
Vol.:(0123456789)

Journal of the Korean Physical Society (2023) 82:1–11 
https://doi.org/10.1007/s40042-022-00669-7

Vol.:(0123456789)1 3

ORIGINAL PAPER - PARTICLES AND NUCLEI

Quantum correlation in quark–gluon medium

Chanyong Park1 · Jung Hun Lee2 

Received: 11 August 2022 / Revised: 28 September 2022 / Accepted: 7 October 2022 / Published online: 30 November 2022 
© The Korean Physical Society 2022

Abstract
We study the thermodynamics and quantum correlations of the string cloud geometry whose field theory dual is the quark–
gluon medium. We found the novel universality of the entanglement entropy first law in the high quark density limit. We 
also showed that a correlation function generally decreases as the entanglement entropy of the background medium increases 
due to the screening effect of the background. We study the UV and IR effects of the medium on phase transition behaviour 
observed in the holographic mutual information using both perturbative and numerical computations. Moreover, by numeri-
cal computation, we show that in the IR region the critical length obtained from the mutual information behaves similar to 
the correlation length of the two-point function.

Keywords  Holography · Entanglement entropy · AdS/CFT

1  Introduction

In quantum many-body systems the entanglement entropy 
nicely characterizes the degrees of freedom for a pure state. 
This quantity provides one of the useful tools to figure out 
quantum phenomena both in high energy physics and in con-
densed matter physics. In the light of AdS/CFT [1, 2], the 
entanglement entropy can be interpreted as the geometric 
object called the minimal surface, which extends to the bulk 
AdS space [3–5]. This duality gives a specific relationship 
between geometrical objects and informational quantities 
of the quantum system, like entanglement entropy [6–11], 
mutual information [12–17], and complexity [18–21].

In this paper, we consider a deformed conformal field 
theory (CFT) with a nontrivial dual gravity theory called 
the generalized string cloud geometry, which consists of 
the black hole geometry and uniformly distributed open 
strings. Originally, the string cloud model has been pro-
posed as a holographic dust model which was represented by 

the Einstein gravity coupled with a one-dimensional string 
instead of point particles [22–25]. Recently, this model has 
been paid attention to understanding various properties asso-
ciated with quark–gluon plasma (QGP) [26–30], a strongly 
coupled thermal state of matter, produced in the collision 
experiment of heavy nuclei [23, 24]. Our aim in this work 
is to investigate macroscopic and microscopic quantum cor-
relations in the heavy quark–gluon medium.

For a system away from its critical point, the entangle-
ment entropy can have nontrivial corrections associated with 
the subsystem size [31–39]. In the entanglement entropy 
study, the subsystem size can be reinterpreted as the inverse 
of the energy scale. From the viewpoint of the renormaliza-
tion group (RG) flow, unlike the momentum space RG usu-
ally utilized in a quantum field theory (QFT), the size of the 
subsystem, which is homologous to the minimal surface, is 
related to the real space RG flow used in the condensed mat-
ter physics. Generally, the RG flow crucially depends on the 
deformation we consider. In this work, we take into account 
two different deformations, the density of open strings and 
black hole mass.

We expect that the excitation increases the degrees of 
freedom of the underlying theory due to the screening effect 
between quark–gluon medium [40]. Due to this reason, the 
entanglement entropy with excitation increases along the RG 
flow in the UV region. We clarify this feature by utilizing 
holographic entanglement entropy of the deformed theory.
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One of the most important properties of entanglement 
entropy is that it has information over correlation for the 
given system. A well-known example is the mutual infor-
mation. This quantity consists of the linear combination 
of entanglement entropy. Another candidate which meas-
ures the correlation between two disjoint subsystems is the 
entanglement wedge cross section [41]. This is defined as 
the minimal length of the cross section which divides the 
entanglement wedge into two parts. However, since for 
these quantities, there is a lack of direct comparison target 
in the dual field theory, we need to consider a more intui-
tive quantity that can be constructed in both the boundary 
and bulk theories.

The entanglement entropy can be regarded as a quantum 
correlation because it quantifies measures of the correla-
tion between two macroscopic quantum subsystems. In the 
semiclassical approximation, the two-point function can 
be defined by a Feynman path integral over the geodesic 
length of a massive particle propagating in the AdS space 
[42–44]. Therefore, at least, for two-dimensional CFT the 
two-point function can be written in terms of the length of 
the minimal surface computed in the entanglement entropy 
calculation. More precisely, these two different measures 
are identically described by a one-dimensional geodesic 
curve anchored at the boundary two points. These bound-
ary points coincide with the boundary of the entangling 
region for the entanglement entropy. Furthermore, it is 
also possible to identify two boundary points with the 
positions of two local operators for the two-point function. 
For this reason, by using the holographic renormalization 
technique [45–49] we can take into account a two-point 
correlation function of two local operators which corre-
sponds to a microscopic quantum correlation.

