itð Þ�A1�Dα, ð37Þ

x2 ¼Zβ itð Þ�A2�Dβ , ð38Þ

x3 ¼Zδ itð Þ�A3�Dδ, ð39Þ

Dα ¼ jC1�Zα itð Þ�Zoi itð Þj, ð40Þ

Dβ ¼ jC2�Zβ itð Þ�Zoi itð Þj, ð41Þ

Dδ ¼ jC3�Zδ itð Þ�Zoi itð Þj, ð42Þ

Ak ¼2�at� r1k�at, ð43Þ

Ck ¼2� r2k: ð44Þ

Finally, the step-by-step methodology of the proposed RLGA is depicted using the self-explanatory flowchart illustrated in Figure 1 and

Pseudocode 2.

The Q table is designed as a 2 � 2 matrix, and its update mechanism is depicted in Figure 2. Each cell in the Q table represents the Q value

estimated for the provided state in the row during the corresponding action in the column. If the state is selected as exploration before the

update, then the action continues to be in exploration (highest Q value). However, if after updating this table using ε greedy policy, the state is

assigned as exploitation, then the highest Q value corresponding to this state governs the respective action. Therefore, the agent maximizes the

reward by selecting the action with the highest Q value. In addition, the independent learning process is ensured by individual Q tables for the

entire population.

GUPTA ET AL. 7 of 21
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4 | BENCHMARK FUNCTION EVALUATION

4.1 | The algorithm setup

Initially, the effectiveness of RLGA is evaluated in terms of both accuracy and convergence speeds on four sets of benchmark functions. For this

purpose, the optimum values of the cost function are evaluated for 1000 iterations with a population size of 30 during all the tests. The mean

values are calculated using obtained optimized cost function values over 20 runs with the parameters listed in Table 1.

4.2 | Benchmark function analysis

The RLGA is used to evaluate the 22 benchmark functions as depicted in Appendix S1, single (Awad et al., 2017) and constrained single (Wu

et al., 2016) objective real parameter optimization (CEC 2017), and Single objective real parameter optimization, 100 Digit Challenge (Price

et al., 2018) (CEC 2019). The obtained results are compared and analysed with PSO (Kennedy & Russell, 1995), GWO (Mirjalili et al., 2014), AOA

(Hashim et al., 2021), EAOA (Desuky et al., 2021), and RLGWO (Qu, Gai, Zhong, & Zhang, 2020). Table 2 indicates the number of estimated opti-

mum values and their rank for all the compared algorithms for the benchmark functions mentioned in Appendix S1. The detailed results are pro-

vided in Appendix S1. Further, the average ranks of all the compared algorithms are computed on the considered benchmark functions by

employing the Friedman test. From Table 2, it is quite evident that on evaluating the average values, the developed RLGA performs superior to

F IGURE 1 Flowchart of the reinforcement learning-based grey wolf optimization-Archimedes optimization algorithm

8 of 21 GUPTA ET AL.
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the other compared metaheuristics. For 12 out of 22 considered functions, the RLGA results in optimal or near-optimal values, indicating out-

standing performance on 54.54% of the functions followed by GWO.

Table 3 indicates the summary of the statistical results obtained for CEC 2017 single objective real parameter optimization, whereas the

detailed analysis is provided in Appendix S1. From analysing the mean values presented in Table 3, it is noticed that the RLGA is able to obtain

Pseudocode 2 The proposed RLGA

Set the parameters

Set the states and actions

Set the Q table

Initialize the population

Initialize density, volume, and acceleration

Calculate the cost function

Choose the leader group positions volumes, densities, and acceleration

Set it¼0

while it<Max_itdo

update a, μ, TF, and df

for every object in population do

ε greedy policy derived from Q selects the action

switch action

Case 1: exploration

Calculate x1, x2, and x3 using Equations (37)–(49)

Calculate ρepl, Vepl, and aclepl using Equations (32)–(34)

Update acloi as mentioned in Equation (31)

Update Zoi as mentioned in Equation (35)

Case 2: exploitation

Update acloi as mentioned in Equation (24)

Update Zoi as mentioned in Equation (25)

end switch

end for

Update cost function

Get reward using Equation (30)

Update leader group

Update the Q table
it¼ itþ1

end while

Return position

F IGURE 2 The Q table update

GUPTA ET AL. 9 of 21
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optimal values for 14 functions among the 29 benchmark functions. In addition, RLGA obtains an average rank of 2.66, which is 2.21% less than

its closest competitor (GWO).

