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Abstract: We study holographic entanglement entropy in 5-dimensional charged black
brane geometry obtained from Einstein-SU(2)Yang-Mills theory defined in asymptotically
AdS space. This gravity system undergoes second order phase transition near its critical
point, where a spatial component of the Yang-Mills fields appears, which is normalizable
mode of the solution. This is known as phase transition between isotropic and anisotropic
phases, where in anisotropic phase, SO(3)-isometry(spatial rotation) in bulk geometry is
broken down to SO(2) by emergence of the spatial component of Yang-Mills fields, which
corresponds to a vector order in dual field theory. We get analytic solutions of holo-
graphic entanglement entropies by utilizing the solution of bulk spacetime geometry given
in arXiv:1109.4592, where we consider subsystems defined on AdS boundary of which
shapes are wide and thin slabs and a cylinder. It turns out that the entanglement en-
tropies near the critical point shows scaling behavior such that for both of the slabs and
cylinder, ∆εS ∼

(
1− T

Tc

)β
and the critical exponent β = 1, where ∆εS ≡ Siso − Saniso,

and Siso denotes the entanglement entropy in isotropic phase whereas Saniso denotes that
in anisotropic phase. We suggest a quantity O12 ≡ S1 − S2 as a new order parameter near
the critical point, where S1 is entanglement entropy when the slab is perpendicular to the
direction of the vector order whereas S2 is that when the slab is parallel to the vector order.
O12 = 0 in isotropic phase but in anisotropic phase, the order parameter becomes non-zero
showing the same scaling behavior. Finally, we show that even near the critical point,
the first law of entanglement entropy is held. Especially, we find that the entanglement
temperature for the cylinder is Tcy = cent

a , where cent = 0.163004 ± 0.000001 and a is the
radius of the cylinder.
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1 Introduction

AdS/CFT correspondence has shed light on strongly coupled field theories by employing
their holographic dual gravity theories [1–3]. Especially, fluid-gravity duality [4–6] and AdS-
condensed matter theory(AdS/CMT) [10–12, 14] are widely studied in many literatures
to explore low energy(long wavelength) limits of conformal field theories, which become
conformal fluids, condensed matter systems and so on. Especially, in fluid-gravity duality,
holographic computation of the ratio of shear viscosity, η to entropy density, S is the most
remarkable example and it is known to be universal, which is given by η

S = 1
4π [4, 6–9].

An interesting issue related to fluid-gravity duality and AdS/CMT is thermodynamic
phase transition where the system shows symmetry breaking because of emergence of an
order parameter, a condensation. In condensed matter theory, electron-electron bound
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states, so called Cooper pairs, are present near its critical point which breaks U(1) gauge
symmetry of electrons.

A noticeable construction of gravity model for holographic condensed matter theory is
based on a theory with complex scalar field defined in the background of (asymptotically
AdS) charged black brane. [10, 12]. When the black brane temperature becomes below
a certain critical temperature, T = Tc, the complex scalar field becomes unstable and
condensed. The charged black brane geometry presents scalar hair due to this condensation.
The condensation corresponds to U(1)-symmetry breaking due to emergence of a scalar
order in the dual field theory system, and which implies super-conductor/normal-conductor
phase transition.

It is also interesting to consider the emergence of vector(p-wave) or tensor(d-wave)
order near the critical point. An interesting holographic model to explore p-wave super-
fluid/normal-fluid phase transition is Einstein-SU(2)Yang-Mills theory in asymptotically
AdS5 spacetime [13, 18–20]. A precise solution in the theory is a 5-dimensional charged
black brane solution. In the solution, temporal direction of the Yang-Mills fields is turned
on, which is proportional to τ3 = σ3

2 , where τ3 is the third generator in SU(2) gauge group,
σi are the Pauli-matrices and i = 1, 2, 3.

