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ABSTRACT In the era of massive data production through the internet and social media, the volume of
images generated is immense. Storing and retrieving relevant images efficiently pose significant challenges.
Content-based image retrieval (CBIR) has emerged as a prevalent method for retrieving relevant images
based on query images from large image collections. CBIR relies on three fundamental elements: the
selection, extraction, and representation of features. This paper delves into a comprehensive survey of these
crucial aspects. This paper begins by investigating the significance and wide-ranging applications of CBIR.
It subsequently delves into an intricate analysis of feature selection, encompassing attributes such as color,
texture, shape, and descriptors. Following this, the paper navigates through sections dedicated to feature
extraction techniques and their subsequent representation. Furthermore, this paper includes an assessment
of recent research articles and the methodologies they employ within the realm of CBIR. Significantly,
CBIR has witnessed a notable expansion to incorporate deep learning techniques in recent times. The survey
presents an overview of these recent methods and their integration into CBIR frameworks. This paper
concludes by offering an extensive outline of 215 articles, encompassing a wide range of analyses conducted
within the field of CBIR. Finally, this paper also outlines potential research directions for the future. It sheds
light on areas where CBIR can continue to evolve and enhance its capabilities.

INDEX TERMS Content-based image retrieval, text-based image retrieval, deep learning, image processing,
image retrieval, color feature, texture feature, shape feature, key point descriptors, speed up robust feature.

I. INTRODUCTION
Every day, terabytes of images are shared and stored on
the internet, contributing to the creation of a vast image
database. Retrieving relevant images from such a massive

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

dataset is a challenging and demanding task, leading to new
avenues of research inmultimedia. Text-based image retrieval
(TBIR) and content-based image retrieval (CBIR) are the
two primary methods used to retrieve images based on text
and content, respectively. TBIR relies on the textual data
(metadata) associated with the image. This textual data can
be manually added or generated automatically using various
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tools. However, TBIR faces two significant issues regarding
image annotation: 1) manually annotating the information
is time-consuming and requires significant effort, 2) there
can be variations in human interpretation of the annotated
information. For instance, the same image of a beach could
be interpreted differently, leading to various labels like palm
trees, ocean, boats, sunbathing, vacation spot, and so on.
Automatic annotation of images is limited by a significant
semantic gap. For instance, when searching for an image of a
‘‘Jaguar,’’ the systemmight retrieve images of both the animal
and the automobile, as depicted in Figure 1. Furthermore,
there are instances where formulating a precise query for a
specific image content becomes challenging. As shown in
Figure 2, a textual query for the given image could take var-
ious forms such as a) ‘‘shaded rose,’’ b) ‘‘rose with different
colors,’’ c) ‘‘petals with different colored rose images,’’ and
so on. This reliance on text-based retrieval confines the scope
to image annotations. In cases where the annotations and
textual queries do not align, the results can be inaccurate.

To address the limitations of TBIR, a solution emerged
that leverages visual content for image retrieval, known as
CBIR. In CBIR, images are categorized based on their actual
visual content, incorporating features such as shape, color,
and texture. A significant step in the history of CBIR can
be traced back to the conference on database applications of
pictorial applications hosted in Florence in the year 1979 [1].
This conference centered around the advancement of inte-
grated databases containing both textual and visual elements,
along with their diverse applications. Subsequently, in 1992,
the US National Science Foundation (USNSF) organized a
workshop focused on the utilization of visual information in
management systems across domains like education, indus-
try, weather forecasting, entertainment, and healthcare [2].
The foundational principles of CBIR are explored in [3]. The
present paper aims to consolidate the state-of-the-art method-
ologies, evaluation parameters, datasets, and deep learning
approaches employed in the domain of CBIR.

The main highlights of the paper are:
• TBIR and CBIR Comparison: The paper delves into
the distinction between TBIR and CBIR, discussing
their respective applications, advantages, and draw-
backs.

• Unique Approach: Unlike existing surveys, this paper
provides an in-depth understanding of the manual
extraction of features, as opposed to automatic feature
selection. Few surveys explore the nuances of manually
selecting and extracting image features.

• Domain Knowledge Consideration: This section
stands out by focusing on the often overlooked domain
knowledge of images. Existing surveys tend to neglect
the significance of domain knowledge in comprehend-
ing an image.

• Image Content Handling: The paper covers the selec-
tion, extraction, and representation of image content.

• Evaluation Measures and Parameters: The most fre-
quently employed evaluation methods and parameters

FIGURE 1. Images retrieved for Jaguar as a textual query (source:
https://images.google.com/).

FIGURE 2. Sample of query statements for the given rose (source:
https://pixabay.com/).

are discussed, accompanied by their equations and
usage.

• CBIR with Deep Learning: An overview of various
deep learning techniques used in CBIR is presented.
To enhance clarity, these techniques are summarized
using a diagrammatic flowwhich illustrates the different
approaches.

The remaining sections of the paper are structured
as follows: Section II elaborates on CBIR methods.
Section III conducts an in-depth analysis of image content.
Section IV introduces evaluation techniques for CBIR meth-
ods. Section V explores the integration of Deep Learning into
CBIR. Finally, Section VI provides a conclusion summariz-
ing the paper’s key findings and contributions.

II. CONTENT-BASED IMAGE RETRIEVAL
While CBIR may not be a recent research area, the expo-
nential growth of image databases, diverse usage scenarios,
and broad applications continue to keep it vibrant and active.
In today’s context, the internet witnesses the storage and
retrieval of terabytes of images daily using various search
engines. However, prior to the storage and retrieval of images,
possessing domain knowledge is crucial for effective imple-
mentation.

A. DOMAIN KNOWLEDGE
In visual search, knowledge of the image’s domain plays a
vital role, as it helps to reduce the gap between the feature
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description and the semantic interpretation of the image.
While well-defined laws are not available for domain knowl-
edge, several papers [4], [5], [6], [7], [8], [9], [10], [11] have
presented various methods to acquire knowledge about the
domain of the images, as summarized below.

1) Laws of Syntactic Equality and Similarity: These
laws establish relationships among images based on
their pixel content or sometimes their actual contents,
without considering how they visually or physically
appear. For instance, if two images share specific
shades of brown in their lower parts, they might be
classified as outdoor scenes and differentiated from
other images. Hatano [4] employed RGB color space
to determine syntactic similarity between query and
stored images.