The performance of RLGA is observed to be significantly higher for CEC 2017 constrained single objective real parameter optimization. The

summary of estimated statistical results is represented in Table 4, whereas the detailed results are tabulated in Appendix S1. Among the total

28 functions, RLGA gives optimal mean values for 19 functions when compared with other discussed algorithms. The obtained results indicate

the overwhelming performance of RLGA on 67.87% for the CEC 2017 constrained benchmark functions.

Finally, the summary of computed statistical results for CEC 2019 single objective real parameter optimization (100 Digit Challenge) is

depicted in Table 5, and the detailed results are provided in Appendix S1. Although the simulated results reveal that none of the compared algo-

rithms perform efficiently because of the very high complexities in this dataset, but still the Friedman test estimates RLGA as rank 1. Therefore,

the proposed RLGA is assessed as the best-performing metaheuristic algorithm among the compared ones.

The convergence graphs are also acquired using the best optimal values from 20 runs for all the benchmark functions. The patterns of sample

functions (F8, F14, F17, F20, F21, and F22) are illustrated in Figure 3a–f, respectively. Similarly, the convergence curves of sample functions in

CEC 2017 constrained (F2, F3, F6, F8, F10, F12, F24, F25, and F26) and unconstrained (F3, F4, F5, F10, F15, F19, F21, F28, and F29) are deliber-

ated in Figures 4a–f and 5a–f, respectively. Also, for CEC 2019 sample functions (F1, F2, and F9), these are depicted in Figure 6a–c. Evidently,

RLGA is observed most suitable among the compared metaheuristics. Specifically, Figure 3 indicates that RLGA is most prominent for the

22 selected benchmark functions (Table 2). It not only achieves the optimum or near-optimum cost values but also reduces the computational

burden. Moreover, Figures 4, 5, and 6 verifies that the developed RLGA quickly obtains the optimum cost under various complexities and

TABLE 1 The parameters required for each algorithm

Algorithm Parameters

AOA c1 ¼2, c2 ¼6, c3 ¼2, c4 ¼1

GWO a¼ 0, 2½ �
PSO w¼1:09, c1 ¼ c2 ¼2:2345

EAOA c1 ¼2, c2 ¼6, c3 ¼2, c4 ¼1

RLGWO a¼ 0, 2½ �
RLGA c1 ¼2, c2 ¼6, c3 ¼2, c4 ¼1, a¼ 0, 2½ �

TABLE 2 Summary of results obtained for benchmark functions mentioned in Appendix S1

Parameter

GWO (Mirjalili

et al., 2014)

AOA (Hashim

et al., 2021)

PSO (Kennedy &

Russell, 1995)

EAOA (Desuky

et al., 2021)

RLGWO (Qu, Gai, Zhong,

& Zhang, 2020)

RLGA

(proposed)

Best 9 10 11 4 10 11

Worst 11 4 5 2 6 9

SD 10 0 3 1 3 5

Mean 10 3 6 1 8 12

Average rank 2.55 3.91 4.32 4.86 3.18 2.18

Total rank 2 4 5 6 3 1

TABLE 3 Summary of results obtained for CEC 2017 single objective real parameter optimization

Parameter
GWO (Mirjalili
et al., 2014)

AOA (Hashim
et al., 2021)

PSO (Kennedy &
Russell, 1995)

EAOA (Desuky
et al., 2021)

RLGWO (Qu, Gai, Zhong,
& Zhang, 2020)

RLGA
(proposed)

Best 8 6 8 0 5 14

Worst 9 1 4 0 8 7

SD 10 1 2 1 5 9

Mean 11 1 3 0 3 14

Average rank 2.72 3.72 2.79 6.00 3.10 2.66

Total rank 2 5 3 6 4 1

10 of 21 GUPTA ET AL.
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difficulty levels. However, in some cases (Figures 5 and 6), it is observed that the RLGA is not the quickest yet produces optimum cost in a reason-

able time relative to the compared algorithms.