Entanglement entropy depends on the regularization 
scheme due to the UV divergence structure. Mutual infor-
mation can not only avoid this problem, which is UV finite, 
but it also provides a useful tool to capture a first order 
phase transition in the entanglement entropy [50]. In par-
ticular, we survey the effect of the quark–gluon medium on 
phase transition observed in holographic mutual informa-
tion using both perturbative and numerical computations.

The rest of this paper is organized as follows. In Sect. 2, 
we review a holographic model associated with the string 
cloud geometry and its thermodynamic properties. In 
Sect. 3, applying the holographic formulation to deformed 
backgrounds, we study quantum corrections of the entan-
glement entropy due to the effects of excitation and com-
pute two-point correlations in both UV and IR limits. In 
Sect. 4, we extend the discussion of Sect. 3 to general 
d-dimensions. Further, we elaborate upon holographic 
mutual information in Sect. 5. Finally, we close this work 
with some concluding remarks in Sect. 6.

2 � Holographic dual of quark–gluon plasma

In the holographic study, D-branes usually play an impor-
tant role in making a nontrivial gravity theory and in 
describing its dual field theory. When Nc D3-branes lie 
in a flat background spacetime on top of each other, their 
gravitational backreaction allows a five-dimensional AdS 
space together with a five-dimensional sphere in the near 
horizon limit. The radius of the resulting AdS space is 
directly related to the number of D3-branes which on the 
dual field theory side corresponds to the rank of the gauge 
group SU(Nc) . The five-dimensional AdS in the Poincare 
patch further generalizes to an AdS black hole or black 
brane with an appropriate blackening factor

where the blackening factor is expressed in terms of a black 
hole mass m

According to the AdS/CFT correspondence, the pure AdS 
geometry becomes the dual of a strongly interacting CFT 
at zero temperature, while the AdS black hole is the dual of 
a CFT at finite temperature. Using the holographic renor-
malization technique, the energy–momentum tensor of the 
dual CFT automatically vanishes at zero temperature. At 
finite temperature, on the other hand, the energy–momen-
tum tensor is proportional to the black hole mass. In this 
case, the energy–momentum tensor is proportional to N2

c
 

and traceless. This fact implies that the dual field theory of 
the black hole is associated with the excitation of massless 
adjoint matter like gluons. Therefore, we identify the black 
hole geometry with the gluon’s excitation of the dual QFT.

Assuming that a probe D3-brane is located at the 
boundary, we can also take into account open strings con-
necting D3-branes at the center of the probe D3-brane. 
Since the end of an open string follows a fundamental 
representation, it on the probe brane plays a role of a fun-
damental matter like a quark with Nc degrees of freedom. 
In this case, the fundamental matter has an infinitely large 
mass. Combining the above fundamental and adjoint mat-
ters allows us to investigate a quark–gluon plasma holo-
graphically. For example, various time-dependent quanti-
ties in expanding universes was studied in [25, 51]. In this 
section, we holographically investigate the entanglement 
entropy and two-point function of a local operator in the 
quark–gluon plasma.

To describe fundamental matter living on the dual field 
theory side, we first think of uniformly distributed open 
strings in a (d+1)-dimensional AdS space. The correspond-
ing gravity theory can be described by the following action

(1)ds2 =
R2

z2

(
−f (z)dt2 +

dz2

f (z)
+ �ijdx

idxj
)
,

(2)f (z) = 1 − mz4.
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where g�� and h�� indicate a (d + 1)-dimensional bulk met-
ric and an induced metric on an open string, respectively. 
The first part including a negative cosmological constant Λ 
allows a (d + 1)-dimensional AdS space, whereas the sec-
ond part represents the action of open strings with a string 
tension, T  . This model has been known as the string cloud 
model [22–24, 52–54]. Assuming that N open strings are 
uniformly distributed, the above action leads to the follow-
ing Einstein equation

with

where Vd−1 indicates a (d − 1)-dimensional volume perpen-
dicular to the open string’s worldvolume. Taking a static 
gauge with �0 = t and �1 = z , the stress tensor of open 
strings reduces to

Noting that h�� = g�� for �, � = 0, 1 in the static gauge, 
T�� = 0 for �, � ≠ 0, 1.

The open string configuration we considered allows us to 
find the following analytic solution

with a nontrivial metric factor

where � is the uniformly distributed string cloud density and 
can be written as

where we only consider the positive density 𝜏 > 0 for which 
the metric solution satisfies the weak and dominant energy 
conditions [23, 24]. On the dual field theory side, one can 
identify m and � with the excitation energy of adjoint matter 
(gluons) and the density of fundamental matter (quarks), 
respectively.

(3)

S =
1

16�G ∫ dd+1X
√
−g(R − 2Λ)

+ T

N�
i=1

∫ d2�
√
−hh����X

���X
�g�� ,

(4)R�� −
1

2
Rg�� + Λg�� = T�� ,

(5)T�� = −
16�GTN

Vd−1

√
−h√
−g

h�� �
�X��

�X� ,

(6)T�� = −
16�GTN

Vd−1

√
−h√
−g

h�� �
�

�
��
�
.

