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In-Taek Junga , Sooyeon Ahnb , JuChan Seoa , and Jin-Hyuk Honga,b

aArtificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Korea; bSchool of Integrated Technology,
Gwangju Institute of Science and Technology, Gwangju, Korea

ABSTRACT
Gesture data collection in a controlled lab environment often restricts participants to performing
gestures in a uniform or biased manner, resulting in gesture data which may not sufficiently
reflect gesture variability to build robust gesture recognition models. Crowdsourcing has been
widely accepted as an efficient high-sample-size method for collecting more representative and
variable data. In this study, we evaluated the effectiveness of crowdsourcing for gesture data col-
lection, specifically for gesture variability. When compared to a controlled lab environment, crowd-
sourcing resulted in improved recognition performance of 8.98% and increased variability for
various gesture features, eg, a 142% variation increase for Quantity of Movement. Integrating a
supplemental gesture data collection methodology known as Styling Words increased recognition
performance by an additional 2.94%. The study also investigated the efficacy of gesture collection
methodologies and gesture memorization paradigms.

1. Introduction

Among the various modalities, body gestures are one of the
most intuitive and widely used tools to facilitate interaction
between humans and computers. Gesture recognition tech-
nology should be incorporated to introduce this modality to
an interactive system, as a technology that accurately recog-
nizes gestures corresponding to the user’s intentions is indis-
pensable. However, gesture recognition performance often
deteriorates in practical use due to a variety of factors, eg,
who, when, and where performing gestures or the conditions
of gesture-sensing platforms (Taranta et al., 2015). It is essen-
tial to collect training data of large quantity and good quality
to build a robust model representing these factors but collect-
ing substantial gestures with high variability is challenging
when collecting gesture data (Alallah et al., 2018; Cheema &
LaViola, 2011; Taranta et al., 2020) to generalize a model
which will work in real-life applications. Meanwhile, when
users utilize a gesture recognition system, each individual per-
forms each gesture is performed differently between individu-
als, and there are even variations within an individual
(Caramiaux et al., 2013), depending on their emotional state
(Noroozi et al., 2021; Savargiv & Bastanfard, 2013), fatigue,
and gesture comprehension. A wide variety and quantity of
gesture data should be collected in a natural environment to
properly reflect on sufficient gesture variability.

However, most research has collected gesture data within
a static pre-defined environment created by researchers.
Data collection from a pre-configured lab environment is

efficient, but such a controlled collection environment some-
times leads to data bias or uniformity. To remedy the lack of
optimal data collection with respect to gesture variability,
researchers have attempted to improve gesture variability
through various methodologies such as diversifying backgrounds
(Zhang et al., 2018), increasing the number of participants
(Albanie et al., 2021; Duarte et al., 2021) collecting gestures in
the context of interacting with an application (Taranta et al.,
2020), introducing data augmentation (Masi et al., 2016; Suzuki
et al., 2020), and directly presenting additional instructions
which induce participants to manifest gesture variability (Kang
et al., 2021; Vatavu et al., 2013; Wobbrock et al., 2007).

Crowdsourcing, a method for collecting data quickly and
efficiently from many unspecified persons, is increasingly
being used to collect various data. This approach involves
an unspecified number of workers who are free to engage in
tasks within their own comfortable space without any super-
vision besides a set of instructions. Due to the diversity of
participant populations and unrestricted environmental
characteristics, crowdsourcing is inherently diverse in inter-
participant and environmental variations. Crowdsourcing is
one good method for the collection of gesture data reflecting
a sufficient level of variability.

The contributions of this study are as follows. (1) we ver-
ify through quantitative analysis of gesture features that
crowdsourcing is more effective for gesture data collection
than lab-based collection. We also (2) investigate the effect
of integrating Styling Words, a methodology to introduce
gesture variability, into the two data collection approaches.
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Finally, we (3) discuss the attributes of an optimal test
environment which would generate more realistic test data-
sets for more effective evaluation of recognition models.

We explored the following research questions:

RQ1: Is crowdsourcing-based gesture data collection better than
conventional lab-based data collection?

RQ2: Does the crowdsourcing environment create synergy with
another technique which increases gesture variability?