In this dual gravity model, for a certain chemical potential µc, an interesting mode
of solution appears. This mode is the spatial component of Yang-Mills fields being pro-
portional to τ1 = σ1

2 and it is a normalizable mode of the solution. In fact, the black
brane geometry enjoys SO(3)-global rotational symmetry mixing 3-dimensional spatial co-
ordinates, {x1, x2, x3}. However, once the spatial mode of solution appears, the SO(3)
rotational symmetry is broken down to SO(2), where the direction of the spatial mode
is chosen to be in x1-axis. In holographic dictionary, normalizable mode of solution in
dual gravity corresponds to a state in the boundary field theory. Therefore, the symme-
try is broken due to a state in the dual field theory and so it is spontaneous symmetry
breaking(SSB).

One of the previous works to explore this SSB near the critical point is a study on the
ratio of shear viscosity to entropy density in fluid-gravity duality [17, 18]. The shear viscos-
ity defined in x2−x3 plane, η23 retains its universal value of the ratio since SO(2)-rotational
symmetry still exists whereas that defined in the plane which contains x1 coordinate(e.g.
η12) will give the deviation from the universal value.

To study this holographic fluid system, one can apply either numerical or analytic
methods. In [17], the authors consider numerical method and find out that when α = κ5

g

is less than a certain critical value, αcrit, the boundary fluid system shows second order
phase transition whereas if α is greater than αcrit, it presents first order phase transition,
where κ5 is 5-dimensional gravity constant and g is the gauge coupling of the Yang-Mills
fields. They also figure out that the deviation of the ratio from the universal value shows
scaling behaviors near the critical point, such as

1− 4πη12
S
∼
(

1− T

Tc

)β
(1.1)
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and its critical exponent β is
β = 1.00± 0.03, (1.2)

where T is the charged black brane temperature, and Tc is critical temperature.
To determine the critical exponent more precisely, the authors in [18] employ analytic

approach in large gauge coupling limit, α � 1, together with the magnitude of spatial
component of Yang-Mills fields, ε� 1 is small. The deviation is given by

1− 4πη12
S

= 1305πTc
544

(
1− T

Tc

)β
. (1.3)

It turns out that the critical exponent is determined to be β = 1 in this analytic approach.
The analytic approach given in [18] to obtain such a deviation of the ratio of shear

viscosity to entropy density is crucially based on their methodology of double expansion
with parameters, α and ε in the bulk. The authors in [18] assume that the magnitude of
the vector order, ε is small and so its subleading corrections are suppressed by ε. To get
analytic form of the leading backreactions from the energy momentum tensor of the Yang-
Mills fields, they also assume that α is small otherwise it is very unlikely to get the analytic
solutions of the back reactions. This approach allows them to obtain the analytic form of
the backreactions perturbatively. The leading corrections to the background geometry is
O(ε2α2) and the subleading corrections are O(ε1+iα2j), where i, j are positive integers and
i > 1 or j > 1. We note that since this analytic approach is based on small α expansion,
it is manifest that the thermodynamic phase transition observed in that analytic approach
is second order one.

On the other hand, there is another interesting direction to explore the field theory sys-
tem, (holographic) entanglement entropy. Entanglement entropy, which describes quantum
correlation between a macroscopic subsystem and its complement, is one of the important
quantities specifying quantum nature of a system. Based on the AdS/CFT correspon-
dence, Ryu and Takayanagi propose that the entanglement of a quantum field theory can
be evaluated by calculating the area of a minimal surface extending to the dual geome-
try [15, 16] and it is further developed in [21, 22]. This provides more precise understanding
between gravity theory in asymptotically AdS space and the dual field theory defined on
its conformal boundary [23].

Especially, an interesting property of (holographic) entanglement entropy is that there
is a concrete relation between the subsystem energy and its entanglement entropy in the
limit that the system size is very much small, which is called the first law of entanglement
entropy [24–33]. In small subsystem limit, there is a relation, ∆E = T ∆S, where ∆E is
energy difference of the subsystem when it is excited and ∆S is the corresponding change of
the entanglement entropy. T is called entanglement temperature. We note that it is widely
discussed that the entanglement temperature is universally proportional to the invese of
the subsystem size regardless of the shape and dimensionality of the entangling region.

