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Walk‑on‑Hemispheres first‑passage 
algorithm
Jinseong Son 2, Dongheyon Shin 3 & Chi‑Ok Hwang 1*

Due to the isomorphism between an electrostatic problem and the corresponding Brownian diffusion 
one, the induced charge density on a conducting surface by a charge is isomorphic to the first-passage 
probability of the diffusion initiated at the location of the charge. Based on the isomorphism, many 
diffusion algorithms such as “Walk-on-Spheres” (WOS), “Walk-on-Planes” and so on have been 
developed. Among them, for fast diffusion simulations WOS algorithm is generally applied with an ε
-layer, which is used for diffusion convergence on the boundary but induces another error from the ε
-layer in addition to the intrinsic Monte Carlo error. However, for a finite flat boundary it is possible to 
terminate a diffusion process via “Walk-on-Hemispheres” (WOH) algorithm without the ε-layer. In this 
paper, we implement and demonstrate this algorithm for the induced charge density distribution on 
parallel infinite planes when a unit charge is between the plates. In addition, we apply it to the mutual 
capacitance of two circular parallel plates. In both simulations, WOH algorithm shows much better 
performance than the previous WOS algorithm.

According to the probabilistic potential theory, electrostatic problems can be understood via mathematically 
isomorphic diffusion ones and vice versa1,2. Since the Laplacian operator corresponds to the homogeneous and 
isotropic Brownian motion, electrostatic problems can be solved via the random walk of the Brownian particle. 
Accordingly, the induced charge density distribution on a conducting surface by a point charge is equal to the first 
passage probability distribution of the diffusion initiated at the location of the charge onto the boundary surface.

Based on the isomorphism, fast diffusion Monte Carlo algorithms have been developed3–10. In the diffusion 
Monte Carlo algorithms, “Walk-on-Spheres” (WOS) algorithm3,9,11 is generally used to find the first passage 
location on the absorbing boundary surface. However, for diffusion convergence this algorithm requires a layer 
to terminate the diffusion process near the boundary surface, which is called the ε-layer3. In order to avoid the 
bias from the layer approximation, Green’s function First-passage (GFFP) algorithms without the layers5,6 have 
been developed.

Among them, “Walk-on-Planes” (WOP) algorithm7,8 is employed in cases of infinite flat boundary. However, 
in the case of parallel infinite boundaries we don’t have a good GFFP algorithm because we have only series solu-
tions or integral representations and don’t have a closed form for the corresponding electrostatic problem. For 
the parallel infinite boundaries, we have only infinite parallel plates GFFP algorithm10. However, the algorithm 
via the series solution combined with the acceptance-rejection sampling method is somewhat complicated.

In this paper, we implement a new diffusion algorithm called “Walk-on-Hemispheres” (WOH) for a finite flat 
boundary, which can be also used for the (parallel) finite or infinite planes boundary. In the previous researches 
of Ermakov4,12, he gave mathematical proofs for the transition probabilities regarding the hemisphere geom-
etry based on image charge method and later4,12,13 the WOH algorithm was implemented via Von Neumann’s 
acceptance-rejection method14. Here, we implement WOH algorithm by applying a conformal map15,16 combined 
with an acceptance rejection method14.

In the following sections, at first the derivation of the WOH sampling formula is given. Next, we demonstrate 
the algorithm on parallel infinite planes boundary. In addition, the mutual capacitance of two parallel circular 
plates is computed. Finally, we make a comparison between WOH and WOS algorithms. It is shown that the 
WOH algorithm is more efficient than the WOS one.