RQ3: What methods and environments lead to the collection of
more meaningful gesture data?

2. Background

2.1. Gesture data collection

In order to design gesture-based interactive systems,
researchers use pre-defined gesture sets and collect such sets
themselves. Caramiaux et al. collected gesture data directly
using a variety of gestures for interacting with touch screen
research (Caramiaux et al., 2013). Watanabe and Terada col-
lected gesture data to propose an ultrasound-based in-air
gesture recognition system (Watanabe & Terada, 2018).
Kajiwara collected data manually by using acceleration data
weighted by sEMG as input for a gesture recognition system
to reduce the influence of unstable motion (Kajiwara &
Murao, 2019).

As such, researchers often build and collect gesture data-
sets themselves in various studies. When collecting gesture
data in a controlled environment (ie, in a laboratory),
recorded gestures share similar environmental factors such
as consistent camera settings and backgrounds. Participants
perform gestures in the same environment as instructed and
supervised by researchers, a practice accepted due to its effi-
ciency and convenience. Meanwhile, in the context of inter-
action with an application, gestures are performed
differently by various individuals in more natural (and
therefore diverse) environments, and an individual performs
gestures with subtle differences in various contexts, eg,
affective states (Kleinsmith & Bianchi-Berthouze, 2013;
Noroozi et al., 2021) and gesture usage (Cheema & LaViola,
2011; LaViola, 2015; Taranta et al., 2015, 2020).

In order address the diversity of gestures in the field, a
recognition model must be fed training data of quantity and
quality to provide sufficient gesture variability. Researchers
have attempted to improve gesture variability through vari-
ous methodologies. Zhang et al. constructed an egocentric
hand gesture dataset (EgoGesture) using six different back-
grounds (4 indoor and 2 outdoor), and strong or weak illu-
mination conditions generated with shadows (Zhang et al.,
2018). There are also studies that increase the numbers of
participants or more diverse gesture data. In the case of a
sign language existing in each country, this diversity is
achieved by constructing a large amount of data using edu-
cational sign language videos existing in a wild environment
such as the Internet, YouTube (Duarte et al., 2021; Joze &
Koller, 2018; Li et al., 2019; Shi et al., 2018). Albanie et al.
built a sign language dataset using more than 1000 partici-
pants (Albanie et al., 2021). Duarte et al. built a large-scale

American Sign Language dataset with a vast 16,000-word
vocabulary and over 80 hr duration of video footage (Duarte
et al., 2021). Similar to the crowdsourcing method, these
datasets have the advantage of being able to collect more
diverse and large numbers of gestures. These studies have
the advantage of building a large number of datasets using
publicly released video without directly recording gestures,
but there is a disadvantage of requiring post-processing
depending on the different video contents formats or qual-
ities by setting consistent standards. In addition, it should
be premised that there should be many publicly available
video sources such as sign language, so there is a disadvan-
tage that it is difficult to use if researchers need to directly
define and collect new gestures that meet the purpose.

To include more realistic gesture variability, there are
also studies that collect gestures in the context of interacting
with applications or provide additional instructions. Taranta
et al. quickly copied a pre-defined stroke gesture trajectory
and collected gestures (Taranta et al., 2020). Wobbrock et al.
and Vatavu et al. presented a word-based gesture construc-
tion theme, eg, small or fast to collect stroke gestures
(Vatavu et al., 2013; Wobbrock et al., 2007), and Kang et al.
presented a set of various word-based instructions with
which to collect body gestures (Kang et al., 2021). These
studies are not focused on analyzing the quality of gestures
or discuss the quality of gestures using only the performance
evaluation of the recognition model.