In this paper, we study Einstein SU(2) Yang-Mills theory near critical point, by em-
ploying holographic entanglement entropy. In the dual field theory, a vector order appears
and it breaks SO(3) rotational symmetry. Especially, we concentrate on some features of
(holographic) entanglement entropy near critical point as follows. One may expect that
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entanglement entropy will perceive some of thermodynamic properties of field theory sys-
tem near critical point. Since the gravity model undergoes second order phase transition
near critical point, one may wonder if (holographic) entanglement entropy may show a
scaling behavior like other quantities such as η12, the ratio of shear viscosity to entropy
density in anisotropic direction. Another question is if entanglement entropy can provide
a new order parameter like the vector order parameter that we discuss above. From this,
one can recognize that the SO(3) spatial rotational symmetry breaks down to SO(2). Fi-
nally, we want to check if the first law of entanglement entropy near the critical point is
still valid, keeping its universal properties of entanglement temperature, even though the
SO(3) symmetry is broken by the vector order.

In the following, we will answer the questions that we raised above in order. First of all,
we compute entanglement entropies of subsystems on the boundary spacetime with shapes
of “wide and thin slabs” and a “cylinder”. The slabs are computable examples by applying
analytic approaches1 but for the cylinder case, we need numerics as well as analytic ones.2
We study two different slabs, which share the same shape but we put them in different
directions. More precisely, we consider a wide slab which is perpendicular to the vector
order(the vector order is along x1−direction) and another slab being parallel to the vector
order. We call each of the entanglement entropy S1, S2 respectively. We define quantities,
∆εSi ≡ Siso

i − Saniso
i (i = 1, 2), which shows how much the excess of entanglement entropy

is when the boundary field theory system shows phase transition to anisotropic phase from
isotropic phase. It turns out that ∆εSi presents a scaling behavior such that

∆εSi = 2520π2

17κ2
5

ΣiA(ε)
i (d)Tc

(
1− T

Tc

)β
, (1.4)

where the critical exponent β turns out to be one, i.e. β = 1. Σi is the cross sectional area
of each slab, A(ε)

i are the factors, showing “d” dependence, where d is the thickness of the
slabs and Tc is the critical temperature. The leading behaviors of A(ε)

i is given by

A(ε)
i (d) = 281

134400π7/2 Γ
(1

3

)3
Γ
(1

6

)3
d2 +O(d4), (1.5)

for both of A(ε)
i but the next sub-leading is different from each other. For the subsystem

with its shape of cylinder, we also compute the same quantity, ∆εScy = Siso
cy −Saniso

cy as we
discussed above and find that

∆εScy = 5040π2L1
17κ2

5
γ(ε)(a)Tc

(
1− T

Tc

)β
, (1.6)

where
γ(ε)(a) = 0.163313a3 +O(a4), (1.7)

1We note that there are some of earlier numerical works [42, 43], in which they discuss entanglement
entropy of a slab in this background.

2We get analytic(algebraic) solutions of surface area for the cylinder on AdS boundary. To apply one of
the boundary conditions to the surface, we use numerics. For the details, see section 4.1.
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where a and L1 is the radius and the length of the cylinder and β = 1. We note that to
get this results, we utilize analytic as well as numerical methods.

Second of all, once we set the cross-sectional area of the two slabs to be equal as
Σ ≡ Σ1 = Σ2, we can define an interesting new order parameter O12 ≡ S1 − S2 which
vanishes in isotropic phase. However, once the dual field theory system gets into the
anisotropic phase, it becomes

O12 = Saniso
1 − Saniso

2 = −2520π2

17κ2
5

ΣA(ε)(d)Tc
(

1− T

Tc

)β
, (1.8)

which also shows the same critical exponent β = 1. The leading behavior of A(ε)(d) is
proportional to ∼ d4. More precisely, the leading behavior of A(ε)(d) is given by

A(ε)(d) = 3
√

3
448π9/2 Γ

(1
6

)3
Γ
(1

3

)3
d4 +O(d6). (1.9)