Results
“Walk‑on‑Hemispheres” (WOH) algorithm.  In this section, we explain WOH algorithm. In order to 
obtain the first passage distribution from a diffusion source �r0 (the location of the charge q) inside the hemisphere 
� to a point �r on its boundary ∂� (see Fig. 1), we need a Green’s function G( �r0, �r) which satisfies the following17;
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Here, � is the Laplacian operator. Then the normal derivative of G( �r0, �r) on ∂� creates the harmonic measure18 
and any harmonic function u(�r) in � satisfies the boundary integral equation;

Here, n̂ is the normal vector inwards the domain. For the required Green’s function G( �r0, �r) , the linear com-
bination of electric potentials can be used. To invoke the axial symmetry, we put a negative unit charge and its 
image charges on z-axis as Fig. 1 so that the potential vanishes on the conducting surface. Setting the radius of 
hemisphere R and the height of the source charge from the origin d, we obtain the Green’s function in the spheri-
cal coordinates (r, θ ,φ) (here, θ from 0 to π is the angle from the positive z axis downward) given by

Taking the partial derivative of G(r, θ ,φ) with respect to r, we get at R

Now, let γ be the ratio d/R and the boundary ∂� = ∂X ∪ ∂Y  ( ∂X : hemisphere, ∂Y  : disk) and we integrate 
over the hemispherical part. The cumulative induced charge density is obtained to be

(1)
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Figure 1.   Schematic diagram of WOH algorithm; the radius of the hemisphere R and a charge −q at z = d and 
its three image charges at z = −d , z = −R2/d , and z = R2/d to make the potential zero on the boundary.
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and the total induced charge on the hemisphere becomes

By Eqs. (5) and (6), the conditional cumulative distribution with respect to the azimuthal angle θ of the first 
passage location on the hemisphere is given by

Now, let u ∈ U(0, 1) , α = 1+ γ 2 , β = 1− γ 2 and µ(u) = (βu+ (1− u)
√
α))2 . Then the inverse transform 

of the cumulative distribution function is given by

The formula (8) gives the exact sampling on the spherical part of the hemisphere.
For sampling on the disk part, because of the complexity of the inverse transformation sampling, we use 

conformal map15,16 to exchange the location of the disk and spherical part as shown in Figure 2.
Let the distance from the origin O to the charge q and q′ be r and r′ , respectively.

Then, the relation between r and r′ should satisfy the Eq. (9). Thus, the position of the charge q′ is specified 
as r′ = 2R/(1+ γ ) . In addition, for convenience of calculation, a variable γ = 2r/R − 1 and γ ′ = R/r − 1 are 
introduced respectively to represent the distance ratio from the center of the disk and hemisphere.

In Figure 2, the potential of the transferred charge q′ is defined by Eq. (10).

By introducing the azimuthal angle θ/2 of the inversion sphere by Eq. (11), the induced charge density on 
the disk surface σ(θ) can be written in terms of σ ′(θ).

The relation of the cumulative charges of the disk and the spherical part is given by the following;
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Figure 2.   Schematic diagram for the inversion mapping of the disk part of hemisphere.
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For practical use, we first determine which surface the diffusion passes through between the spherical and 
the disk parts by Eq. (6), the total induced charge on the spherical part. If the spherical part is chosen, then we 
just sample the angle θ by Eq.  (8). Otherwise, we compute γ ′ as shown in Fig. 2 and then apply Eq. (8) to sam-
ple the angle θ/2. To follow the actual likelihood in Eq. (12), we use the acceptance-rejection method [8] with 
acceptance probability sec(θ/2)/

√
2.

Induced charge distribution on parallel infinite planes.  When a charge is located between two 
infinite parallel conductors, the analytic solution for the induced charge density is known as a series solution 
only19–21. For the sample of the corresponding diffusion in diffusion Monte Carlo simulations in this geometry, 
“Walk-on-Spheres” (WOS) algorithm and recently developed “Infinite Parallel Plates” (IPP) [9] algorithm are 
available. However, in WOS algorithm the diffusion sample on the parallel boundaries can be biased by the ε
-layer if the layer is not thin enough to suppress the error from the layer, which is needed for convergence of the 
diffusion simulation22. In the other IPP algorithm case, we have to use a tabulation and compute the additional 
terms of series solution whenever the sampling is too close to the rejection criteria so that the algorithm is some-
what complicated19.