2.2. Crowdsourcing data collection

The crowdsourcing method, in which many workers simul-
taneously perform tasks, has the advantage of collecting
large amounts of data quickly and efficiently (Brown et al.,
2014). The workers participate perform the tasks according
to their own circumstances, leading to large environmental
variations. Crowdsourcing has been commonly used in
many computer vision studies to generate labels and annota-
tions for images (Bastanfard et al., 2022; Su et al., 2012) and
videos (Vondrick et al., 2013), but unlike these tasks, which
often require only accuracy, some tasks such as gesture data
collection also concern variability. Sigurdsson et al. used
crowdsourcing to ensure the diversity of data in building
video datasets in action recognition and automatic descrip-
tion generation tasks (Sigurdsson et al., 2016). Cooper et al.
collected a speech corpus for use in voice technology
(Cooper et al., 2019). In the field of affective computing,
some researchers collected facial data through crowdsourc-
ing (Kim & Vangala, 2016; McDuff et al., 2012; Tan et al.,
2013). Koblin exhibited web-based artwork using Amazon’s
Mechanical Turk by collecting paintings of sheep paintings
with simple sketches of participants (Koblin, 2009). Pukey
and Wouters created a music video by combining tens of
thousands of videos in which crowd-workers imitated a set
of movements (Puckey & Wouters, 2010). In general, crowd-
sourcing-based data collection is often the best match for a
given purpose, inherently including environmental and indi-
vidual variations (Vaughan, 2017).
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In particular, similar to our work, there are studies using
crowdsourcing to collect gesture data that include various
variability. Spiro collected body gestures through crowd-
sourcing-based webcam games (Motion-Chain, Spiro, 2012)
to build the Video of the Human Motion corpus. Game
players watch a short video of one person and interact with
others while attempting to copy it and happily participate in
collecting gesture data. Shahriyar and Yang present
CrowdLearner, a framework based on crowdsourcing to
automatically generate recognizers using mobile sensor
input. Through six gesture recognition tasks, they identified
the potential for developers to create specific recognizers
from crowd-walkers quickly and cheaply (Amini & Li,
2013). Mukushev et al. utilized crowdsourcing to build a
large-scale Kazakh–Russian sign language dataset
(FluentSigners-50). They were able to achieve the advantages
of continuous signings, signer variability, and native signers
through crowdsourcing (Mukushev et al., 2022). These stud-
ies have been able to increase gesture diversity by using
crowdsourcing to recruit collection participants, but their
purpose is somewhat different from those that confirm the
usefulness of a crowdsourcing platform for data collection.

Several researchers have conducted investigating the simi-
larities and differences between data collected through
crowdsourcing and more traditional, laboratory-style data
collection. Alallah et al. investigate the potential suitability
of conducting crowdsourced social acceptability studies of
HWD input modalities (Alallah et al., 2018). Yuhui and
Tian investigate the differences in perceived usability evalu-
ation between crowdsourcing platforms and laboratory tests
(Yuhui et al., 2020). Because the unsupervised environment
of crowdsourcing can cause problems such as unintended
participant behavior or not paying attention, these studies
mainly focus on whether data collected in-lab can be
replaced by crowdsourcing while ensuring data quality.

We present a study that compares the value of collecting
gesture data in-lab vs. through crowdsourcing from the per-
spective of gesture variability. Specifically, the work focuses

on understanding the benefits of crowdsourcing for provid-
ing gesture data sets with greater variability.

3. Method

To compare gesture data collection in crowdsourcing-based
(CR) and lab-based (LAB) environments in terms of gesture
variability and synergy with the Styling Words (SW)
method, two variables were considered: instruction (SW or
common (CO) instructions) and environment (CR or LAB).
The data pairings were as follows: CR with CO instructions
(CR-CO), CR with the SW (CR-SW), LAB with CO instruc-
tions (LAB-CO), and LAB with the SW (LAB-SW). The test
datasets were collected separately, and details related to the
datasets are specified in Section 3.3. The recognition per-
formance of the four trained models, ie, CR-CO, CR-SW,
LAB-CO, and LAB-SW, was evaluated by collected test data.

3.1. Gesture and gesture features

For gesture analysis, we selected 12 upper-body gestures
known as Sondam in Korea (Lee et al., 2019). These gestures
are used as an alternative method of communication for
people with severe disabilities, such as Makaton in the UK
(Grove & Walker, 1990) and the Guk System in Germany
(Giel, 2012). As shown in Table 1, half of the selected ges-
tures are one-handed movements and the others are two-
handed.

Skeleton-based gesture features were used in order to
quantitatively analyze the gesture data. We observed six ges-
ture features in the study listed in Table 2: Gesture Area,
Quantity of Movement, Performance Time, Average gesture
Speed, Body Posture Variation, and Body Posture Density.
We referenced twelve 2D gesture features redefined (Kang
et al., 2021) from the 3D gesture features proposed by
Vatavu (Vatavu, 2017).