Finally, we study the first law of entanglement entropy in this framework. We find
that even in the case that the vector order appears near critical point, the first law of
entanglement entropy is still valid for both of the subsystems of the slabs and the cylinder.
This means that subsystem energy and entanglement entropy are proportional to each
other and the ratio of one to another is the same T , which is the entanglement temperature
when the subsystem is out of the critical point. Especially, by employing analytic as well
as numerical methods, we determine entanglement temperature of the subsystem with the
shape of cylinder, which is given by

Tcy = cent
a
, where cent = 0.163004± 0.000001, (1.10)

where a is the radius of the cylinder.
We close this section with a remark. The critical behaviors and the fact that its critical

exponent β = 1 of the entanglement entropies are turned out to be universal features in our
analytic approach. However, anisotropic features also appear in the factors, for example,
A(ε)
i (d) in thin and wide slab cases. In the small “d” region, we only see the leading

behavior of entanglement entropy which is proportional to d2. However, as d increases,
the subleading corrections become important and it shows spatial anisotropy and it may
depend on an angle between the direction of the vector order and the axis that the slab
is lying in. Our analysis manifestly shows that the leading behaviors of the anisotropy in
the entanglement entropy is contained the coefficient, A(ε)

i (d), which have information of
directional dependency of degrees of freedom when the vector order appears.

2 Holographic model

In this section, we will review the holographic model for anisotropic super fluids defined
on its conformal boundary. To illustrate the model, we mostly follow the papers [18, 19].
We begin with the holographic model given by

S =
∫
d5x
√
−G

( 1
κ2

5

(
R+ 12

L2

)
− 1

4g2F
a
MNF

aMN
)
, (2.1)
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where κ5 is 5-dimensional gravity constant, g is the gauge coupling for SU(2) gauge field
Ba
M . L is the length scale for cosmological constant and we set L = 1 in the following

discussion. The field strength for the gauge fields is given by

F aMN = ∂MB
a
N − ∂NBa

M − εabcBb
MB

c
N , (2.2)

where indices with upper case Latin letters asM , N . . . are spacetime indices and the indices
with the lower case Latin letters are gauge indices, and they run as a, b, c = 1, 2, 3. εabc is
fully anti-symmetric tensor.

By applying variational principle of the fields to the action, we get their equations of
motion. They are

WMN ≡ RMN + 4GMN − κ2
5

(
TMN −

1
3T

P
P GMN

)
= 0, (2.3)

Y aN ≡ ∇MF aMN − εabcBb
MF

cMN = 0, (2.4)

where WMN is Einstein equation and Y a
M is gauge field equation. TMN is stress-energy

tensor being given by

TMN = 1
g2

(
F aMPF

Pa
N − 1

4FPQaF
PQaGMN

)
. (2.5)

Now, we are going to get their solutions. The forms of the solutions that we try are

B = φ(r)τ3dt+ ω(r)τ1dx1, (2.6)

ds2 = −N(r)σ2(r)dt2 + dr2

N(r) + r2f−4(r)dx2
1 + r2f2(r)(dx2

2 + dx2
3), (2.7)

where x1,x2, and x3 are the boundary spatial coordinates. One of the solutions is 5-
dimensional charged black brane solution, which is given by

φ(r) = µ(1− 1
r2 ), ω(r) = 0, (2.8)

σ(r) = f(r) = 1 and N(r) = N0(r) ≡ r2 − m

r2 + 2µ2α2

3r4 ,

where µ is chemical potential for the gauge field φ, m = 1 + 2µ2α2

3 is the mass of the black
brane and the constant α2 ≡ κ2

5
g2 . We note that the horizon of the black brane is located at

r = 1 in this solution by employing an appropriate coordinate rescaling such that r → λr

and {t, x1, x2, x3} → λ−1{t, x1, x2, x3} with a real constant λ. In this rescaled coordinate,
the chemical potential µ is dimensionless and it turns out that at µ = 4, the normalizable
mode of solution ω(r) appears.