5 | PATH PLANNING

5.1 | Problem formulation

The present work transformed the problem of estimating the optimum flyable route for UAVs in a 3D-constrained environment (varying shapes

and sizes) into a non-linear, single objective constrained optimization problem, whose cost function is minimized by employing metaheuristic

TABLE 4 Summary of results obtained for CEC 2017 constrained single objective real parameter optimization

Parameter

GWO (Mirjalili

et al., 2014)

AOA (Hashim

et al., 2021)

PSO (Kennedy &

Russell, 1995)

EAOA (Desuky

et al., 2021)

RLGWO (Qu, Gai, Zhong,

& Zhang, 2020)

RLGA

(proposed)

Best 7 1 0 1 1 18

Worst 9 0 0 2 0 18

SD 5 0 1 4 1 17

Mean 6 1 0 2 0 19

Average rank 1.93 3.07 5.07 5.64 3.82 1.46

Total rank 2 3 5 6 4 1

TABLE 5 Summary of results obtained for CEC 2019 single objective real parameter optimization

Parameter
GWO (Mirjalili
et al., 2014)

AOA (Hashim
et al., 2021)

PSO (Kennedy &
Russell, 1995)

EAOA (Desuky
et al., 2021)

RLGWO (Qu, Gai, Zhong,
& Zhang, 2020)

RLGA
(proposed)

Best 1 1 4 1 0 3

Worst 1 2 3 1 0 3

SD 1 0 3 1 2 3

Mean 2 1 3 0 0 4

Average rank 2.72 3.72 2.79 3.10 6.00 2.65

Total rank 2 5 3 4 6 1

(c)(b)(a)

(f)(e)(d)

F IGURE 3 Convergence patterns for benchmark functions in Appendix S1. (a) F8, (b) F14, (c) F17, (d) F20, (e) F21 and (f) F22
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algorithms. For this purpose, the population is initialized with the candidate paths in order to avoid obstacles with minimum fuel consumption.

The metaheuristics update the path and return the best possible route for the UAV to travel with minimum costs from the initial population of

candidate paths. This ensures the employability of the UAV for effective and quick medical assistance in a real-world scenario. Further, the path is

divided into N number of waypoints to calculate the cost function and to estimate the unhindered path.

5.1.1 | Cost function

The cost function for finding the best possible route through the 3D environment is formulated to produce a collision-free route, along with other

constraints such as finding the shortest possible path, altitude, and angle constraints. In this work, the cost function is framed to estimate a safe

trajectory from the initial position to the target with minimum fuel consumption and the slightest deviation from the shortest trajectory.

To develop the 3D simulating environment, multiple obstacles with various shapes and sizes are considered. The cost function (Ccost) is calcu-

lated as the weighted sum of fuel cost (Cfuel), obstacle collision cost (Cobstacle), and the deviations cost (Cdeviation) as indicated in Equation (45). Here,

m1, m2, m3 and m4 denote the weights associated with fuel, obstacle-collision, and deviations cost (y and z), respectively. Considering optimum

and safe flyable path as the main requirement of the path planning problems, this work gives higher weightage to m1 and m2 relative to m3 and

m4. These values are empirically selected as 55, 25, 10, and 10, respectively.

Ccost ¼m1Cfuelþm2Cobstacleþm3Cydeviationþm4Czdeviation, ð45Þ

The fuel cost (Cfuel) indicates the fuel consumed for the travel. Considering the path length as directly related to fuel consumed, Cfuel is calcu-

lated as the aggregated length of the candidate path. The path between the source and target is divided into N waypoints, and then the obstacle-

collision cost is computed by dividing each path segment into five points, and each point is checked if it is inside the obstacle. If the path segment

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

F IGURE 4 Convergence patterns for CEC 2017 constrained benchmark functions. (a) F2, (b) F3, (c) F6, (d) F8, (e) F10, (f) F12, (g) F24, (h) F25
and (i) F26
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is inside the obstacle, Cobstacle is calculated; otherwise, it is assigned as zero. The computational process of Cobstacle is presented by Equations (46),

(47). For an obstacle j, assume a path segment of length (lp) of the candidate path passing through it, as illustrated in Figure 7. Here, dp0:25,j denotes

the distance from the center of the jth obstacle to the second point on the path segment lm under consideration and rj indicates the base radius of

the obstacle.