In this section, the sampling of a diffusion in the parallel planes boundary is performed by WOH algorithm. 
The initial position of the diffusion is located at the middle of two infinite planes as shown in Fig. 3. For the WOH 
diffusion, the radius is fixed to D and the direction of the disk boundary is toward the plane of the minimum 
distance. The first-passage distribution of the diffusion simulation is compared to the corresponding electrostatic 
analytic series solution given below21;

The result in Fig. 4 verifies that WOH algorithm provides the correct induced charge distribution. In order 
to obtain the above result, we performed 100 independent runs of 109 Monte Carlo (MC) steps, that is, via the 
total number of 1011 simulated diffusion quasiparticles. The convergence of the Monte Carlo errors is given in 
Fig. 5. The linear regression has its slope of − 0.49739 with the correlation coefficient of − 0.99986 . It is noted 
that all the logarithms used in this paper are the decimal logarithm.

In WOS algorithm, for large enough MC steps the Monte Carlo error convergence does not exhibit the linear-
ity due to the error from the ε-layer. If MC steps are large enough, the error from the layer becomes dominant23,24. 
To see the ε-layer error in Fig. 6, we perform the same simulation replacing WOH with the WOS algorithm 
with various ε-layers. Figure 6 clearly states that the error convergence is hindered by the ε-layer. For the case 
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Figure 3.   Schematic diagram for two infinite parallel conducting planes and a charge at the middle between the 
planes; the radius of the hemisphere is R (that is D), ρ the distance from the center of the hemisphere and the 
corresponding diffusion starts from the distance D/2 from the plane.
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of ε = 10−6 , it seems that the simulation result is not much affected by the layer and the MC intrinsic error is 
dominant. Although the ε-layer error can be reduced by making the layer smaller, it causes the logarithmic 
increase of the simulation time23–25.

In addition, in Fig. 7 with the induced charge density on the parallel infinite planes, we investigate the 
runtimes of the two algorithms, WOH and WOS. The runtime of WOH algorithm is inserted as the blue dotted 
guideline. The runtimes of WOS algorithm are obtained with ε from 10−6 to 10−2 . The linear regression of the 
WOS algorithm runtimes has its slope around − 10.51 with the correlation coefficient of − 0.99996 . In the paral-
lel infinite plane simulation, it is clearly verified that the WOH algorithm is much more efficient than the WOS 
algorithm with any practical choice of ε-layer.

Mutual capacitance of two parallel circular plates.  In this section, we demonstrate WOH algorithm 
for the mutual capacitance of two parallel circular plates with various radii and compare the performances with 
the WOS algorithm.

The mutual capacitances Cij of multi-conductors are represented in the matrix form which shows the relations 
between the total charge Qi on the i-th conductor and the voltages Vj on the j-th conductor among N conductors;

(14)Qi =

N∑
j=1

CijVj .

Figure 4.   Induced total charge in �ρ/D by WOH algorithm with 100 independent runs (blue circle) of 109 Monte 
Carlo steps and its analytic series data (black solid line).

Figure 5.   This graph shows the errors (blue circles) of WOH algorithm when we compute the induced charge 
density on the parallel infinite planes. The red solid line is its linear regression.
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Here in this paper, as in Fig. 8 we have two conductors only and so N = 2 . We compute the total charge on 
the i-th conductor by integrating the surface charge density on it via the last passage algorithm26,27, which can 
compute the charge density at a specific point on a conductor. The surface charge at �r0 is given in terms of the 
last passage Green’s function, g(�r, �r0) , of radius a of the last-passage hemisphere and the probability, P(�r → ∞) , 
of going to infinity of the diffusion which is initiated at �r0.

Here, the surface integration is over the last-passage hemisphere, ∂�.
When the i-th conductor Ci has unit voltage and the others are grounded, the surface charge density σii on 

Ci and σij on Cj are represented by;

(15)
σ( �r0) =

1

4π

∮
g(�r, �r0)P(�r → ∞)dS∂�,

g(�r, �r0) =
3 cos θ

2πa3
.

(16)
σii( �r0) =

1

4π

∮
g(�r, �r0)[1− P(�r → Ci)]dS∂�,

σij( �r0) =
1

4π

∮
g(�r, �r0)[P(�r → Cj)]dS∂�,

Figure 6.   This graph shows the errors of WOS algorithm when we compute the induced charge density on the 
parallel infinite planes for the cases of ε = 10

−2 , 10−3 , 10−4 and 10−6.