Now, we are interested in another kind of solutions, where ω(r) does not vanish. The
way how to get a solution is to solve the gauge field equations (2.4) by assuming that the
ω(r) is non-zero but still small. It turns out that the form of the solution ω(r) is given by

ω(r) = ε
r2

(r2 + 1)2 +O(ε2), (2.9)

where ε is a small parameter representing the magnitude of ω(r).
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The solution ω(r) is x1−directional gauge field, which breaks SO(3) global rotation
symmetry of the spacetime into SO(2). This becomes more manifest when we compute
back reactions to the black brane background spacetime. To compute backreactions, we
assume the α2 is also parametrically small and so stress-energy tensor of the gauge field
excitation, φ(r) and ω(r) does not significant change the background. We briefly list the
results below considering backreactions to the field φ upto leading order in ε2 and the
background spacetime upto leading order in ε2α2.

ω(r) = ε
r2

(r2 + 1)2 +O(ε2), (2.10)

φ(r) = 4
(

1− 1
r2

)
+ ε2

4

(
1 + 2r2

3r2(1 + r2)3 −
1
8 + 281

1680

(
1− 1

r2

))
+O(ε3) (2.11)

and

σ(r) = 1− ε2α2 2
9(1 + r2)3 , f(r) = 1− ε2α2F (r) (2.12)

N(r) = N0(r)
(
1− α2Nα(r) + ε2α2Nε(r)

)
where

F (r) = 1
18

1− 2r2

(1 + r2)4 , (2.13)

N0(r) = r2 − 1
r2 , Nα = 32

3
1

r2(r2 + 1) , and Nε(r) = 4
9

1
r2

(
281
560

1
r2 −

2 + 6r2 + 3r4

2(1 + r2)4

)
(2.14)

Sometimes, we employ the radial coordinate z, which is defined by z = 1
r . In such a case,

the metric is

ds2 = 1
z2

{
−z2N(z)σ2(z)dt2 + dz2

z2N(z) + f−4(z)dx2
1 + f2(z)(dx2

2 + dx2
3)
}
, (2.15)

where,

f(z) = 1− ε2α2F (z), (2.16)

N(z) = N0(z)
(
1− α2Nα(z)− ε2α2Nε(z)

)
.

and

F (z) = 1
18
z6(z2 − 2)
(z2 + 1)4 , (2.17)

N0(z) = 1
z2 − z

2, Nα(z) = 32
3

z4

1 + z2 , and Nε(z) = 4
9z

4
(

281
560 −

2z6 + 6z4 + 3z2

2(1 + z2)4

)
(2.18)
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Finally, we discuss some of the black brane thermodynamics. The black brane tem-
perature is given by

T = 1
π

(
1− 16

3 α
2 + 17

1260ε
2α2

)
(2.19)

and the black brane entropy is

Sblack−brane = 2π
κ2

5
V3, (2.20)

where we take the horizon located at z = 1 and V3 is the spatial coordinate volume,
V3 =

∫
d3~x. We note that the critical temperature, Tc is given by

Tc = 1
π

(
1− 16

3 α
2
)
. (2.21)

3 Holographic computations of entanglement entropy of wide and thin
slabs

In this section, we will discuss holographic entanglement entropy probes near critical point,
T = Tc in the presence of the vector mode ω(r) and considering its backreaction to the
background geometry. We consider a subsystem on AdS boundary with its shape of wide
slab. There are two different ways to put the slab, which are to put that on x2 − x3 plane
and on x3 − x1 plane(remember that x1- direction is parallel to the vector order ω(r)).