2) Equality and Similarity based on Human Percep-
tion: This approach relies on how humans perceive
color similarity, and it’s well-defined by color spaces
like CIE-Lab and Munsell. Rossin [5], Siddiqi and
Kimia [6], and Treisman et al. [7] explored various
techniques rooted in human perception to describe
image equality and similarity.

3) Geometric and Topological Pattern-based Equiv-
alence: This principle defines both similarities and
differences in patterns within a space. Objects might
share similar geometries but differ in physical prop-
erties. For instance, two images might contain objects
that are geometrically similar, such as circles or rectan-
gles, positioned in similar ways. However, these objects
could differ in terms of color, texture, or other percep-
tual attributes. Chang and Hsu [8] and Tagare et al. [9]
delved into various geometric and topological rules.

4) Category-Based Rules: This rule categorizes images
based on common properties. For example, images of
faces would share properties like eyes, nose, lips, and
ears.

5) Man-made Customs: This involves using artificial
conventions to define equality among images. For
example, rules could state that images with straight
lines and perpendicular corners depict indoor scenes.
In [11], it was established using rules for the fashion,
textile, and clothing industries.

B. NARROW V/S BROAD DOMAIN
Images can be divided into two types: narrow domain
and broad domain, which helps in their semantic descrip-
tion [12]. Domain knowledge assumes a pivotal role in image
retrieval by bridging the gap between the technical feature
description and the semantic interpretation of an image.
A common approach to image retrieval involves initially nar-
rowing down images from a broad domain to a more defined
semantic scope. In this context, a narrow domain pertains
to limited variability in recording circumstances, viewing
angles (frontal/side), and object appearanceswithin the image
content. For example, the ‘‘Faces_easy’’ category in the

Caltech-101 dataset has a narrow domain because all the
faces are shown from the front with a clear background.
Consequently, within a narrow domain of images, there exists
a distinct and well-defined semantic description. But if those
same faces were in a crowd or had different backgrounds or
angles, the domain would be broad, meaning there’s a lot of
variation in how the same thing appears. The internet has lots
of images, and that’s a great example of a broad domain (for
more information refer [13] and [14]).

C. CBIR APPLICATIONS
In literature, applications of CBIR are categorized into three
broad categories: search by association, search by a specific
image, and search by category. These categories are deter-
mined by the user’s purpose when using the CBIR system.

1) Search by Association. This type of search refers to
situations where the user doesn’t have a specific search
goal but is interested in finding interesting items. This
kind of search involves refining the search iteratively
based on the user’s feedback about relevance [15], [16].
An early instance of this type of search is discussed
in [17], where a basic idea was introduced about a
visual interface for accessing any image in a database.
In this example, the query image was a rough sketch,
indicating that the user isn’t aiming for a specific search
but is looking for interesting and similar matches to the
query image.

2) Search by a Specific Image. In this category, users
are focused on searching for a particular image. This
specific image could have been anything - a particular
image that the user had in mind, an image of the same
object for which the user already had an image, a target
image, and so on. For example, Flickner et al. [18]
discussed searching art catalogs, while Cox et al. [19]
discussed searching stamps, catalogs, industrial com-
ponents, and art.

3) Search by Category. This type of search focuses on
retrieving images belonging to a specific category.
In this scenario, the user provides an image as a start-
ing point and aims to find other images that also
belonged to the same category. For instance, Huet and
Hancock [20] delved into image retrieval based on
specific line patterns. Srivastava et al. [21] explored
pattern-based image retrieval, with a focus on various
types of stripe patterns in clothing (horizontal, verti-
cal, diagonal, etc.). Jain and Vailaya [22] presented
an approach for classifying trademarks, while Srivas-
tava et al. [23] discussed the classification of objects
such as faces, sunflowers, bikes, airplanes, cameras,
and more.

Currently, CBIR is extensively used in the fashion industry
to filter clothing patterns, fabric types, etc. CBIR also finds
applications in various domains including medical imaging
systems, satellite imagery, search engines (such as Google,
Bing, Yahoo, etc.), and more. The effectiveness of CBIR
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relies heavily on the content of images being used. ‘‘Content’’
refers to the aspects of images like color, texture, shape, etc.
The following section discusses different types of content,
how they are extracted, and how they are represented.

III. CONTENT OF THE IMAGES
The contents of an image refer to its distinct features, and this
forms a crucial element of CBIR. It involves three key stages:
feature selection, extraction, and representation. The primary
objective of a content-based retrieval system is to identify the
visual attributes that characterize an image, video, audio, and
more. Such attributes encompass color, shape, texture, and
keypoint descriptors, all of which are chosen for integration
into the CBIR process. The choice of features heavily relies
on the nature of the image dataset. For instance, datasets like
the Brodatz dataset, describable textures datasets (DTD), and
VisTex predominantly contain texture-based images. In these
cases, texture features provide more precise information than
color and shape features.

Similarly, datasets like the Wang dataset highlight the
significance of color features in the CBIR process. Shape
features, on the other hand, are essential when identifying
specific shapes within images, irrespective of their color and
texture. For example, datasets containing logos and traffic
signs require shape features due to their distinct shapes.
Hence, selecting the right features is a pivotal aspect of
CBIR. The extraction of chosen features and their subsequent
representation also play a vital role. The comparison between
query image and the images in database depends on the sim-
ilarity between their features. Various methods, such as color
models, texture feature extraction, local binary patterns, etc.,
are employed for feature extraction. The selected features
are then represented in various forms, including histograms
and n-layered arrays (termed component vectors). The sub-
sequent subsections delve comprehensively into color, tex-
ture, and shape features, exploring their extraction and
representation.

A. COLOR FEATURE
Color is a fundamental and extensively used visual aspect
in CBIR. This is because color is multidimensional, unlike
the one-dimensional nature of images. It’s our perception of
electromagnetic radiation through our eyes. It’s represented
as a three-part vector, commonly referred to as a color space.
Understanding color involves its lightness, hue, and satura-
tion. Hue signifies the primary color that shapes a distinct
visual impression for us. The intensity of color depends on
how much white light is mixed in. For example, colors with-
out white light are fully saturated, while colors like pink (a
blend of red and white) are less intense. The powerful use
of color in computer graphics has been studied by MacDon-
ald [24]. In the domains of business, science, and industries,
Weale et al. [25] explored color applications. Color features
are also employed to pinpoint areas of interest or divisions
within images. Researchers [26], [27], [28], [29], [30] inves-
tigated the utilization of color features in CBIR by focusing

on specific regions of interest or divisions. To integrate color
as a visual element in image processing, color features are
extracted using diverse color models/color spaces [31], which
is discussed in the subsequent subsection.