(7)ds2 =
R2

z2

(
−f (z)dt2 +

1

f (z)
dz2 + �ijdx

idxj
)
,

(8)f (z) = 1 − �zd−1 − mzd.

(9)𝜏 =
32𝜋GTN

(d − 1)RVd−1

> 0,

Now, we investigate thermodynamics of the generalized 
string cloud geometry. To do so, it is more convenient to 
rewrite the black mass in terms of � and the horizon, zh,

Then, the Hawking temperature and Bekenstein–Hawking 
entropy read

Here, the positivity of temperature yields the upper bound 
of the black hole horizon

Intriguingly, this black hole solution allows two horizons. 
Similar to a charged black hole case, these two horizons 
become degenerate at zero temperature and lead to an extre-
mal limit. In the extremal limit, the blackening factor has a 
double root like

where F(z) is regular even at the horizon. The existence of 
the extremal limit becomes manifest due to the fact that the 
horizon at zero temperature is located at a finite distance 
and, at the same time, f (zh) and f �(zh) automatically vanish. 
In the extremal limit, the near horizon geometry reduces to 
AdS2 × Rd−1 similar to the charged black hole case.

To see more details, we consider a three-dimensional gen-
eralized string cloud geometry

with

Denoting an event horizon as zh , the black hole mass, as 
mentioned before, is rewritten as

Then, the blackening factor

(10)m =
1

zd
h

−
�

zh
.

(11)
TH =

d − zd−1
h

�

4�zh
,

SBH =
Vd−1

4Gzd−1
h

.

(12)0 ≤ zd−1
h

≤ d

�
.

(13)f (z) =
(
zh − z

)2
F(z),

(14)ds2 =
R2

z2

(
−f (z)dt2 +

dz2

f (z)
+ dx2

)
,

(15)f (z) = 1 − �z − mz2.

(16)m =
1

z2
h

−
�

zh
.

(17)f (z) = 1 − �z +
(
�zh − 1

) z2
z2
h

,
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allows two roots, the event horizon zh and inner horizon zin,

Recalling that the boundary and the center of the string 
cloud geometry are located at z = 0 and z = ∞ respectively, 
the assumption that zh is the outer horizon implies zh ≤ zin . 
Since � and zh must be positive, this constraint restricts the 
range of �zh to be 0 ≤ �zh ≤ 2 . Now, we summarize the pos-
sible horizons relying on the parameter regions

•	 For 𝜏zh < 1 the inner horizon does not exist, so there is 
only one horizon at z = zh.

•	 For 1 ≤ 𝜏zh < 2 , there are two non-degenerate horizons 
and zh corresponds to the outer horizon.

•	 For �zh = 2 , the outer and inner horizons become 
degenerate, which corresponds to an extremal limit.

Although the range of 𝜏zh > 2 is not consistent with our 
previous assumption, there still exists a black hole solu-
tion. In this case, zh and zin exchange their role. In other 
words, zin plays a role of the outer horizon instead of zh . 
Since the string cloud geometry is invariant under the 
exchange of the inner and outer horizons, a similar param-
eter dependence discussed before occurs. From now on, we 
focus on only the case of 0 ≤ �zh ≤ 2.

A black hole solution generally maps to a thermal sys-
tem satisfying the thermodynamics law. The string cloud 
geometry we considered can be also reinterpreted as a 
thermal system. The regularity of the above metric at the 
outer horizon leads to the Hawking temperature

Using this relation, we can also represent all thermodynamic 
quantities in terms of � and TH via

As mentioned before, the extremal limit with �zh = 2 cor-
responds to the zero temperature limit. In the black hole 
geometry, the thermal entropy is described by the Beken-
stein–Hawking entropy which is proportional to the area of 
the horizon

where L is an appropriately regularized volume in the 
x-direction. Since these two thermodynamic quantities must 
satisfy the first law of thermodynamics, the energy contained 
in the system is given by

(18)zin =
zh

�zh − 1
.

(19)TH =
2 − �zh

4�zh
.

(20)zh =
2

4�TH + �
.

(21)SBH =
LR

4Gzh
,

where E0 is introduced as an integral constant which does 
not affect on the thermodynamics law. Since we are inter-
ested in a thermal system corresponding to a black hole, we 
need to identify the above energy with the thermal energy 
which must vanish at zero temperature. To interpret E as 
a thermal energy, E must vanish at zero temperature sat-
isfying zh = 2∕� , which fixes the integral constant to be 
E0 = LR�2∕(64�G) . Therefore, the thermal energy of this 
system finally becomes

which automatically satisfies the Stefan–Boltzmann law. For 
later convenience, we define the energy density � contained 
in the system

where c = 3R∕2G is the central charge of two-dimensional 
CFT.