3.1 The slab on x2 − x3 plane

Think of a slab on AdS boundary where the slab is given by −L2
2 ≤ x2 ≤ L2

2 , −L3
2 ≤ x3 ≤ L3

2
and −d

2 ≤ x1 ≤ d
2 . We take L2 and L3 to be very large, which makes the subsystem have

translational symmetric directions along x2 and x3 axes(L2, L3 →∞). Now we compute a
surface area in d+ 1-dimensional bulk from the slab on AdS boundary, which is given by

A1 = lim
δ→0

2L2L3

∫ 1
δ

r∗
dr r3

√
f4(r)
r2N(r) +

(
dx1
dr

)2
, (3.1)

where boundary of the surface, A1(located at r = 1
δ together with δ → 0) matches with

the boundary of the slab on AdS boundary. A1 is hanged down into the bulk and there is
a minimum value of the radial variable, r. We address that minimum value as r∗.

Holographic entanglement entropy, S is related to the area of surface in the bulk, A as

S = 2π
κ2A, (3.2)

where A needs to be minimized followed by Ryu-Takayanagi-prescription [15, 16]. To
extremize the surface, we apply variational principle to the area and we get the condition
of extremum being given as

d

dr

r3 x′1√
(x′1)2 + f4(r)

r2N(r)

 = 0, (3.3)
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where the prime denotes derivative with respect to r. Let us close look at the inside the
round bracket in (3.3). The A1 is hanged down deep into the bulk spacetime and it becomes
deepest when dr

dx1
= 0 and it is given when x1 = 0. The solution of equation (3.3) is that the

quantity inside of round bracket is a constant and the above argument fixes the constant
as r3 x′1√

(x′1)2+ f4(r)
r2N(r)

= r3
∗.

With such an identification, the solution is able to be written as

x′1 = ± r3
∗f

2(r)

r4
√(

1− r6
∗
r6

)
N(r)

, (3.4)

and we substitute the solution into the surface area A1 to remove dx1
dr in it. Then, A1 is

given by

A1 = 2L2L3 lim
δ→0

∫ 1
δ

r∗
dr

r2f2(r)√
N(r)

(
1− r6

∗
r6

)− 1
2

. (3.5)

Moreover, between r∗ and d(the thickness of the slab lying in the x1-direction), there
is the following relationship:

d = 2 lim
δ→0

∫ 1
δ

r∗

dr√
r2N(r)
f4(r)

(
r6

r6
∗
− 1

) , (3.6)

which can be easily derived by using an identity,
∫ d/2
−d/2 dx1 = 2 limδ→0

∫ 1
δ
r∗

dr(x1)
r′(x1) , where the

prime denotes that the derivative with respect to its argument.
To evaluate the integration for the surface area, A1 given in (3.5), we need to look

at the metric factors, N(r) and f(r) in (2.12) carefully. The metric is obtained by taking
into account backreactions from the vector order ω(r) upto its leading order corrections.
The leading correction is order of ε2α2. We note again that α2 = κ2

5
g2 is regarded as small

parameter as well as ε2 � 1 and we deal with those perturbatively. In sum, we expand
the surface area A1 upto leading order correction in ε2α2 and evaluate the integrations.
Then, we have α2 and ε2 corrections together with the zeroth order terms in α and ε in
A1. Each integration is not so easy to get an analytic and compact form, so we assume
that d is small as well as r∗ � 1 to get a series form of the integrands in small d. Firstly,
by applying all the arguments that we address above, we evaluate the relation (3.6), which
is given by

d =
2
√
π Γ

(
2
3

)
Γ
(

1
6

) 1
r∗

+
√
π Γ

(
4
3

) (
1260 + 13440α2 + 281α2ε2)

7560 Γ
(

11
6

) ( 1
r∗

)5

−
√
π Γ

(
5
3

) (
4480α2 + 187α2ε2)

2520 Γ
(

13
6

) ( 1
r∗

)7
. . . ,

(3.7)
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and its inverse relation is

1
r∗

=
Γ
(

1
6

)
2
√
π Γ

(
2
3

) d− Γ
(

1
6

)6
Γ
(

4
3

) (
1260 + 13440α2 + 281α2ε2)

483840 π5/2 Γ
(

2
3

)6
Γ
(

11
6

) d5

+
Γ
(

1
6

)8
Γ
(

5
3

) (
4480α2 + 187α2ε2)

645120 π7/2Γ
(

2
3

)8
Γ
(

13
6

) d7 . . .