Cobstacle ¼
ðl
0
cobstacledl, ð46Þ

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

F IGURE 5 Convergence patterns for CEC 2017 unconstrained benchmark functions. (a) F3, (b) F4, (c) F5, (d) F10, (e) F15, (f) F19, (g) F21,
(h) F28 and (i) F29

(c)(b)(a)

F IGURE 6 Convergence patterns for CEC 2019 constrained benchmark functions. (a) F3, (b), F4 and (c) F5
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cobstacle,lm ¼
lp
5

XN
j¼1

1
5

jdp0,j� rjjþ jdp0:25,j� rjjþ jdp0:5,j� rjjþ jdp0:75,j� rjjþ jdp1,j� rjj
� �

: ð47Þ

It should be guaranteed that the created flight routes must avoid collisions and should require the minimum energy. The deviations cost are evalu-

ated using Equations (48)–(51), which signifies the deviation from consecutive waypoints or the oscillations from the straight path. Here, ym and

zm indicate the coordinates of the mth waypoint on the estimated path that is being considered. These deviations cost can eliminate unnecessary

oscillations that may arise in the generated paths. Further, cubic spline curves are used after path optimization to smoothen the obtained path

(Mahdi et al., 2019; Ravankar et al., 2018).

Cydeviation ¼
ð l
0
cydeviation, ð48Þ

cydeviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ym�ym�1ð Þ2

q
, ð49Þ

Czdeviation ¼
ðl
0
czdeviation, ð50Þ

czdeviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zm� zm�1ð Þ2

q
: ð51Þ

5.1.2 | Flight environment

Being motivated by the efficacy of the developed RLGA in optimizing the benchmark functions with various difficulty levels, it is employed for

route estimation in a complex 3D environment. The simulated 3D environment contains obstacles of different configurations, as explained in

Table 6. The simulated obstacles include Gaussian shapes, cones, hemispheres, and cylinders. The obstacles are also merged to ensure a more

realistic representation of the simulated environment. Different start and target points are selected for generating the path, and the developed

algorithm is utilized to produce optimized paths between the mentioned start and target points. In addition, the path estimated by RLGA is com-

pared against the aforementioned metaheuristics to endorse the effectiveness of RLGA in real-world problems. Further, all the compared algo-

rithms are initialized with 100 candidate paths, and the simulation is carried out for 2000 iterations.

Based on the above discussion, the step-by-step procedure to generate the optimal flyable path for UAVs is illustrated by a self-explanatory

flowchart in Figure 8.

5.2 | Path planning results

The performance of the developed RLGA on several benchmark functions served as the motivation to employ it for estimating the flyable path

and corresponding cost function values in a complex 3D environment. The simulated results using RLGA are compared with the GWO, AOA,

F IGURE 7 Calculating the obstacle-collision cost

14 of 21 GUPTA ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13224 by G

w
angju Institute of Science and T

echnology (G
IST

), W
iley O

nline L
ibrary on [05/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PSO, EAOA, and RLGWO. For this purpose, the flight trajectory for UAV in the simulated 3D environment is estimated between the start position

(�15, �15, 3) and the goal position (35, 35, 9). Further, the number of waypoints (N) is empirically selected as 15. The estimated trajectory for 2D

(top view) and 3D by these metaheuristics are illustrated in Figures 9 and 10, respectively. The obtained results reveal that RLGA dominates all

TABLE 6 Obstacle configuration

Obstacle Base center Radius (m) Height (m)

Gaussian (0,0,0) – 7

Cone (�17,7,0) 2.5 10

(�10,�7,0) 5 4

Hemispheres (6,7,0) 5 –

(20,16,0) 5 –

(0,25,0) 6 –

(30,10,0) 3.5 –

Cylinders (22,0,0) 5 12

(10,16,0) 3 8

(12,�0.5,0) 4 8

(15,8,0) 3 10

(25,25,0) 2.7 9

(15,25,0) 2.7 7.5

(7.5,25,0) 1 15

(�10,10,0) 5 6

F IGURE 8 Flowchart of the reinforcement learning-based grey wolf optimization-Archimedes optimization algorithm
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the compared algorithms and offers the optimum path. EAOA is able to deliver a collision-free path but at the cost of higher fuel requirements by

producing a longer flight route. GWO also generates a collision-free path in the simulated environment but produces a longer path with oscilla-

tions about the z-axis because of the incorporation of the fuel and oscillation costs. The paths resulting from other algorithms, such as RLGWO,

AOA, and PSO, are unable to provide a collision-free path in the considered environment.