1) EXTRACTION OF COLOR FEATURES
Color features are extracted using various color models.
These models offer diverse methods for representing and
comprehending colors, each tailored to specific contexts and
applications. The selection of a color model holds significant
importance in computer vision algorithms. Different color
models possess distinct characteristics. Table 1 provides a
comparison of color models for extracting color features in
CBIR. For instance, when applying a standard segmentation
algorithm to an RGB model, it might group a sky image with
various shades of blue into one segment. In contrast, a color
model sensitive to shading might divide the same sky image
into separate regions based on the different shades of blue.
As a result, no single color model is universally applicable,
as different applications may favor different color models.
Various color models are discussed below:

• Coloriemetric Color Model. This model employs
human perception to determine the visual similarity of
two colors. It’s a theoretical construct, and the Com-
mission Internationale de l’Éclairage (CIE) [32] has
introduced various standard observer color-matching
functions derived from different experiments. CIE
model’s initial experiment dates back to the nineteenth
century and was conducted by Thomas [33]. Subsequent
researchers have validated its principles. CIE concep-
tualizes colors as vectors within a three-dimensional
space, consisting of the luminance component Y and
two additional components, X and Z [34]. CIE XYZ
is a device-independent color model, making it partic-
ularly useful where consistent color representation mat-
ters, regardless of device characteristics. However, this
model’s effectiveness in image processing techniques is
limited, as it isn’t well-suited for quantitatively assessing
color perception [35].

• RGB Color Model. RGB color model represents the
primary colors of red, green, and blue. This model is
commonly used in imaging and video devices where
the color spectrum is formed by combining these three
primary colors. In RGB color model, along with the
primary colors of red, green, and blue, there’s also a
reference point for white in RGB color space. Themodel
is primarily defined by the Maxwell triangle [36], illus-
trated in Figure 3. This model finds its main application
in situations where color addition is essential. This is
because different combinations of red, green, and blue
lights are added to produce a wide array of colors. RGB
is predominantly employed to display images in elec-
tronic systems such as computer monitors, TV screens,
digital photography, and more.
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TABLE 1. Comparison of color models for color feature extraction in CBIR.

FIGURE 3. Maxwell triangle [37].

• CMYK Model. CMYK stands for Cyan (C), Magenta
(M), Yellow (Y), and Key (K). This color model pri-
marily functions on a light background, often white.
It’s extensively employed in printing because the ink in
printing subtracts colors from white light. Due to this
subtractive nature, it’s also referred to as a subtractive
model. The process involves subtracting red, green, and
blue from white light. When red is subtracted, it yields
cyan. Subtracting green results in magenta, while sub-
tracting blue produces yellow.When cyan, magenta, and
yellow are combined, the colors darken, eventually cul-
minating in a black color. The ‘‘Key’’ (K) component in
CMYK denotes black, and this combination is displayed
as ‘K’ in the CMYK model, as illustrated in Figure 4.

• HSV Model. This color model represents hue, satura-
tion, and value. This model is part of non-uniform color
spaces and is comparable to models like hue saturation
intensity (HSI), hue chroma value (HCV), hue saturation
brightness (HSB), and hue saturation lightness (HSL).
It’s visualized as a double cone, as shown in Figure 5.
The central axis of cone denotes the value (intensity),
ranging from 0% at black to 100% at white. Saturation
also increases as you move away from black, as depicted
in the Figure 5. In this model, hue signifies the primary
color that creates a distinctive visual impression. The
amount of white light mixed with the hue determines
the color’s saturation. Colors without white light are

FIGURE 4. CMYK model [38].

fully saturated, while colors like pink (a mix of red and
white) are less saturated. HSV model is widely used
in image processing as it provides a broad spectrum of
colors and facilitates quantitative assessment of color
values. Researchers like Sural et al. [39] employed HSV
model histograms for image segmentation and retrieval.
Additionally, an integration of gray-level co-occurrence
matrix and HSV color [41] was utilized in CBIR.

2) REPRESENTATION OF COLOR FEATURE
Color holds significant importance in CBIR, and its repre-
sentation is equally crucial. Extracted features are stored in an
n-dimensional array known as a feature vector. Depending on
its intended use, this feature vector can be depicted in various
manners. The diverse color models, their representations, and
their applications were explored in detail in [42]. An effective
method for representing color for image retrieval was intro-
duced in [43]. There are multiple strategies for handling color
features, including histograms, moments, and names. These
strategies are elaborated upon below:

• Color Histogram. Swain and Ballard introduced the
color histogram for image matching [44]. This method
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FIGURE 5. HSV model [40].

comprises three separate histograms, each correspond-
ing to a primary color (red, green, and blue). It employs
bins to quantize color distribution. A histogram gains
more discriminative power with an increase in the
number of bins used. One advantage of representing
color features with histograms is their independence
from translations and rotations around the viewing
axis. Histograms remain relatively unaffected by slight
changes in an image’s perspective, scale, and orien-
tation. They prove valuable when spatial arrangement
details hold less significance. However, since histograms
don’t account for spatial arrangement, two distinct
images can share the same histogram. Stricker et al. [46]
analyzed various images, as depicted in Figure 6, with
similar histograms.

• Color Moments. In 1995, Stricker and Orengo [46]
introduced color moments as a method to assess
the similarity of color images for image and video
retrieval. Color moments provide three key snap-
shots of the probability distribution for each primary
color. The first-order moment (mean) offers information
about the average color of the image. The second and
third-order moments reflect the variance and skewness
of the color channel. This approach is highly efficient
and effective for characterizing color distribution in
images [46]. Color moments comprise only 9 values
(3moments for each primary color), making it a compact
representation of color features. However, due to this
compactness, it may occasionally have lower discrim-
inative power. Yu et al. [47] incorporated color texture
moments for CBIR.

• Color Names. Color names are frequently referred to as
‘‘basic hues’’ [48]. Each hue is associated with a fun-
damental color in accordance with the naming conven-
tion. It essentially involves dividing the color space and
assigning color names to each segment. Liu et al. [49]
discussed area-based image retrieval using high-level

FIGURE 6. Two images with similar histograms [45].

semantic color names. Mojsilovic et al. [50] explored
image similarity and retrieval structure of colors and
vocabulary.

• Color Sets. Smith and Chang [65] introduced the color
set approach for color image retrieval. This technique
is employed to identify specific regions within a color
image. The premise of this approach is that distinctive
image regions contain a small number of dominant col-
ors that are interconnected. An edge is established to
determine whether a pixel belongs to a distinct region.
This method finds application in VisualSEEK applica-
tions [51], [52], [53].