Applying various thermodynamic relation, the fundamental 
thermodynamic quantities derived above allows us to get more 
information characterizing this thermal system. First, the heat 
capacity of this system is given by

Since the heat capacity is always positive in the consid-
ered parameter regions, we can see that the thermal sys-
tem derived from the string cloud geometry is thermody-
namically stable. Second, this system has the following free 
energy and pressure

Now, let us discuss an equation of state parameter which 
is one of the quantities characterizing the quark–gluon 
medium. Recalling that the energy depends only on the tem-
perature, the equation of state parameter reads

For a two-dimensional QFT, � = 1 indicates that the theory 
is conformal. If we consider the case of � = 0 , the medium 

(22)E = ∫ TH dSBH =
LR

16�G

1 − �zh

z2
h

+ E0,

(23)E =
LR

64�G

(2 − �zh)
2

z2
h

=
�LR

4G
T2
H
,

(24)� =
�cT2

H

6
,

(25)CV =
LR(2 − �zh)

8Gzh
≥ 0.

(26)

F = −
LR

64�G

4 − �2z2
h

z2
h

,

P =
R

64�G

4 − �2z2
h

z2
h

.

(27)� ≡ LP

E
= 1 +

�

2�TH
.
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consists of only massless gluons and leads to a CFT, as 
expected. In the very high temperature limit with TH → ∞ , 
the equation of state parameter again approaches 1. This is 
because in the limit of TH → ∞ the effect of the quark mass 
is negligible. As a result, the limit of TH → ∞ describes a 
UV fixed point. At finite temperature, intriguingly, the above 
result shows that the equation of state parameter increases 
linearly with the quark density. In other words, the pressure 
becomes high in the dense medium and in the low tempera-
ture region.

3 � Quantum correlation in the quark–gluon 
medium

In the previous section, we investigated thermodynamic 
properties of the boundary thermal system dual to the 
string cloud geometry. Based on these thermal properties, 
from now on, we study various quantum correlations in the 
quark–gluon medium living in a two-dimensional space-
time. First, we focus on the macroscopic correlation in the 
quark–gluon medium. To specify the macroscopic quantum 
correlation, we exploit many different quantities like the 
entanglement entropy, relative entropy, and mutual informa-
tion, etc. In this work, we focus on the entanglement entropy 
which describe the quantum correlation between the inside 
and outside of the entangling surface. Since it is not easy to 
calculate the entanglement entropy of an interacting system 
on the QFT side, we will use the celebrated holographic 
technique proposed by Ryu and Takayanagi (RT) [3, 4]. The 
RT formula claims that the entanglement entropy of a QFT 
can be determined by the area of minimal surface extending 
to the dual bulk geometry.

To calculate the entanglement entropy holographically, 
we first divide the boundary space into two parts, a subsys-
tem and its complement. Assuming that the subsystem lies in

the corresponding entanglement entropy is described by a 
minimal surface extending to the dual geometry

Now, we introduce a turning point. Denoting the turning 
point as z0 , it represents a maximum value which the mini-
mal surface can reach. In other words, the minimal surface 
extends only to 0 ≤ z ≤ z0 in the dual geometry. Due to the 
invariance of the entanglement entropy under x → −x , the 
turning point automatically satisfies z(0) = z0 and dz∕dx = 0 
at x = 0.

(28)−
l

2
≤ x ≤ l

2
,

(29)SE =
R

4G ∫
l∕2

−l∕2

dx

√
z�2 + f

z
√
f

.

In the above entanglement entropy, there exists a con-
served quantity. Using this conserved quantity, we can rep-
resent the subsystem size l and the entanglement entropy in 
terms of the turning point

where � is introduced as a UV cutoff which regularizes the 
UV divergence. Since the string cloud geometry has the non-
trivial blackening factor, it is not easy to perform the above 
integrals exactly. Thus, from now on we take into account 
two limiting cases characterizing the UV and IR behaviors.

3.1 � In a UV region

First, we consider the case with a very small subsystem size 
which describes quantum correlation in the UV regime. On 
the dual string cloud geometry, this small subsystem size 
limit is realized by taking the limit satisfying z0∕zh ≪ 1 and 
𝜏z0 ≪ 1 . After calculating the integral (30) perturbatively in 
the small subsystem size limit, rewriting the turning point in 
terms of l gives rise to

where the ellipsis indicates higher order corrections and 
the energy density � was defined in (24). Using this turn-
ing point, the resulting entanglement entropy becomes 
perturbatively

This result shows that the UV entanglement entropy grows 
up as the subsystem size increases. At a given subsystem 
size, the entanglement entropy becomes large when the 
string density � and the excitation energy � are high, as 
expected. Defining a critical subsystem size as1

we see that for l ≪ lc the effect of the quark density becomes 
dominant and the entanglement entropy increases linearly 
with the subsystem size l. For l ≫ lc , on the other hand, the 

(30)l =∫
z0

0

dz
2z√

f (z2
0
− z2)

,

(31)SE =
R

2G ∫
z0

�

dz
z0

z

√
f (z2

0
− z2)

,

(32)z0 =
l

2

(
1 −

�

16
�l −

2�

c
�l2 +⋯

)
,

(33)SE =
c

3

(
log

l

�
+

�

16
�l +

�

c
�l2 +⋯

)
.