Figure 7.   Runtime comparison of WOH algorithm (blue dashed line) and WOS algorithm (black circles); the 
red solid line is the linear regression of the WOS algorithm. We evaluate the runtimes for the induced charge 
density on the parallel infinite planes with 100 independent simulations of 107 MC steps.
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where the probabilities, P(�r → Ci) and P(�r → Cj) , are of going to capacitor i and j of the diffusions which are 
initiated at �r0 respectively.

For the two circular plate conductor, the elements of capacitance matrix C11 and C12 are given by integrating 
the corresponding charge density over the conducting surfaces [10].

Let the distance between the two capacitors D and their radius R as shown in Fig. 8. We compute the mutual 
capacitance for various geometries by changing the ratio R/D from 0.1 to 103 . The simulation results are shown 
in the Table 1 from 100 independent runs of 1010 Monte Carlo steps. The analytic solutions in Table I are taken 
from the references27,28.

The runtime comparison of WOH algorithm with WOS one for the mutual capacitances of the two parallel 
circular plates from 100 independent simulations of 107 MC steps is given in Table 2 with respect to the geom-
etries given by the ratios of the radius to the separation R/D from 0.1 to 103 . With the WOS algorithm, we used 
the ε-layers, 10−2 , 10−3 , 10−4 , 10−5 and 10−6 . The runtimes of WOS are not significantly changed with respect 
to the geometry. With WOH algorithm, the runtime increases as the R/D ratio decreases and is less than WOS 
algorithm except the case of R/D = 0.1 and ε = 10−2.

The runtime data are obtained from 100 independent runs of 1010 Monte Carlo steps. All computations were 
performed on a MPI PC cluster (15 nodes, 160 cores with 2.40 GHz and 120 cores with 2.10 GHz) with scalable 
parallel random number generator (SPRNG)29.

(17)
C11 =

∮
σ11 dS∂�

C12 =

∮
σ12 dS∂�

Figure 8.   Schematic diagram of the last passage algorithm26,27 for the mutual capacitance of the parallel circular 
plates.

Table 1.   Mutual capacitance comparison between the analytic and simulated results in dimensionless form, 
(π/R)C ; R/D is the ratio of the radius of the circular plate and the separation between the plate.

R/D

C11 + C12 C11 + C12

Analytic Simulation Analytic Simulation

1000 787.8567 787.8549 0.50070 0.50057

100 80.4345 80.4346 0.50537 0.50514

10 9.2331 9.2323 0.53588 0.53577

1 1.8208 1.8203 0.69120 0.69101

0.1 1.0675 1.0675 0.94051 0.94067
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Discussion
Due to the isomorphism between a Brownian diffusion problem and the corresponding electrostatic one, the 
induced charge density on a conducting surface by a charge inside the boundary can be obtained by the first-
passage probability of the diffusion initiated from the charge location and vice versa. In this isomorphism, an 
absorbing boundary surface in the diffusion problem corresponds to the conducting surface in the electrostatic 
one, a diffusion-starting position to the charge location, first-passage distribution on the absorbing boundary 
to the induced charge distribution on the conducting surface respectively.

Based on the isomorphism, fast diffusion Monte Carlo algorithms have been developed, such as “Walk-on-
Spheres” (WOS) algorithm, “Walk-on-Planes” (WOP) algorithm, “Walk-on-Hemispheres” (WOH) algorithm, 
“Walk-on-Cubes” algorithm and so on3,5–8,10,30. Among them, the simplest WOS algorithm is generally used with 
an ε-layer due to the fact that WOS algorithm can be used in any geometrical boundaries. However, it should be 
noted that the ε-layer for the convergence of diffusion induces an error23,24. Without the ε-layer, for an infinite 
flat boundary it is possible to terminate the diffusion process via WOP algorithm7,8. For a finite flat boundary 
or in two-plate between boundaries, WOP algorithm can not be used and WOH one is very plausible. In the 
previous works4,12,13, WOH algorithm was implemented via Von Neumann’s accecptance-rejection method14. In 
this paper, via a conformal map15,16 combined with an accecptance-rejection method14 we implement and dem-
onstrate the WOH algorithm for the induced charge density distribution on parallel infinite conducting plates 
when a unit charge is between the plates and apply it to the mutual capacitance of two circular parallel plates. In 
both simulations, WOH algorithm shows much better performance than the WOS algorithm.