• Color-Spatial Model. All the previously mentioned
techniques provide global color properties of the image
but fail to offer spatial information about the image.
Several methods were proposed to combine color fea-
tures with spatial relations. Some of these techniques are
outlined below.

1) Color Feature Extraction of Sub-blocks. In this
approach, the image is divided into sub-blocks,
and subsequently, the color feature is extracted
from each sub-block. Chua et al. [54] proposed a
rapid signature-based color spatial image retrieval
technique. Dividing the image into sub-blocks
and then calculating the color feature for each
sub-block made this approach highly efficient in
terms of computation and storage. Hsu et al. [55],
Rao et al. [56], and Chinque et al. [57] also
employed a combination of spatial color methods
for CBIR.

2) Color Coherence Vector (CCV). In this method,
each pixel is classified as either coherent or non-
coherent. A pixel that is part of a large connected
component is termed coherent, while a pixel that
is not part of such a component is considered
non-coherent. The challenge in CCV approach lies
in determining whether a component is substan-
tial. Pass et al. [58], Roy and Mukherjee [59],
Al-Hamami andAl-Rashdan [60], andRavani et al.
[61] employed CCV for CBIR.

3) Color Correlogram. The color correlogram, intro-
duced by Huang et al. [62], encodes color spa-
tial information into co-occurrence matrices, and
its applications were explored in [63]. Han-
dling numerous co-occurrence matrices poses a
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FIGURE 7. (a) Examples of Natural textured surfaces (b) Examples of
Artificially created surfaces [68].

significant challenge with this method. Therefore,
only the main diagonal of the co-occurrence matri-
ces is calculated, stored, and referred to as the auto
correlogram [64].

B. TEXTURE FEATURE
Texture features characterize the visual appearance and mate-
rial attributes of an image. It involves the spatial arrangement
of elements in various relative positions [66]. Spatial tex-
ture arrangement defines how texture features are organized
within an image, reflecting properties like uniformity, coarse-
ness, regularity, smoothness, directionality, and more [67].
Two images are said to possess similar textures when their
spatial pixel arrangements match. Texture is categorized into
two types: (a) natural textured surfaces and (b) artificial
textured surfaces. Natural textures, also known as stochastic
textures, lack a specific pattern and are common in real-world
images like wood, water, grass, and paper, as shown in
Figure 7(a). Artificially generated textures are structured tex-
tures with texels consistently positioned in specific patterns
such as checks, stripes, and dots, as depicted in Figure 7(b).
Various texture models in literature describe attributes
like roughness, consistency, linearity, directionality, and
granularity.

Texture features can be obtained through various meth-
ods [69], such as perceptual, statistical, local binary pattern,
structural, transform, andMPEG-7 texture descriptor. Several
studies [70], [71], [72] offered an overview of different tech-
niques for extracting texture characteristics. Figure 8 presents
an overview of these methods.

1) PERCEPTUAL METHOD
There’s quite a long list of perceptual texture features,
but among them, the six textural features introduced by

Tamura et al. [75] in 1978 are widely used. These commonly
used six features are coarseness, contrast, directionality, line-
likeness, regularity, and roughness. Some methods [76], [82]
employed these features for CBIR.

1) Coarseness. This characteristic of texture pertains to
the dimensions of tiny constituents composing the tex-
ture. It helps to estimate howmuch the texture elements
repeat. It’s also closely tied to scale since it measures
the rate of various spatial changes. If an image has
a few large texels, it’s considered coarse, while an
image with many small texels is seen as having a fine
texture [73]. In addition to the coarseness defined by
Tamura, researchers have also defined coarseness using
various methods. A comparison of these methods was
provided in [74].

2) Contrast. This texture characteristic describes the qual-
ity of the image rather than its pattern. A highly
contrasted image is one where the various texels are
easily noticeable and distinguishable. Contrast is used
to highlight pixels where two textures (pixels) have
the same structure but differ in brightness levels.
Tamura et al. defined contrast in terms of standard devi-
ation and kurtosis [75]. Contrast is employed to accen-
tuate pixels exhibiting similar structural patterns but
varying in terms of their brightness levels. Tamura et al.
introduced a definition of contrast based on kurtosis
and standard deviation [75].

3) Directionality. Directionality is a global texture prop-
erty that estimates the prominent direction or directions
within an image. It’s calculated by considering the
shape and spatial arrangement of texels. Tamura et al.’s
approach focused on the total number of pixel direc-
tions rather than the specific type of direction [75].

4) Line-Likeness. Line-likeness is a feature that com-
plements the directionality characteristic. When the
alignment of a specific edge matches that of its neigh-
boring edges, it’s recognized as a line. The determi-
nation of line-likeness involves utilizing a directional
co-occurrence matrix [73].

5) Regularity. This feature measures the randomness [76]
in the arrangement of texture elements within an image.
The more random the placement of texture elements in
an image, the less uniformity in the image, and vice
versa.

2) STATISTICAL METHOD
The statistical method uses the intensity values to determine
the texture properties of an image. It can be categorized into
first-order, second-order, and third-order (or more pixels)
statistics. Julesz et al. [83] were the first to study statistical
methods in relation to human perception. Haralick and Shan-
mugam defined the statistical method using the Gray-Level
Co-occurrence Matrix (GLCM) [84], which is widely used
for texture feature extraction.
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FIGURE 8. Texture feature extraction methods.

GLCM captures the spatial relationship between the inten-
sity values of a reference pixel and its neighboring pixels.
Haralick defined 14 statistical texture features using GLCM.
Among these 14 features, contrast, correlation, energy, and
homogeneity are the most commonly used [73]. GLCM is
calculated using two parameters: angle (θ) and distance (d).
Various combinations of angle (θ) and distance (d) for com-
puting texture features are studied in [85] to detect patterns in
fabrics. Srivastava et al. [21] discussed pattern-based image
retrieval using GLCM.

In 1980, Kenneth Laws introduced a set of convolu-
tional filters and three primary masks to detect edges,
spots, textures, and waves in textures (known as Laws tex-
tures). Features defined include regularity, fineness, coarse-
ness, density, frequency, uniformity, linearity, roughness,
phase, granularity, randomness, contrast, smoothness, and
directionality. The applications of Kenneth textures were
discussed in [86] and [88]. Another technique for texture
characterization was auto-correlation [89]. It defines the fine-
ness/coarseness of texture based on repeating patterns of tex-
ture elements. Typical texture auto-correlation exhibits peaks
and lows [90], [91]. For coarse textures, auto-correlation
decreases slowly, while for fine textures, auto-correlation
decreases rapidly. A comparative study among various sta-
tistical methods was presented in [92].