Table 1. The 12 upper-body gestures

One-hand gestures Two-hand gestures

Come1 Face Hi Baby Big Bus

Light Sea Sky Snow Take Together

Subjects learned gestures from the official tutorial video performed by 6 signers.

Table 2. 2D gesture features redefined from 2D features (Kang et al., 2021)

Feature Description Abbr.

Gesture area Area of the rectangle drawn by min, max x, y coordinates of both wrist joints GA
Quantity of movement Total length of gesture trajectory for every joint QoM
Performance time Gesture perform ance time measured in the number of frames PT
Average gesture speed Average of the movement speed of all joints AS
Body posture variation Sum of variance from the mean of each joint in all frames BPV
Body posture density Variation of body posture over the gesture area (¼ BPV�GA) BPD
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3.2. Skeleton key point detection and gesture
recognition

In the collected gesture videos, the beginning and end
frames of each gesture were manually trimmed. We directly
checked the collected video during the data pre-processing
and conducted a full inspection if there were any gestures
that were performed excessively incorrectly, and if there
were any problems with video data. Skeleton data were
extracted in the BODY_25 format2 by using the OpenPose
model (Cao et al., 2021) from the trimmed gesture samples.
By utilizing the characteristic of the Sondam gesture which
consists only of upper-body gestures, only upper-body-
related joints (No. 0–8) were used among the 25 extracted
2D joints. To minimize the variance in skeleton values due
to figure position and body size, post-processed skeleton
data was extracted from OpenPose. The pelvic joint (No. 8)
was affixed to the origin (0, 0) and the distance of all points
to the origin were scaled based on each figures’ upper body
height. For gesture recognition, we adopted Double-feature
Double-motion Network (DD-Net) (Yang et al., 2019), a
skeleton-based action recognition model. This model is a
lightweight network implemented Keras backend in
Tensorflow. The basic architecture of DD-net based on the
multilayer ConvNet was used in the same way. For details
on experiments and hyperparameters, settings were described
in 4.1. Recognition performance part.

3.3. Data collection

As mentioned above, we configured six separate datasets:
four training datasets, ie, two CR training datasets (TR-CR-
CO and TR-CR-SW) and two LAB training datasets (TR-
LAB-CR and TR-LAB-SW), as summarized in Table 3, and
two test datasets, ie, a CR test dataset (TE-CR) and a LAB
test dataset (TE-LAB).

All participants in each of the LAB and CR environments
watched the same tutorial video once and repeated the ges-
ture 5 times in one collection session. In the case of the SW
session, gestures were performed sequentially according to 5
SWs. (eg, “Please follow this gesture Huge”. fast, slow… ).
For the NW session, the gesture just watched was repeated 5
times without further instructions. (eg, “Please follow this
gesture” 5). However, in the case of CR, participants can
watch the tutorial video repeatedly at any time, so they may
have watched the tutorial video more often than in the LAB
environment. The training datasets were collected by the
imitation method. We presented the same gesture tutorial

video to participants and asked them to immediately repeat
the gestures depicted on the tutorial. Unlike the training
datasets, the test datasets were collected by the memoriza-
tion method. 1–2 days before data collection, participants
learned and remembered the gestures from the tutorial vid-
eos. On the day of the data collection, we asked participants
to perform the target gestures based entirely from memory
without watching the video for reference so that the gestures
in the test datasets were natural. It is intended to use the
gestures their memory, just as they perform gestures in daily
life. With respect to the collection environments, we
expected the LAB datasets (TR-LAB-CO, TR-LAB-SW, and
TE-LAB) to be more uniform and have less variance than
the CR datasets (TR-CR-CO, TR-CR-SW, and TE-CR). We
also expected more variance in the test datasets because par-
ticipants would be performing gestures from memory rather
than simply imitating gestures from videos.

3.3.1. Types of collection environments
� Lab-based. Environmental conditions such as camera

distance and angles, lighting, and background were con-
sistently controlled by the researchers. As indicated by
the gestures on the left side of Figure 2, the camera was
placed in front of the participants.