Diffusion Monte Carlo algorithms have been mainly applied for extracting mutual capacitances for a system 
of conductors,12,13,31,32. In semiconductor industry, a powerful commercial 3D CAD tool, QuickCapTM has been 
used33. It is emphasized that WOH algorithm can be used for the cases of diffusion near to a finite plane boundary 
or the one surrounded by two-plane between boundaries.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 13 September 2022; Accepted: 17 January 2023

References
	 1.	 Freidlin, M. Functional Integration and Partial Differential Equations (Princeton University Press, 1985).
	 2.	 Chung, K. L. & Zhao, Z. From Brownian Motion to Schrödinger’s Equation (Springer, 1995).
	 3.	 Müller, M. E. Some continuous Monte Carlo methods for the Dirichlet problem. Ann. Math. Stat. 27, 569–589 (1956).
	 4.	 Ermakov, S. M. & Sipin, A. S. Random Processes for Classical Equations of Mathematical Physics (Kluwer Academic, 1989).
	 5.	 Given, J. A., Hubbard, J. B. & Douglas, J. F. A first-passage algorithm for the hydrodynamic friction and diffusion-limited reaction 

rate of macromolecules. J. Chem. Phys. 106, 3721–3771 (1997).
	 6.	 Torquato, S., Kim, I.-C. & Cule, D. Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media 

via first-passage-time equations. J. Appl. Phys. 85, 1560–1571 (1999).
	 7.	 Mansfield, M. L., Douglas, J. F. & Garboczi, E. J. Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. 

Phys. Rev. E 64, 061401 (2001).
	 8.	 Hwang, C.-O. & Mascagni, M. Electrical capacitance of the unit cube. J. Appl. Phys. 95, 3798–3802 (2004).
	 9.	 Sabelfeld, K. K. Random walk on spheres method for solving drift-diffusion problems. Monte Carlo Methods Appl. 22(4), 265–281 

(2016).
	10.	 Hwang, C.-O. & Kim, M. Infinite parallel plates algorithms. Adv. Theory Simul. 3(6), 2000014 (2020).
	11.	 Haji-Sheikh, A. & Sparrow, E. M. The floating random walk and its application to Monte Carlo solutions of heat equations. SIAM 

J. Appl. Math. 14(2), 570–589 (1966).
	12.	 Ermakov, S. M. & Sipin, A. S. The, “walk in hemispheres’’ process and its applications to solving boundary value problems. Vestnik 

St. Petersb. Univ. Math. 42, 1–10 (2009).
	13.	 Kuznetsov, A. & Sipin, A. Monte Carlo algorithms for the extracting of electrical capacitance. Mathematics 9, 22 (2021).
	14.	 Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling (Springer, 2009).
	15.	 Amaral, R. L. P. G., Ventura, O. S. & Lemos, N. A. Kelvin transformation and inverse multipoles in electrostatics. Eur. J. Phys. 

38(025206), 1–18 (2017).
	16.	 Hwang, C.-O. & Do, M. Fast diffusion Monte Carlo sampling via conformal map. Appl. Math. 11, 35–41 (2020).
	17.	 Kim, I. C. An efficient Brownian motion simulation method for the conductivity of a digitezed composite medium. KSME Int. J. 

17(4), 545–561 (2003).

Table 2.   Runtime (in seconds) comparison of WOH algorithm with WOS one; for the mutual capacitance of 
the two parallel circular plates we use 100 independent simulations of 1010 MC steps. R/D is the ratio of the 
radius of the circular plate and the separation between the plates.