3) LOCAL BINARY PATTERN
Local Binary Pattern (LBP) [93] is a widely recognized
method for extracting texture features. It establishes a rela-
tionship between a reference pixel and its neighboring pixels.
In this technique, each pixel is treated as a reference pixel, and
information is extracted based on its neighbors. The process
involves subtracting the value of the central pixel from each
adjacent pixel. If the difference between the two is greater or
equal, the assigned value is 1; otherwise, it’s 0. The 0s and
1s are merged using the power of two to generate a singular
value for the central pixel.

LBP was adapted to be rotation invariant [94]. Multi-
Block LBP (MBLBP) calculates average powers using a
2×3mask, over which LBP is computed. MBLBP showed an
8% improvement over the original LBP [95]. Heikkila et al.
designed a center symmetric LBP (CSLBP) [97], which sur-
passes LBP in terms of computational efficiency by reducing
the descriptor length. CSLBP examines four pairs of diagonal
opposite pixels, generating a binary pattern of four parts.
CSLBP demonstrated high accuracy in local-based image
similarity [98].

Tan and Triggs introduced the local ternary pattern
(LTP) [99], utilizing an edge radius to analyze neighboring
and central pixels, particularly for face recognition. LTP
outperformed LBP and CSLBP under uniform lighting vari-
ations [99]. For non-uniform lighting variations, the center
symmetric local ternary pattern (CSLTP) is more effec-
tive [101]. The paired rotation invariant and noise-tolerant
(BRINT) approach is a variation of LBP, resilient against
lighting changes, rotation, and noise [102].
Chakraborty et al. [100] and Zang et al. [103] proposed

descriptors: local directional gradient pattern (LDGP) and
local derivative pattern (LDP), respectively, for facial recog-
nition. The local ternary co-occurrence pattern (LTCoP),
a combination of LTP and LDP, has been applied in med-
ical image retrieval [104]. Sobel-LBP, an enhancement of
LBP [105], improved image edges using the Sobel operator.
Another edge-based descriptor, the directional local extrema
pattern (DLEP) [106], involved edges at specific directions
and has been used for CBIR. Murala and Wu designed local
tetra pattern (LTrP) [107], which used the vertical and hori-
zontal directional neighborhoods of each pixel to form a tetra
pattern, later transformed into a paired pattern for CBIR.

Various other texture descriptors, such as local extrema
co-occurrence pattern [108], focus symmetric local binary
co-occurrence pattern [109], and multi-goal local extrema
peak valley pattern [110], were utilized in different
image retrieval contexts. The local neighborhood difference
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TABLE 2. Qualitative analysis of LBP and its variants.

pattern [111] was proposed for large-scale natural and texture
image retrieval. Neighbourhood gradient hexa pattern [112]
and quadruple local pattern (LQP) [113] descriptors were
suggested for face recognition and retrieval.

In the literature, LBP and its variations are predominantly
used for facial recognition. These approaches are commonly
applied to handle variations in facial expression, illumination,
background, and noise. Texture descriptors are also widely
employed in medical imaging. Murala et al. proposed the
local mesh pattern [114] for indexing and retrieving biomed-
ical images. It was based on a local pattern formed by an
array of neighboring pixels. Another descriptor used in clin-
ical image retrieval was the peak valley edge pattern [115],
which extracted directional edge information using first-order
derivatives. These two approaches were combined in [116]
to create the local mesh peak valley edge pattern for index-
ing and retrieving Magnetic Resonance Imaging (MRI) and
Computed Tomography (CT) images. Table 2 shows the qual-
itative analysis of LBP and its variants.

4) STRUCTURAL METHOD
The structural method is particularly suited for images with
large texture elements, known as macro-textured images.
In these cases, the focus is initially on the size of the tex-
ture elements and then on other properties. This method is
effective for textures that are either artificially created with a
regular pattern or intentionally placed in a specific arrange-
ment. It consists of two main aspects: first, extracting the
texture elements, and second, deducing the rules governing
their placement within the image.

• Texture element extraction. A region within an image
that exhibits a consistent dark intensity is referred to
as a texture element. Numerous methods exist in the
literature for extracting such texture elements. Voorhees
and Poggio [117] defined these elements as ‘‘blobs’’
and extracted them by convolving the image with Lapla-
cian of Gaussian (LoG) filters at various scales. Several
articles, including [118], [119], [120], [121], [122], dis-
cussed various approaches employed for the extraction
of image texture components.

• Inference of the position rule. In [123], authors
employed Voronoi diagram to describe the arrange-
ment of texture elements within an image. The com-
plete steps to construct Voronoi diagram were outlined
in [123]. Tuceryan et al. and Torodovic et al. discussed

texel-based segmentation using the Voronoi diagram
in [124] and [125], respectively.

5) TRANSFORM METHOD
The Transform Method [126] involved examining the image
in the frequency domain. As texture often exhibits repetitive
patterns, frequency domain analysis is valuable for texture
analysis in an image. Fourier transform, Gabor transform,
and wavelet transform are commonly used transformation
techniques in the literature [127] for image recognition. Tex-
ture features can be extracted using neighborhood Fourier
transform as proposed by Zhou et al. [128] for image
classification.

Gabor transform [129] is employed for local analysis
of texture in the spatial domain. Essentially, a Gabor fil-
ter captures specific frequency content in the image within
a local region in a particular direction. Gabor transform
has been extensively used in studies from [130], [131],
and [132] for texture-based image retrieval. Gabor is suit-
able for stationary signals as it relies on spatial correlation
using Fourier analysis. Gabor Filters have also been utilized
in medical image retrieval using GNU image tool [133].
Wavelet Transform [134] is another technique that works effi-
ciently for both non-stationary and stationary signals. It pro-
vides four pieces of information about the image: horizontal
edges, vertical edges, diagonal edges, and the approximation
part. There are several wavelet transforms in the literature.
Notable among them are the Haar wavelet [135], dual tree
wavelet [136], [137], Daubechies wavelet [138], [139], and
complex wavelet [140], [141]. Traina et al. [142] designed
an application for medical image retrieval using Daubuchies,
Haar, and Gabor wavelet transforms.