� Crowdsourcing-based. Every participant configured their
own recording environments for themselves to record
gesture videos, as indicated by the gestures on the right
side of Figure 2. Except that a participant’s upper body,
hands, and full face must be visible in the recordings, no
further instructions were given besides a web page with
basic instructions on how to collect gestures (See
Figure 1). Within a week, each participant independently
completed a set of gesture recordings.

3.3.2. Additional instructions
� Styling Words. According to (Kang et al., 2021) this

approach has been demonstrated to increase gesture vari-
ability in the LAB environment and ultimately contribute
to improving recognition performance. Participants were
given a target gesture with an additional descriptive
phrase, eg, “please perform this gesture sadly.” A total of
two types of styling word sets were used for data collec-
tion. It is divided into an intuitive set (type1) and an
abstract set (type2), and each type includes one None-
Word (NW) that does not provide any additional
instructions (type1: fast, slowly, huge, small and

Table 3. Details of the datasets collected in the study

Type Environment
Additional
instruction

Ways of
performing gestures Participants Abbreviation

# of
Samples

Training Laboratory
(LAB)

Styling Words (SW) Watching a tutorial video, then
immediately performing the gestures

P1–P20 TR-LAB-SW 4800
Common (CO, without SW) P1–P20 TR-LAB-CO 4800

Crowdsourcing
(CR)

SW P21–P40 TR-CR-SW 4800
CO P21–P40 TR-CR-CO 4800

Testing LAB CO Memorizing then recalling and performing
the gestures later

P41–P50 TE-LAB 1200
CR P51–P60 TE-CR 1200
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NW/type2: excitedly, sadly, roughly, and elegantly
and NW).

� Common instructions. Participants were told a plain
phrase, eg, “please perform this gesture,” without any
additional instructions.

3.3.3. Training vs. test datasets
� Creating training gesture data by imitating the refer-

ence videos. Forty individuals participated in the training
data collection, 20 for the CR environment and 20 for the
LAB environment. Participants watched a tutorial video
before performing a gesture, and immediately imitated the

gesture. 9600 samples were collected for the TR-CR-SW
dataset [20 participants � 12 gestures � 10 SWs � 2 rep-
etitions ¼ 4800 samples] and the TR-CR-CO dataset [20
participants � 12 gestures � 20 repetitions ¼ 4800 sam-
ples]. The same number of samples were completed for
the TR-LAB-SW and TR-LAB-CO datasets.

� Creating training gesture data by recalling a memory.
Twenty individuals participated in test data collection,
10 for the CR environment and 10 for the LAB envir-
onment. Participants learned and memorized all 12 ges-
tures at least one day before participating in the data
collection. During the data collection, they recreated
the gestures from memory. 2400 samples were collected:

Figure 1. Examples of the crowdsourcing collection web page. (a) illustrates the process of collecting gesture videos through online. (b) shows the part of the
guidelines page for collecting quality gesture videos. (c) shows a list of gestures with illustrations for participants to select gestures.

Figure 2. Examples of collected data in the LAB (left) and CR (right) datasets
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1200 for the TE-CR dataset [10 participants � 12
gestures � 10 repetitions ¼ 1200] and 1200 for the
TE-LAB dataset [10 participants � 12 gestures � 10
repetitions ¼ 1200]. The details of the datasets are
described in Table 2.

3.4. Participants

Participants in the collection of all dataset types, including
TR and TE, were recruited through on-campus and off-cam-
pus recruitment communities. Participants freely accessed
the instructional web page and participated in the CR collec-
tion environment (See Figure 1). Participants visited a
laboratory which had been configured for the LAB collection
environment in advance and participated in the collection.
12 males and 8 females worked for two to five days to col-
lect the CR environment training datasets TR-CR-CO and
TR-CR-SW, and another 6 males and 4 females worked
from one to two days to collect the test dataset TE-CR. For
LAB data collection, other 10 males and 10 females worked
for four days to collect the LAB environment training data-
sets TR-LAB-CR and TR-LAB-SW, and another 5 males and
5 females worked for a day to collect the LAB environment
test dataset (TE-LAB). The age of the participants ranged
approximately from the 20s to 50s. After data collection was
performed, participants involved in the collection of training
and test datasets were paid $50 and $26, respectively, as
compensation for their efforts. We received consent from all
participants to share videos containing their faces for
research purposes.