(34)lc =
c�

16�
,

1  Here, to define the critical length lc we only consider the result (33) 
up to the second order O(l2).
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excitation energy becomes dominant and the entanglement 
entropy increases by l2.

In the above entanglement entropy (33), the first term, 
which is independent of � and � corresponds to the entangle-
ment entropy S0 of the ground state. Therefore, the entangle-
ment entropy caused by the quark density and the excitation 
energy is given by

Recalling that, after subtracting the ground state energy, the 
internal energy of the subsystem ΔE is given by (23), we can 
define the entanglement temperature TE as

It was well known that the entanglement temperature in 
the UV region is universally proportional to the inverse of 
the subsystem size [16, 55]. However, the entanglement 
entropy studied in the quark–gluon medium shows a differ-
ent possibility from the known universality. For instance, 
if we consider the case of a small quark density ( 𝜌l ≫ 𝜏 ), 
the entanglement temperature is inversely proportional 
to the subsystem size, as mentioned before. In the dense 
quark–gluon medium satisfying 𝜏 ≫ 𝜌l , however, the entan-
glement temperature becomes independent of the subsys-
tem size. Intriguingly, this feature looks universal. In other 
words, the same feature also appears in higher-dimensional 
cases, as will be show later.

Now, we consider a microscopic two-point correlator of 
a local operator in the quark–gluon medium. A two-point 
function is generally affected by the interaction with the 
background medium, so that we can exploit a two-point 
function as a measure probing the property of the back-
ground medium. Assuming a local scalar operator whose 
conformal dimension is denoted by ΔO , then the two-point 
function of this operator on the dual gravity side is described 
by a geodesic curve whose two ends are attached to two 
local scalar operators [44, 56, 57]. Denoting the position 
of two local operators as x1 and x2 , the two-point function 
is given by

where L(|x1 − x2| is a geodesic length connecting two local 
operators. For a holographic three-dimensional geometry, 
the geodesic length and entanglement entropy are associated 
with each other

where the subsystem size l is replaced by the distance of two 
local operators, |x1 − x2| . In the UV region, using the above 

(35)ΔSE = SE − S0 =
c

3

(
�

16
�l +

�

c
�l2 +⋯

)
.

(36)

1

TE
≡ ΔSE

ΔE
=

4Gc

3�RT2
H

(
��

16
+

��l

c

)
=

c�

48

(
�

�
+

16

c
l

)
.

(37)⟨O(x1)O(x2)⟩ = e−ΔO L(�x1−x2�)∕R,

(38)L(|x1 − x2|) = 4GSE(|x1 − x2|),

relation, the two-point function of a scalar operator becomes 
in the quark–gluon medium

Comparing this result with the CFT one implies that the two-
point function in the quark–gluon medium rapidly decreases 
with increasing the distance of two operators. This is due 
to the screening effect caused by the background matters. 
In a high density regime, the two-point function reduces 
by �|x1 − x2| , whereas it reduces by �|x1 − x2|2 in the low 
quark density region.

3.2 � In an IR region

In the previous section, we discussed the macroscopic and 
microscopic UV quantum correlation in the quark–gluon 
medium. We showed that these two quantum correlations 
lead to two different behaviors depending on the quark den-
sity and the excitation energy. Now, we investigate IR quan-
tum correlations in the same quark–gluon medium. The turn-
ing point z0 approaches the horizon zh in the IR limit where 
the subsystem size diverges. The IR entanglement entropy, 
therefore, can be rewritten as

The second term contains a UV divergence. After an appro-
priate renormalization procedure, this second term becomes 
finite even in the IR limit. On the other hand, the first does 
not have a UV divergence but diverges in the IR limit.2 This 
implies that the first term gives rise to a leading contribution 
to the IR entanglement entropy. Moreover, the first term is 
exactly the same as the thermal entropy included in the sub-
system. In the IR limit, the quantum entanglement entropy 
flows to a thermal entropy with small quantum corrections. 
The thermal entropy in the quark–gluon medium is repre-
sented as a function of the quark density and temperature

(39)

⟨O(x1)O(x2)⟩ ∼
1

|x1 − x2|2ΔO

(

1 −
�ΔO

8
�|x1 − x2| −

2�ΔO

c
�|x1 − x2|2

)

.

(40)SE = lim
z0→zh

⎛⎜⎜⎜⎝
R

4Gz0
l +

R

2Gz0 ∫
z0

�

dz

�
z2
0
− z2

z
√
f

⎞⎟⎟⎟⎠
.

(41)Sth =
(4�TH + �)R

8G
l.