6) MPEG-7 TEXTURE DESCRIPTOR
The MPEG-7 texture descriptor [143] includes three types
of descriptors: Homogeneous Texture Descriptor (HTD),
Edge Histogram Descriptor (EHD), and Perceptual Brows-
ing Descriptor (PBD). HTD assumes homogeneous texture
within an image or region and provides a quantitative rep-
resentation based on spatial-frequency measurements. EHD
offers information about five types of edges: four directional
edges and one non-directional edge. It utilizes an 80-bin his-
togram to depict the local edge distribution within an image.
EHD is suitable for images with non-homogeneous textures,
like natural images, clip art, and sketches. PBD is utilized
in applications where perceptually significant features are
employed for TBIR [145], [146].

C. SHAPE FEATURES
In image processing, the shape of an object refers to its geo-
metric structure. In 2D images, it’s the outline that encloses
the object, while in 3D images, it encompasses the mathemat-
ical representation of the object’s surface. A comprehensive
analysis of various techniques to represent and describe
shapes was presented in [147], summarized in Figure 9.
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FIGURE 9. Shape description techniques [147].

Typically, shape features are useful for objects with distinct
shapes, such as logos, brand names, and traffic signs. Extract-
ing and representing shape features are crucial in many CBIR
applications that deal with well-defined shapes. Research on
shape measures for CBIR, using shape features on a dataset
containing 500 brand names, was discussed in [148]. Shape
characteristics are often derived from second invariants [149],
Fourier features [150], [151], boundary segments [152], con-
tour shapes [153], and more.

D. INTEREST POINT DESCRIPTORS
In recent literature, alongside color, texture, and shape fea-
tures, several interest point (keypoint) descriptors such as
Scale Invariant Feature Transform (SIFT) [163], Speed Up
Robust Feature Transform (SURF) [164], and Principal Com-
ponent Analysis-SIFT (PCA-SIFT) [165] have been widely
used for image analysis and retrieval. Keypoint descriptors
operate in three stages: detecting interest points in an image,
describing those interest points, and comparing images based

on their interest points. David Lowe introduced SIFT [167]
for the detection and description of local features in images.
SIFT identifies interest points in an image, typically corner
points or distinctive points. These points are then analyzed
at various scales to obtain the final keypoints. Features are
computed for each keypoint by calculating the orientation
histogram of the gradients of the image around the key-
point location, resulting in a 128-dimensional feature vector.
This vector is calculated for all keypoints detected. SIFT is
scale, rotation, translation, and partially illumination invari-
ant [163]. Similar analyses of SIFT and its variations, includ-
ing Affine SIFT (ASIFT), PCA-SIFT, Color Invariant SIFT
(CSIFT), SURF, and Global SIFT (GSIFT), can be found
in [169]. However, SIFT can be computationally expensive;
SURF [164] is an advancement over SIFT. It employs Gaus-
sian approximations for faster computation of interest points.
SURF is preferred over SIFT for its robustness to scale,
rotation, translation, and illumination changes, as well as
its computational efficiency [170]. These descriptors find
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FIGURE 10. Visualizing the taxonomy of deep learning-based image retrieval methods.

applications in object recognition [171], image classifica-
tion [172], and retrieval.

A fusion of SURF and LBP features was proposed by
Srivastava et al. [23] for image characterization containing
different types of single objects. They used SURF keypoints
to create a circular structure and extract the Region of Interest
(ROI) in an image. Subsequently, LBP features were com-
puted for the ROI. Nouman et al. [173] proposed a novel
approach for CBIR using a combination of SIFT and SURF.
They addressed scaling and rotation issues and employed a
bag of visual words to describe features. Darn et al. [174]
introduced a camera-based image retrieval system using
Scale and Rotation Invariant Features (SIRF) and compared
them with other descriptors like SIFT, SURF, and Oriented
FAST and Rotated BRIEF (ORB). A fusion of SURF and
dominant color features was used for image retrieval on a
mobile platform by [175].

E. CBIR UTILIZING COMBINATION OF COLOR, TEXTURE,
SHAPE, INTEREST POINT DESCRIPTORS
As research in the field of CBIR advanced, experts began
focusing on combining two or more low-level features to
enhance system performance. The combination of multiple
features proved to be more effective than using individual
features in CBIR systems [77], [78], [79], [80], [81], [82].
For instance, Huang et al. [177] proposed combining color
moments and Gabor texture features for image retrieval. They
assigned appropriate weights to color and texture features and
calculated similarity using the Euclidean distance. The study
compared RGBmoments, HSV color moments, Gabor filters,
and a combination of color moments and Gabor features for
retrieval.

Later, approaches emerged where fixed weights were
assigned to color and texture features, and in some cases,
weights were dynamically assigned based on the image

itself [155]. Wang et al. [156] integrated color, texture, and
shape for CBIR. Savita et al. [157] introduced amethod using
dominant colors, texture, and shape features. Instead of uti-
lizing all color features, they employed K-dominant color
features along with texture and shape for image retrieval. This
approach outperformed existing methods like LBP and color
models.

Prasad et al. [30] combined color, shape, and location infor-
mation for region-based image retrieval systems. Similarly,
another region-based approach using color, shape, and texture
features was proposed in [158]. In the context of region-
of-interest based natural image retrieval, a combination of
color and texture features was employed [159]. However, it is
required to design more efficient retrieval systems with the
help of recently developed methods such as [160] and [161].

Table 3 shows the comparative study of CBIR using color,
texture, shape, and descriptor using various features including
feature selection, feature extraction, dataset used, and key
findings.

IV. EVALUATION TECHNIQUES AND PARAMETERS
Performance evaluation of CBIR approaches play a pivotal
role in assessing the effectiveness and efficiency of these
methods. Early assessments of CBIR systems often involved
presenting the results of one or more sample queries. This
practice was convenient as it could showcase positive out-
comes by using query images that yielded excellent results.
However, this approach lacks objectivity as it doesn’t provide
a standardized performancemeasure or ameans of comparing
different CBIR systems.