4. Experiments

4.1. Recognition performance

A total of four models (CR-CO, CR-SW, LAB-CO, and
LAB-SW) were trained using their corresponding training
datasets (TR-CR-CO, TR-CR-SW, TR-LAB-CO, and TR-
LAB-SW, respectively). All models, (# of 1p, 4p, 10p, and
20p) were evaluated by 20-fold cross-validation, and the
#19p models (n¼ 19) were evaluated through leave-one par-
ticipant-out cross-validation. Therefore, there were a total of
20 models for each number of participants, and the evalu-
ation result corresponding to the number of participants
was the average accuracy. The performance of the four mod-
els was measured on the CR test dataset (TE-CR). Figure 3
presents the results by changing the number of participants
in the training. The boxplot on graph #20p particularly indi-
cates the distribution of the performance for the 20 models
in #20p. One RTX-2080ti GPU was used for training, and
the number of filters and epochs were set to 32 and 150. In
the original paper (Yang et al., 2019), the learning rate was
sequentially reduced from 1e-3 to 1e-5, but we fixed it to
1e-4 for this study.

(RQ1) In the #20p result shown in Figure 3, the accura-
cies of the CR-based models (CR-SW and CR-CO) are
8.38% and 9.5% higher than the LAB models (LAB-SW and
LAB-CO), respectively. The CR models (CR-SW and CR-
CO) also show a narrower boxplot range (25%�75%), indi-
cating that the CR models show more stable generalization
performance than the LAB models. In building a more
robust recognition model, the CR model collected better-
quality gesture data than the LAB.

(RQ2) The Styling Words (SW) approach was applied to
further improve performance. This method contributed to
the improvement of both the LAB and CR collection

Figure 3. Test accuracy of the four models according to the number of participants. The test results were evaluated with TE-CR data.
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environments. In addition to the improvement (an increase
of 4.69% (LAB-SW–LAB-CO)) in the LAB environment
results indicated by the previous study, we could identify a
synergy with the CR environment by an additional increase
in accuracy of 2.94% (CR-SW–CR-CO). Incidentally, CR-
CO achieved 5.2% greater accuracy than LAB-SW, implying
the substantial effect of CR is greater than that of SW.

As shown in Figure 3, performance varied by the number
of participants used in training. When the SW approach was
applied, #10p SW models achieved performance comparable
to those of the #20p CO models (CR-SW #10p/CR-CO
#20p: 83.8%/82.3%, LAB-SW #10p/LAB-CO #20p:
71.9%/72.8%). Remarkably, the CR-SW #4p model outper-
formed the LAB-CO #20p model by 2.9% in accuracy and
showed similar performance to the LAB-SW #15p model.
This means that using the CR with SW could reduce the
number of people required to collect training data by up to
80% compared to conventional LAB gesture data collection.
The CR is considerably more effective than the LAB in feed-
ing high-quality data to machine learning models, and the
SW also demonstrates this capability. Interestingly, the CR
resulted in a relatively lower increase using SW than the
LAB (2.9% vs. 4.7%, respectively), for reasons which we will
discuss later in Section 5.2.

4.2. Analysis of gesture feature

Based on the gesture sample from a single participant, 240
gesture samples [12 gestures � 20 repetitions ¼ 240] were
collected as training data, and 120 gesture samples [12 ges-
tures � 10 repetitions ¼ 120] were collected as test data.
For each participant, we calculated the average (the “a”
graphs) and standard deviation (SD, the “b” graphs) of 240
training and 120 test values for the six gesture features (See
Figure 4). The size of the box in the “a” graphs shows the
difference in a gesture feature over the population (popula-
tional variability), and the mean value of the SD in the “b”

graphs shows the difference in feature values between ges-
tures performed by an individual participant (individual
variability).

We confirm gesture differences between and within par-
ticipants according to the collection environments (CR and
LAB) and instruction methods (SW and CO). To simplify
graph interpretation, we mainly focus on the distribution of
the “a” graphs (indicating populational variability) and the
mean values of the “b” graphs (indicating individual
variability).