2  Notice that the the renormalized IR entanglement entropy is inde-
pendent on the UV cut-off. For a zero string density limit the two-
point function (42) reproduces the result (3.34) in [57] exactly.
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From the entanglement entropy point of view, the tempera-
ture is well defined only in the IR limit. As a result, the 
microscopic two-point function in the IR regime reduces to

where the correlation length should be identified as

Due to the screening effect of the quark–gluon medium, the 
two-point function is exponentially suppressed in the IR 
regime. This suppression becomes fast as the temperature 
and quark’s density increase, as expected.

4 � Higher dimensional string cloud 
geometries

The previous study on quantum correlations can extend to 
higher-dimensional cases. To check the universality of the UV 
entanglement entropy discussed before, we investigate the UV 
entanglement entropy in a d-dimensional quark–gluon medium 
holographically. In the higher-dimensional case, unlike the 
previous two-dimensional case, we can take several different 
shapes of the entangling surface. In this work, we focus on 
a strip-shaped entangling region because the universal fea-
ture we are interested in is independent of the shape of the 
entangling surface. To do so, we parameterize a strip-shaped 
region as

where i runs from 2 to d − 2 and L indicates an appropri-
ated regularized size of a total system. In a (d + 1)-dimen-
sional string cloud geometry, the holographic entanglement 
entropy is determined by

where the blackening factor is given by

A conserved quantity similar to the previous case determines 
the subsystem size and the entanglement entropy in terms 
of the turning point z0

(42)⟨O(x1)O(x2)⟩ ∼ e−ΔO(4�TH+�)�x1−x2�∕2,

(43)�c ∼
1

4�TH + �
.

(44)−
l

2
≤ x = x1 ≤ l

2
and −

L

2
≤ xi ≤ L

2
,

(45)SE =
Rd−1Ld−2

4G ∫
l∕2

−l∕2

dx

√
f + z�2

zd−1
√
f
,

(46)f = 1 − �zd−1 −

(
1

zd
h

−
�

zh

)
zd.

(47)l =
2

zd−1
0

∫
z0

0

dz
zd−1√

f
√
1 − (z∕z0)

2(d−1)
,

4.1 � In the UV region

In the UV region satisfying z0 ≪ zh and z0 ≪ 𝜏1∕(d−1) , the 
entanglement entropy can be reexpressed as a perturbative 
expansion. For d = 3 , the resulting entanglement entropy 
becomes

where A1 = 2L and V2 = lL are the area and volume of the 
two-dimensional strip-shaped entangling region, respec-
tively. Thus, the third and fourth terms in the above entan-
glement entropy are proportional to the quark number and 
excitation energy contained in the subsystem, respectively. 
For d = 4 , the entanglement entropy in the UV region 
becomes

where A2 = 2L2 and V3 = lL2 correspond to the area and 
volume of the three-dimensional strip-shaped entangling 
region. Here, the parts, which do not relies on � and � , cor-
respond to the ground state entanglement entropy. The effect 
of excitation and quark density can be extracted by subtract-
ing this ground state entanglement entropy. Intriguingly, 
the gluon’s excitation and quark density, regardless of the 
dimension of the underlying theory, give rise to the similar 
contribution

where S0 indicates the ground state entanglement entropy 
and g1 and g2 are functions of � and � = E∕V(d−1) ∼ 1∕zd

h
 . 

This fact leads to two distinct universal features in the 
quark–gluon medium. Since the energy is an extensive quan-
tity, it is proportional to the subsystem’s volume ( ∼ lLd−2 ). 
For example, the energy contained in the subsystem for 
d = 3 is in the high density limit ( � → ∞)

(48)SE =
Ld−2Rd−1

2G ∫
z0

�

dz
1

zd−1
√
f
√
1 − (z∕z0)

2(d−1)
.

(49)

SE =
R2

4G

A1

�
−

R2Γ
(

3

4

)4

4�G

A1

l
+

�2R2

24GΓ
(

3

4

)4
V2� +

�2R2

64GΓ
(

3

4

)4

V2l

z3
h

,

(50)

SE =
R3

8G

A2

�2
−

√
3R3Γ

�
2

3

�5

Γ
�

5

6

�2

214∕3�2G

A2

l2

+

√
3�2R3Γ

�
4

3

�

211∕3GΓ
�

2

3

�5
V3� +

81R3Γ
�

4

3

�4

80GΓ
�

2

3

�5

V3l

z4
h

,

(51)

ΔSE ≡ SE − S0 =
Ld−2Rd−1

G

(
g1(�) l + g2(�, �) l

2 +⋯

)
,
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while it in the low density limit becomes

The entanglement temperature in the low density limit 
( � → 0 ) reduces to

This is the well-known universality of the entanglement tem-
perature which is originated from the relativistic excitation 
energy. We can also take into account another case which 
allows a different universality. Taking a high density limit of 
� → ∞ , we can ignore the effect of � and the quark density 
� becomes dominant. Similar to the gluon’s excitation case, 
we define the entanglement temperature which represents 
the change of the entanglement entropy when the quark den-
sity varies. Then, the entanglement temperature gives rise to 
another universality in the high quark density limit

This implies that the entanglement temperature is independ-
ent of the subsystem size which is independent of the dimen-
sion d. As a consequence, the entanglement temperature in 
the UV regime can show two distinct universality relying on 
the quark density.