F IGURE 9 Top view of the acquired paths

F IGURE 10 3D view of the generated paths

F IGURE 11 Convergence curve

16 of 21 GUPTA ET AL.
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Furthermore, the convergence curve for 3D path planning is depicted in Figure 11 to evaluate the computational time required by considered

metaheuristics. The RLGA converges faster and delivers optimum values compared with other algorithms, whereas EAOA, PSO, and GWO settle

for a higher but constant value from the very first iteration itself. Additionally, the cost function values obtained by the considered metaheuristics

are illustrated in Figure 12, which discloses the dominance of RLGA over other compared algorithms. Further, the obtained cost function and the

required number of iterations to converge are tabulated in Table 7. It is observed that the RLGA provides 82.77%, 70.42%, 62.06%, 99.10%, and

51.46% lesser cost compared with PSO, GWO, AOA, EAOA, and RLGWO, respectively. However, it is noticed that only RLGA, EAOA, and GWO

are able to deliver collision-free paths, therefore, are suitable for this task under the considered environmental conditions, whereas others collided

with the obstacle boundaries. Furthermore, the proposed RLGA requires 41.23% and 24.35% lesser iterations than AOA and RLGWO, respec-

tively. Nonetheless, it requires higher iterations compared with PSO, GWO, and EAOA to achieve the optimum values, but considering the com-

plexities involved in the path planning and the dominance of RLGA over these metaheuristics for optimum path generation, this may be

neglected.

6 | CONCLUSIONS

In critical medical scenarios, response time is very crucial, and many times, ambulances fail to reach the required destination because of traffic

congestion. Thus, the present work focuses on emergency medical intervention, which reduces fatality and lethality rates by providing the medical

facility with UAVs in a limited time window. However, it requires an efficient algorithm to estimate the optimal and collision-free trajectory in a

complex 3D environment with several dissimilar obstacles. In view of this, a novel RLGA is developed to estimate a safe and flyable path for UAVs

in a complex 3D environment under consideration of various constraints. The efficacy of the proposed RLGA is first validated on benchmark func-

tions with different difficulty levels, including CEC 2017 and CEC 2019. The acquired results are compared with the most popular metaheuristics

(PSO, GWO, AOA, RLGWO, and EAOA), which indicates the superior convergence capability of RLGA over other algorithms under discussion.

Based on the Friedman test, the rank of RLGA is estimated as 1 for all the benchmark functions, which validates the efficacy of RLGA against the

compared CIAs. The convergence patterns of RLGA indicate that it is able to significantly improve the convergence rates of AOA because

Q learning enables intelligent switching between exploration and exploitation. Further, it is observed that the RLGA obtains a safer path with

51.46% and 70.42% lesser cost than RLGWO and GWO, respectively. In addition, compared with AOA, it is found that RLGA delivers a safe tra-

jectory with 62.06% lesser cost. This validates the dominance of RLGA over other algorithms in providing global or near-optimal solutions. The

convergence curves also affirm the superiority of RLGA over other CIAs to yield better cost function values at faster convergence rates. The

F IGURE 12 Obtained cost function values

TABLE 7 Cost function values for unmanned aerial vehicle path planning

S. no. Algorithm Best cost function value Converging at iteration

1 PSO (Kennedy & Russell, 1995) 18547.07 50

2 GWO (Mirjalili et al., 2014) 10799.13 30

3 AOA (Hashim et al., 2021) 8421.02 650

4 EAOA (Desuky et al., 2021) 354243.95 10

5 RLGWO (Qu, Gai, Zhong, & Zhang, 2020) 6581.27 505

6 RLGA (Proposed) 3194.44 382

GUPTA ET AL. 17 of 21
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employability of RLGA over benchmark functions and path planning demonstrates the promising capabilities of the developed algorithm. How-

ever, while investigating the convergence pattern on benchmark functions, it is evident that the convergence rate of RLGA is slower than PSO

and GWO. Nevertheless, the high convergence rates, flying range, and payload capacity are required to overcome the time pressure of the

healthcare system using UAVs which would be very interesting and provide new directions for future research.
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