CPU time per run (s)

R/D WOH WOS (ε = 10−2
) WOS(ε = 10−3

) WOS(ε = 10−4
) WOS(ε = 10−5

) WOS (ε = 10−6
)

1000 10,616 24,498 32,126 39,541 47,252 57,021

100 11,185 24,673 32,510 40,176 47,940 55,760

10 14,762 27,551 34,891 42,991 50,761 58,602

1 26,311 33,424 40,851 48,182 56,289 63,020

0.1 33,440 31,490 38,666 45,400 51,982 59,198



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1143  | https://doi.org/10.1038/s41598-023-28361-1

www.nature.com/scientificreports/

	18.	 Garnett, J. B. & Marshall, D. E. Harmonic Measure (Cambridge University Press, 2005).
	19.	 Hwang, C.-O., Ko, Y., Kim, M. & Lim, J. Comment on “radial dependence of induced current density and small pixel effect in 

parallel-plate detectors’’. IEEE Trans. Nucl. Sci. 66(9), 2153–2155 (2019).
	20.	 Samedov, V. V. Radial dependence of induced current density and small pixel effect in parallel-plate detectors. IEEE Trans. Nucl. 

Sci. 59(6), 3189–3193 (2012).
	21.	 Pumplin, J. Application of Sommerfeld–Watson transformation to an electrostatics problem. Am. J. Phys. 37(7), 737–739 (1969).
	22.	 Hwang, C.-O. & Mascagni, M. Analysis and comparison of Green’s function first-passage algorithms with “Walk on Spheres’’ 

algorithms. Math. Comput. Simul. 63, 607–615 (2003).
	23.	 Booth, T. E. Regional Monte Carlo solution of elliptic partial differential equations. J. Comput. Phys. 47, 281–290 (1982).
	24.	 Mascagni, M. & Hwang, C.-O. ε-shell error analysis in “Walk On Spheres’’ algorithms. Math. Comput. Simul. 63, 93–104 (2003).
	25.	 Binder, I. & Braverman, M. The rate of convergence of the walk on spheres algorithm. Geom. Funct. Anal. 22, 558–587 (2012).
	26.	 Given, J. A., Hwang, C.-O. & Mascagni, M. First- and last-passage Monte Carlo algorithms for the charge density distribution on 

a conducting surface. Phys. Rev. E 66, 056704 (2002).
	27.	 Hwang, C.-O. & Given, J. A. Last-passage Monte Carlo algorithm for the mutual capacitance. Phys. Rev. E 74, 027701 (2006).
	28.	 Norgren, M. K. & Jonsson, L. The capacitance of the circular parallel plate capacitor obtained by solving the love integral equation 

using an analytic expansion of the kernel. Prog. Electromagn. Res. 97, 357–372 (2009).
	29.	 Mascagni, M. & Srinivasan, A. Algorithm 806: SPRNG: A scalable library for pseudorandom number generation. ACM Trans. 

Math. Softw. 26, 436–461 (2000).
	30.	 Sabelfeld, K. Random walk on rectangles and parallelepipeds algorithm for solving transient anisotropic drift-diffusion-reaction 

problems. Monte Carlo Methods Appl. 25(2), 131–146 (2019).
	31.	 Coz, Y. L., Greub, H. J. & Iverson, R. B. Performance of random walk capacitance extractors for ic interconnects: A numerical 

study. Solid-State Elcetron. 42, 581–588 (1998).
	32.	 Yu, W., Zhai, K. & Chen, J. Accelerated floating random walk algorithm for the electrostatic computation with 3-d rectilinear-

shaped conductors. Simul. Model Pract. Theory 34, 20–36 (2013).
	33.	 Iverson, R. B. & Coz, Y. L. A floating random-walk algorithm for extracting electrical capacitance. Math. Comput. Simul. 55(1–3), 

59–66 (2001).

Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation 
(IITP) grant funded by the Korea government (MSIT) (No.2019-0-01842, Artificial Intelligence Graduate School 
Program (GIST)) In addition, this work was supported by the GIST Research Institute (GRI) grant funded by 
GIST in 2022.

Author contributions
C.H. wrote the main manuscript text and J.S. programmed and later D.S. performed the simulations and prepared 
almost all the figures. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.-O.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Walk-on-Hemispheres first-passage algorithm
	Results
	“Walk-on-Hemispheres” (WOH) algorithm. 
	Induced charge distribution on parallel infinite planes. 
	Mutual capacitance of two parallel circular plates. 

	Discussion
	References
	Acknowledgements