4.2 � Correlation in the IR regime

In the IR region, the subsystem has a very large size. Its size 
for d = 3 is determined as

and the corresponding entanglement entropy reads

The entanglement entropy can be rewritten as the following 
form

(52)E =
�R2T2

H

√
�

6
√
3G

V2,

(53)E =
8�2R2T3

H

27G
V2.

(54)TE =
dE

dSE
∼ l−1.

(55)TE =
dE

dSE
∼ l0.

(56)l = 2∫
z0

0

dz
z2

√
f

�
z4
0
− z4

,

(57)SE =
LR2z2

0

2G ∫
z0

�

dz
1

z2
√
f

�
z4
0
− z4

.

(58)SE =
R2lL

4Gz2
0

+
LR2

2Gz2
0
∫

z0

�

�
z4
0
− z4

z2
√
f

.

In the IR region with l → inf , the turning point approaches 
the horizon, z0 → zh . In this IR region, the first term pro-
portional to the size of the subsystem diverges. The sec-
ond term also has a divergence proportional to 1∕� . This 
divergence corresponds to the UV divergence appearing in 
the previous UV entanglement entropy. Ignoring this UV 
divergence, the second term has no more divergence even 
in the case of z0 = zh . Therefore, the first term gives rise 
to the leading contribution to the IR entanglement entropy. 
Intriguingly, this leading contribution is exactly the same as 
the Bekenstein–Hawking entropy. This fact implies that the 
entanglement entropy evolves to the thermal entropy along 
the RG flow.

We can also investigate a microscopic two-point function 
in the IR regime. Regardless of the dimension d, the turning 
point determines the distance between two local operators

which is the distance measured at the boundary. The length 
of the geodesic curve extending to the dual geometry results 
in

Rewriting the geodesic length as the following form

we see that, when we ignore the UV divergence, the first 
term gives rise to a leading contribution in the IR regime 
( z0 → zh and |x1 − x2| → inf ). As a consequence, we finally 
obtain the following IR two-point function

This result shows that, when the distance of two local opera-
tors increases, the IR two-point function suppresses expo-
nentially due to the screening effect caused by the back-
ground quark–gluon medium.

5 � Mutual information in the string cloud 
geometries

In this section, based on the holographic point of view, we 
survey another quantum information quantity related to 
entanglement, which is called mutual information. Mutual 

(59)�x1 − x2� = 2∫
z0

0

z
√
f

�
z2
0
− z2

,

(60)D = 2Rz0 ∫
z0

�

1

z
√
f

�
z2
0
− z2

.

(61)D =
R

z0
�x1 − x2� + 2R

z0 ∫
z0

�

�
z2
0
− z2

z
√
f

,

(62)⟨O(x1)O(x2)⟩ = e−ΔOD∕R ∼ e−2ΔO�x1−x2�∕zh .
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information measures how much the subsystems are cor-
related with each other and is defined as

where S(A ∪ B) is the entanglement entropy for a union of 
two subsystems. Due to the subadditivity of the entangle-
ment entropy, the mutual information is always positive. 
When the mutual information becomes zero, I(A;B) = 0 , 
holographically the minimal surface suddenly changes its 
bulk configuration from a disconnected shape to a con-
nected one. This feature allows to capture a phase transition 
in which the critical length is determined by the ratio of the 
size of the boundary subregions to their separation.

To study the effects of our holographic model on the mutual 
information, we calculate this quantity for two disjoint sub-
regions where their sizes and separation length are given by 
�1,�2 and h respectively. Depending the relative size between 
subsystems and separation, the mutual information becomes

It is obvious that the critical length hc , where I(A;B) = 0 , 
depends on the two parameters � and � characterizing the 
string cloud geometry. For small values of these parameters 
one can perturbatively find the critical length as

(63)I(A;B) = S(A) + S(B) − S(A ∪ B),

(64)

I(A;B) =

{
S(�1) + S(�2) − S(�1 + �2 + h) − S(h) for h ≪ �1,�2,

0 for h ≫ �1,�2.

(65)

hc =(
√
2 − 1)𝓁 −

�(
√
2 − 1)�

16
√
2

𝓁
2

+
�(c�(13 − 8

√
2)�2 − 2048�)

1024
√
2c

𝓁
3 +⋯ ,

where we assume the two subsystems have the same size, 
�A = �B = � for simplicity. Depending on the values of 
� and � , the required critical length has a non trivial size 
compared to the one in AdS. To show that, we consider the 
separation variable as a function of � and temperature. We 
observe that for the extremal case TH = 0 , the critical length 
has the maximum value. It implies that the upper bound of 
hc where a phase transition occurs is determined by turning 
off the effect of � in the quark–gluon medium. Therefore, 
by turning up the temperature (or increasing the density of 
energy) the critical length decreases. Notice that the critical 
length is always shorter than the one in pure AdS because 
the screening effect stemmed from the quark–gluon medium.