Recently, researchers have utilized various performance
metrics like precision, recall, specificity, F-measure, and class
accuracy to establish more rigorous and objective evaluation
criteria for CBIR approaches. Precision measures the ratio
of relevant images retrieved to the total number of retrieved
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images, while recall quantifies the ratio of relevant images
retrieved to the total number of relevant images in the
database. Specificity focuses on the correct rejection of non-
relevant images. F-measure balances precision and recall,
providing a single score that incorporates both aspects
of retrieval quality. Class accuracy is often employed
for multi-class CBIR systems, assessing the accuracy of
retrieval for each class independently. In addition to these
metrics, evaluation methodologies like ROC curves and
precision-recall curves provide a visual representation of sys-
tem performance across different thresholds. These advance-
ments have enabled a more standardized and unbiased assess-
ment of CBIR methods, fostering meaningful comparisons
and promoting advancements in the field. However, the
choice of metrics should be aligned with the specific goals
and requirements of the application to ensure a comprehen-
sive evaluation of CBIR systems. Some of these metrics can
be computed using the following formulas:

Precision =
Tp

Tp+ Fp
(1)

Recall/Sensitivity =
Tp

Tp+ Fn
(2)

Specificity =
Tn

Tn+ Fp
(3)

F-measure =
2 × (Precision × Recall)

Precision + Recall
(4)

Accuracy =
Tp

Tp+ Tn
(5)

In these equations, Tp represents true positives, Fp rep-
resents false positives, Tn represents true negatives, and Fn
represents false negatives. The abbreviations used provide
a concise way to represent these evaluation metrics in the
context of CBIR performance assessment.

However, in the field of image retrieval, precision and
recall metrics may not always provide a comprehensive view
of performance. To address this, researchers have introduced
additional measures that are built upon precision and recall,
such as Precision@K, Discounted Cumulative Gain (DCG),
Normalized DGC (NDGC), etc.

Precision gives the proportion of retrieved similar images
(compared to the query image) to the total number of retrieved
images, without considering their arrangement. However,
precision alone doesn’t reveal whether these similar images
are located at the beginning or scattered across the retrieval
list.

One commonly used measure, Precision@K [210], is often
employed to assess the performance of image retrieval meth-
ods. Precision@K quantifies the number of relevant images
retrieved within the top K positions for a given query image.
It can be calculated as:

Precision@K =
S@K
K

(6)

Here, K represents the number of retrieved images up to
the K th position, and S@K is the count of relevant (similar)

images retrieved within those top K positions in response to
the query image. In essence, Precision@K helps evaluate the
quality of retrieval within a specific subset of the retrieved
images, focusing on the top K positions.

Indeed, both precision and Precision@K lack the ability
to differentiate whether the retrieved relevant images are
concentrated at the top positions or scattered throughout the
list. To address this limitation, the concept of DCG was
introduced as a measure to assess the performance of the
retrieval process in terms of the positions of the retrieved
relevant images. DCG evaluates whether the relevant images
retrieved are clustered at the beginning or distributed further
down in positions.

In DCG, images that appear at the top positions are given
higher importance, while those appearing at lower positions
are penalized. The formula for calculating DCG at a specific
position x is given by Equation 7:

DCGx =

q=x∑
l=1

rell
log2(l + 1)

(7)

Here, rell signifies the relevance of the retrieved image in
relation to the query image, while q represents the position at
which the image is found in the list of results.

However, DCG alone is unable to justify performance since
the results can vary greatly based on the number of retrieved
images. Therefore, the raw DCG is normalized to account
for the total number of retrieved images, resulting in NDCG.
NDCG is calculated as the ratio of DCG to the Ideal DCG
(IDCG) at position p, as shown in Equation 8. IDCG repre-
sents the highest possible DCGwhen the retrieved images are
ranked in descending order of their relevance.

NDCG =
DCGp
IDCGp

(8)

NDCG provides a more comprehensive measure of
retrieval performance by considering both the relevance of
retrieved images and their positions, while also accounting
for the effect of the number of retrieved images.

Certainly, the effectiveness of CBIR systems relies on
the accuracy and speed of retrieving relevant images. Var-
ious techniques are employed for comparing the similarity
between images. Some commonly used methods include
Manhattan, Euclidean, Chi-Square, and Mahalanobis dis-
tance. The choice of evaluation parameter depends on the
chosen coordinate system and manifold.

Among these methods, Manhattan and Euclidean distances
are the simplest, calculating the distance between points using
Cartesian coordinates. Chi-Square is a statistical approach
that measures the distance based on feature metrics. For
distances in multivariate space, the Mahalanobis distance
is used. Additionally, some distance methods are centered
around shortest algorithms, finding the shortest path between
two points within a manifold. An example of such a method
is the geodesic distance. The Minkowski distance calculates
distances in N-Dimensional space. Table 4 presents the names
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TABLE 4. Description of evaluation techniques used in CBIR.

TABLE 5. Summary of state-of-art approaches for image retrieval using supervised deep learning techniques.

and descriptions of some popular evaluation techniques fre-
quently used in CBIR.

V. CBIR USING DEEP LEARNING AND FUTURE OUTLOOK
A. CBIR USING DEEP LEARNING
The exponential growth in the volume of images available
on the web has introduced a significant challenge in locat-
ing identical or similar images in response to given query
images. This challenge becomes even more intricate when
relying on manual feature extraction techniques. To address
this issue, deep learning techniques have emerged as a viable
solution. In recent years, there has been a notable transition
from manual feature extraction and representation methods
to learning-based approaches, commonly referred to as deep
learning methods [186]. These techniques facilitate the auto-
matic learning of abstract features from the data itself.

Diverse architectures were proposed to cater to nature
of the data being processed. For instance, artificial neural
networks (ANNs) have proven effective for 1-dimensional
data [187], [188], while convolutional neural networks
(CNNs) are well-suited for image data. Recurrent neural
networks (RNNs) find utility in time-series data analy-
sis [191], [192]. The landscape of deep learning techniques
applied to image retrieval has been enriched with a multi-
tude of state-of-the-art approaches. These encompass a range
of learning paradigms, including supervised learning, unsu-
pervised learning, semi-supervised learning, self-supervised
learning, and network-based learning utilizing architectures
such as neural networks, convolutional networks, artificial
networks, attention networks, Siamese networks, and triplet
networks, among others.

Figure 10 visually illustrates the landscape of deep
learning-based image retrieval methods. Some of these

approaches tailor the use of deep learning techniques based
on the specific nature of retrieval tasks, such as sketch-based,
multi-label, object-based, and symmetric-based retrieval.
This surge of interest and exploration has led to remark-
able advancements in the field of image retrieval, with deep
learning at its core. Table 5 provides an overview of recent
cutting-edge approaches that employ supervised deep learn-
ing techniques for image retrieval. Furthermore, Figure 10
offers a classification of prominent deep learning-based
image retrieval techniques into five categories: supervision-
based, descriptor-based, network-based, retrieval-based, and
miscellaneous.