The Wilcoxon signed ranked test (TR-LAB-SW vs. TR-
LAB-CO and TR-CR-SW vs. TR-CR-CO) and Wilcoxon
rank-sum test (TR-LAB-CO vs. TR-CR-CO) were conducted
to verify the difference between the mean values of SD in
Figure 4(b). An F-test was conducted to statistically verify
the difference in distribution between the graphs in
Figure 4(a).

4.2.1. Crowdsourcing-based vs. lab-based data collection
As shown in the “b” graphs in Figure 4, the average
(denoted by an X) of the standard deviation for gesture
features except BPD and BPV was higher for the CR envir-
onment than the LAB environment (TR-CR-CO>TR-LAB-
CO; TR-CR-SW>TR-LAB-SW), signifying that the CR
induced an increase of gesture variability within individual
participants. CR data is more widely distributed than LAB
data in general in the “a” graphs, signifying increased ges-
ture variability between participants.

More specifically, as shown in Figure 4 (QoM-a), the box
size for TR-CR-CO is significantly wider (���p< 0.001)
than that for TR-LAB-CO, implying that the QoM values of
participants are more diverse in the CR environment.
Similar results were also observed in the “a” graphs of PT,
BPD, and GA. As shown in Figure 4 (QoM-b), the mean
values of SD increased when changing environments (SD for
CR-CO: 1.78> LAB-CO: 1.25, CR-SW: 2.71> LAB-SW: 1.8,

Figure 4. Boxplots of (a) average and (b) standard deviation for the six gesture features (QoM, PT, AS, BPV, GA, and BPD). Boxplots from left to right for each graph:
TE-CR, TE-LAB, TR-CR-CO, TR-CR-SW, TR-LAB-CO, TR-LAB-SW (�p< 0.05, ��p< 0.01, ���p< 0.001)
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���p< 0.001, respectively). Most features except BPV and
BPD show the same tendency. The CR not only induces
higher gesture variability within individual participants (a
higher mean of SD in the “b” graphs indicating individual
variability) but also induces higher variability between par-
ticipants (the wider range of boxes in the “a” graphs indicat-
ing population variability).

Considered together with the evaluation results in Section
4.1, it can be confirmed that the increase in gesture variabil-
ity in the CR environment ultimately contributes to an
improvement in recognition performance.

4.2.2. Styling Words vs. Common instruction
(RQ2) For all gesture features in the “b” graphs of Figure 4,
the SW had a higher mean of SD (individual variability) than
the CO instructions, confirming that the SW induces more
variance in gestures performed by an individual participant
than CO. More specifically, the mean value of TR-CR-CO of
GA-b of 0.55 rose to 0.97 in TR-CR-SW (a 176% increase,
���p< 0.001), and rose from 0.46 (TR-LAB-CO) to 0.82 (TR-
LAB-SW) (an 178% increase, ���p< 0.001). In almost all
other features, it is evident that SW shows a statistically sig-
nificantly higher SD value compared to CO. Through this, it
was confirmed that the SW variously changes certain features
such as gesture Quantity of Movement, Performance Time,
Average Speed, and Gesture Area in both CR and LAB.

The SW varies the distribution of the “a” graph in fea-
tures such as QoM, PT, AS and GA. Compared to the CO,
the SW makes the gestures performed by each participant
more diverse in terms of gesture movement, time, speed,
and range, increasing population variability. Overall, the
average value of features also increases, through which the
SW contributes to increases in the length of the gesture tra-
jectory and the performance speed and an expansion of the
gesture range. The SW resulted in participants making ges-
tures larger, longer, and faster.

Just as CR makes one participant to perform gestures in
a more diverse fashion than the LAB (See 4.2. –
Crowdsourcing-based vs. Lab-based), the SW also results in
more diverse gestures than the CO. Furthermore, based on
the results of the statistical significance tests on the “b”
graphs, it was confirmed that the SW contributes signifi-
cantly to individual gesture variability compared to CO.
However, from the “a” graph, the effect of CR on popula-
tional variability is noticeable compared to SW.