The above result (65) is only valid for the UV region 
where the minimal surface is localized in the AdS boundary. 
To see the IR effect of the mutual information, since there is 
no analytic form of the solution, it is needed to compute (63) 
numerically for a given background geometry. To achieve 
these numerics, we first rewrite the horizon in terms of the 
function of the temperature TH and the density of string � 
using (20).

In Sect. 3.2 we studied the microscopic quantum correla-
tion in an IR region by exponentiating the minimal length 
whose boundary points are assumed to be the positions of 
two local operators. For large values of the parameters, TH 
and � , a two-point function decays exponentially. The mutual 
information can also play a similar role in proving this kind 
of correlation. In this case, the mutual information meas-
ures a collective correlation between two subregions. From 
now, we call this the macroscopic quantum correlation. By 
numerical computation, we found that in the IR region the 
critical length hc behaves like the correlation length � in 
(43), hc ∼ �c , for both the extremal and large � limits, see 
the Fig. 1.

(a) (b)

Fig. 1   The plots of the critical length from I(A;B) = 0 for the extremal black hole (a) and for the black hole with TH ≪ 𝜏 (b). The dashed green 
curve represents the microscopic correlation length �c in (43) and the orange dots are numerical results
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6 � Discussion

Using the entanglement entropy, we holographically studied 
various quantum correlations in a quark–gluon medium. We 
considered a black hole geometry with a string cloud to rep-
resent heavy quarks and gluon excitations simultaneously. 
In the quark–gluon medium, quarks, gluons, and their inter-
action generate a nontrivial RG flow. Along this RG flow, 
quantum correlations usually vary and a UV theory flows 
to another IR theory. In this work, we investigated how a 
UV theory in a medium changes into a new IR theory by 
studying quantum correlations depending on the RG scale. 
At fixed points, a theory becomes scale invariant and has an 
infinite correlation length. However, a nontrivial RG flow 
generally breaks the scale symmetry given at fixed points. 
The scale symmetry breaking makes the correlation length 
finite. We looked into how the quark density and gluon’s 
excitation energy modify the correlation length following 
the holographic propositions.

The entanglement entropy describes a quantum correla-
tion between two macroscopic subsystems. We found that 
the entanglement entropy in the UV region always increases 
with increasing the quark density and gluon excitation. This 
fact indicates that the increase of the quark density and gluon 
excitation leads to increasing the degrees of freedom of the 
quark–gluon medium. As a result, the entanglement entropy 
grows up in a dense medium. We further took into account 
two local operators on this background medium and inves-
tigated their microscopic two-point correlation function. 
The entanglement entropy is governed by a minimal sur-
face extending to the dual geometry, while a microscopic 
two-point function is described by a geodesic curve in the 
holographic setup. For a three-dimensional asymptotic AdS 
space, in particular, a minimal surface reduces to a geo-
desic curve. Therefore, the entanglement entropy of the 
background medium is closely related to a two-point func-
tion of local operators. We studied a two-point function in 
the quark–gluon medium and found that a microscopic two-
point function decrease when the quark density and gluon 
excitation grow up in the background medium. This result 
means that the higher the density and the higher the tem-
perature, the stronger the screening effect of the background 
medium.

Another interesting thing in this work is the universal-
ity of the entanglement temperature in the medium. It was 
well known that the entanglement temperature reveals the 
universality in the UV region. For a relativistic theory, the 
entanglement temperature is inversely proportional to the 
subsystem size. In the quark–gluon medium, however, the 
entanglement temperature reveals two distinct universalities. 
In the low quark density limit where the gluon excitation 
becomes dominant, the entanglement temperature shows the 

expected universality, TE ∼ 1∕l . In the high quark density 
limit, on the other hand, we found that the entanglement 
temperature is independent of the subsystem size. Recall-
ing that quarks we considered are heavy, we expect that the 
theory governing the dense medium deviates from a relativ-
istic theory. Due to this reason, intriguingly, the entangle-
ment temperature of a dense medium leads to a different 
universality, TE ∼ l0.

We computed the holographic mutual information in the 
quantum system with the quark–gluon medium. A discon-
tinuous change of the minimal surface can be interpreted as 
the first-order phase transition in the system. Utilizing both 
perturbative and numerical computations, it is shown that 
the critical length is diminished as the density and tempera-
ture increase which is the same as the results in Sect. 3.1. We 
also compare the microscopic IR correlation length with the 
critical length obtained from the mutual information in the 
IR region. By a numerical computation, we observed that in 
the IR region they are matched almost exactly.
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