Finally, it’s important to note that the effectiveness of deep
learning in image retrieval is closely tied to the availability
of large-scale datasets. The selection of datasets aligns with
the specific characteristics of the data type under consid-
eration. Table 6 provides insights into various large-scale
datasets utilized for deep learning-based image retrieval,
detailing the year of introduction, image type, and the number
of images (both testing and training) associated with each
dataset.

B. FUTURE DIRECTIONS
This section outlines several significant trajectories that hold
promise for the future of CBIR.

The performance of CBIR systems is undeniably influ-
enced by the quality of images within the database. When
images contain factors such as noise, poor visibility, or inad-
equate texture, CBIR systems can exhibit reduced accuracy
and relevance in retrieving matching images. These chal-
lenges arise due to the distortion or loss of critical visual
information, hindering CBIR’s ability to accurately assess
and compare images based on their content. As a result,
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TABLE 6. Large scale dataset used in deep learning techniques.

CBIR systems may struggle to effectively match queries with
relevant images, leading to suboptimal performance.

In addition to image quality, the storage of CBIR data
presents another set of challenges. The efficient management
of image data is crucial for maintaining fast retrieval times
and optimizing system resources. Storing large volumes of
images requires careful consideration of storage structures,
indexing methods, and retrieval algorithms. The data stor-
age approach directly impacts retrieval speed, scalability,
and resource utilization. Ensuring that images are organized,
indexed, and stored in a manner that facilitates quick and
accurate retrieval is a complex task. This involves finding a
balance between storage efficiency and retrieval performance
while accommodating various image types, sizes, and feature
representations.

Addressing these challenges requires a multi-faceted
approach that combines advancements in image enhancement
techniques, feature extractionmethods, and storage solutions.
Researchers and practitioners continue to work on developing
innovative strategies to enhance image quality, mitigate visi-
bility issues, and effectively manage data storage for CBIR
systems, ultimately aiming to improve the overall perfor-
mance and reliability of these systems.

In the near future, several strategies could be employed
to address the aforementioned challenges and enhance the
performance of CBIR systems: Geng et al. [160] presented a
hybrid CNN for image denoising, which may contribute to
preprocessing noisy images to improve CBIR performance.
Ahmad [212] introduced a deep image retrieval approach
using ANN interpolation and similarity measurement-based
indexing, which may advance CBIR’s efficiency in retrieving
relevant images. The work by Meng et al. [213] on visibility
restoration using CNN can be adapted to enhance the visi-
bility of query images in CBIR. Wang et al. [215] explored
spiking neural networks, and their approach can potentially
be incorporated into feature extraction or similarity measure-
ment stages of CBIR. Hsiao and Chung [161] presented an
AI-infused semantic model for question generation, which
can be adapted to assist in formulating more effective queries
in CBIR systems. Furthermore, Geng et al. [211] discussed
scheduling strategies for automated storage and retrieval sys-
tems, which can provide insights into optimizing the retrieval

process in CBIR systems by efficiently managing the storage
and retrieval of image data. Incorporating these findings into
CBIR research may led to enhanced performance and capa-
bilities.

There are many other such pathways include delving
into cross-modal retrieval, fostering collaboration across
disciplines, further refining deep learning techniques for
enhanced feature extraction, advancing personalized retrieval
approaches, and tackling important ethical and privacy con-
siderations. These potential future directions underscore
CBIR’s evolving nature and the opportunities it presents
across various domains.

1) Cross-Modal Retrieval: Expanding CBIR to include
different modalities such as text, audio, and 3D data
will enable more comprehensive content retrieval and
support complex queries involving multiple data types.

2) InterdisciplinaryCollaboration:Collaborating across
fields like computer vision, machine learning, and
domain-specific knowledge will lead to more holis-
tic CBIR solutions that address real-world challenges
effectively.

3) Deep Learning Advancements: Further enhancing
deep learning techniques, including refining network
architectures and transfer learning strategies, will boost
CBIR’s feature extraction, representation, and match-
ing capabilities.

4) Personalized Retrieval: Developing user-centric
retrieval methods that adapt to individual preferences
and contexts will enhance user satisfaction and the
usability of CBIR systems.

5) Ethical and Privacy Considerations:Addressing pri-
vacy concerns, bias, and fairness issues associated with
CBIR technologies is crucial to ensure their responsible
and ethical deployment in various applications.

VI. CONCLUSION
As the digital landscape continually generates an over-
whelming volume of images via online platforms and social
media, the task of efficiently storing and retrieving relevant
images remains a formidable endeavor. In response, CBIR
has emerged as a prominent approach, enabling the retrieval
of pertinent images from vast collections based on query
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images. This paper has provided a comprehensive survey of
CBIR’s fundamental elements, specifically focusing on fea-
ture selection, extraction, and representation. By delving into
the significance and applications of CBIR, analyzing feature
attributes, exploring extraction techniques, and considering
recent advancements, this survey highlights the dynamic evo-
lution of CBIR. Notably, the integration of deep learning
techniques has expanded CBIR’s horizons, leading to inno-
vative methods and frameworks.

However, the efficacy of CBIR systems is inherently influ-
enced by the quality of images stored within their databases.
When images suffer from issues like noise, poor visibility,
or inadequate texture, CBIR systems can experience reduced
accuracy and relevance in retrieving appropriate matches.
These challenges arise due to the alteration or absence of
potential visual information, hindering CBIR’s ability to pre-
cisely evaluate and compare images based on their content.
Consequently, CBIR systems might encounter difficulties in
connecting queries with fitting images, resulting in subopti-
mal performance.

Furthermore, the storage of CBIR data introduces another
layer of complexity. Efficiently managing image data is
pivotal for maintaining significant retrieval speeds and opti-
mizing system resources. Dealing with large image volumes
necessitates thoughtful deliberation on storage structures,
indexingmethodologies, and retrieval algorithms. The chosen
data storage approach significantly affects retrieval speed,
scalability, and resource utilization. Maintaining the balance
between storage efficiency and retrieval performance while
accommodating diverse image attributes is a multifaceted
undertaking.

The future scope involves addressing these challenges
through multimodal approaches that seamlessly integrate
image enhancement techniques, feature extraction methods,
and innovative storage solutions. Researchers will continue to
strive to improve image quality, address visibility issues, and
simplify data storage within CBIR systems. Together, these
efforts will strengthen CBIR systems’ performance, boosting
their reliability and effectiveness.
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