Notably, the LAB datasets contained less gesture variability,
possibly reflecting participants’ response to the stressful or
contrived nature of the laboratory collection environment.
Compared to the more natural and comfortable CR environ-
ment, the LAB environment is supervised and unfamiliar to
participants, which led to less natural and variable gestures.

5. Discussion

5.1. What’s wrong with a lab-based test dataset

(RQ3) Test data of any recognition problems should be
more natural and realistic to accurately validate the

generalization performance of the recognition model. To
obtain these data, we used a CR method that can be easily
collected in their own comfort space without a supervisor,
as well as the LAB method in the researcher’s pre-set collec-
tion environment, which is generally used for gesture collec-
tion. In addition, rather than watching a tutorial video and
following the movements, participants were asked to recall
and perform the gestures they had memorized at least a day
before.

In Figure 4 graphs, the CR dataset have a wider distribu-
tion (graph “a”) and a larger SD mean value (graph b) than
the LAB dataset, both in test and training. In particular, the
distribution and SD values of TE-CR are much wider and
larger than TE-LAB. In terms of the quality of the dataset, it
does not mean that all variability is helpful, but appropriate
variation in the gesture can improve model generalizability.
As confirmed in 4.1. Recognition Performance part, the ges-
ture variability induced through CR and SW ultimately con-
tributes to the performance improvement of the recognition
model.

On the other hand, TE-LAB did not have relatively suffi-
cient variability. The combination of CR and recall scheme,
TE-CR, includes diverse population variability and inde-
pendent variability, whereas TE-LAB is rather very similar
to TR-LAB data. This implies that the TE-LAB data may
not portray natural gestures. As a result of testing the four
models on the TE-LAB data, the LAB-SW model showed
the highest recognition performance of 81.86%, while the
remaining three models showed almost 10% lower recogni-
tion performance (CR-SW/CR-CO/LAB-CO: 72.55%/
69.92%/72.91%). This result is likely in parallel with our
observations. We often found participants to be more accur-
ately perform gestures so as to be overly uniform and rigid
in the participation for the test data collection. Evaluation
on TE-LAB may not accurately portray the actual perform-
ance of gesture recognition.

5.2. Excessive gesture variability

We confirmed through the feature analysis performed in
Section 4.2 that both the CR and SW methods increased
gesture variability, but their combination resulted in less
performance improvement than the combination of the LAB
environment and the SW method. In the “a” graphs in
Figure 4, the SW method had a consistent effect on the CR
environment; standard deviation (indicating population vari-
ability) and average values increased for most features.
However, the SW method had an inconsistent effect on data
collected in the LAB environment: the mean and SD values
increased only in GA and BPD. In contrast, the mean of PT
decreased and the ranges of boxes for QoM, PT, and BPV
were similar or somewhat narrowed. In the “b” graphs in
Figure 4, the mean values (indicating individual variability)
and standard deviation showed consistent tendencies in both
environments. LAB data also increased in average value and
had a wider range, but a much more pronounced change
was observed in CR-based data, indicating a significant dif-
ference between the two environments in interpreting
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Styling Words and reflecting them in each participant’s ges-
tures. This is probably due to the environmental nature of
CR creating a more natural and unsupervised space in
which it can be assumed that participants sometimes change
their gestures excessively in the process of interpreting
Styling Words.

6. Conclusion

The collection of training data with higher gesture variability
can increase the performance of an ML-based gesture recog-
nizer. In this study, we confirmed how CR-based data col-
lection, which has recently been actively introduced for the
development of ML-based systems, improves gesture vari-
ability and recognition performance. CR-based data for a
variety of gesture features include much higher populational
and individual variability than LAB data. We also confirmed
that the environmental variations of the CR contribute to
better gesture data collection. However, when applying CR
and SW at the same time, we observed instances of excessive
variability in gesture features which resulted in less perform-
ance improvement. Further investigation is required to
adaptively apply additional methods to increase gesture vari-
ability under the CR environment to avoid such excessive
gesture feature variability.

Notes

1. Official tutorial video (come), https://youtu.be/suFs0nftprc
2. OpenPose output format (BODY_25), https://cmu-

perceptual-computing-lab.github.io/openpose/web/html/doc/
md_doc_02_output.html
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