(3.8)

Now, we evaluate the minimal surface area A1 by replacing r∗ in it with d by using the
above relation together.

In fact, A1 contains divergence which depends on the radial cut-off, 1
δ near AdS bound-

ary. This divergence already appears in entanglement entropy computation in pure AdS
background, and we call that S(AdS)

1 . Therefore, we need to define a renormalized entan-
glement entropy, where we define the renormalized version of entanglement entropy as

S
(ren)
1 = S1 − S(AdS). (3.9)

It turns out that the entanglement entropy in AdS background is given by

S(AdS) = 2π
κ2

5
Σ1A

(AdS), (3.10)

where Σ1 is the coordinate volume of the slab,

Σ1 = L2L3. (3.11)

The A(AdS) is given by

A(AdS) = lim
δ→0

1
δ2 −

32π9/2

3
√

3Γ
(

1
3

)3
Γ
(

1
6

)3 d−2, (3.12)

which contains the divergence appearing near AdS boundary and the finite term being pro-
portional to d−2. Now, we will subtract this quantity from S1, and we get the renormalized
entanglement entropy, which is given by

S
(ren)
1 = 2π

κ2
5

Σ1A1, (3.13)

where A1 is

A1 = A(0)
1 + α2A(α)

1 + ε2α2A(ε)
1 , (3.14)
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and

A(0)
1 = 3

320π7/2 Γ
(1

3

)3
Γ
(1

6

)3
d2 (3.15)

+ 27
16384π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1− 13
√

3
1800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
d6 +O(d7),

A(α)
1 = 1

10π7/2 Γ
(1

3

)3
Γ
(1

6

)3
d2 − 3

√
3

28π9/2 Γ
(1

3

)3
Γ
(1

6

)3
d4 (3.16)

+ 9
256π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1− 13
√

3
1800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
d6 +O(d7),

A(ε)
1 = 281

134400π7/2 Γ
(1

3

)3
Γ
(1

6

)3
d2 − 561

√
3

125440π9/2 Γ
(1

3

)3
Γ
(1

6

)3
d4 (3.17)

− 837
1146880π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1 + 3653
√

3
502200π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
d6 +O(d7).

3.2 The slab on x1 − x3 plane

To put the slab on the x1 − x3 plane, we parametrize the slab as −L3
2 ≤ x3 ≤ L3

2 , −L1
2 ≤

x1 ≤ L1
2 and −d

2 ≤ x2 ≤ d
2 . Again, we take L1 and L3 to be very large, meaning that we

take a parametric limit as L1 and L3 →∞. The formula for the surface area hanged down
in the bulk is given by

A2 = L1L3 lim
δ→0

∫ 1/δ

r#
dr r3

√
1

r2f2(r)N(r) +
(
dx2
dr

)2
, (3.18)

and its equation for extremum is

d

dr

r3 x′2√
(x′2)2 + 1

r2f2(r)N(r)

 = 0, (3.19)

where again the boundary of the surface area, A2 is coincide with the boundary of the
slab at r = 1

δ where we take a limit of δ → 0. We also define r# this time, which is the
minimum of the r-value. By applying the similar argument that we addressed in the case
with slab lying on x1 − x2 plane, we get

x′2 = ±
r3

#

r4f(r)
√(

1− r6
#
r6

)
N(r)

. (3.20)

Now, we plug the solution of the equation of extremum (3.20) into the expression of the
surface area A2(3.18), we get

A2 = 2L1L3 lim
δ→0

∫ 1
δ

r#
dr

r2

f(r)
√
N(r)

(
1−

r6
#
r6

)− 1
2

. (3.21)
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We also get the relation between the minimum value of r, r# and d in this case too.
The form of the expression is

d = 2 lim
δ→0

∫ 1
δ

r#

dr√
r2N(r)f2(r)

(
r6

r6
#
− 1

) . (3.22)

and its final form after performing the integration in it is given by

d =
2
√
π Γ

(
2
3

)
Γ
(

1
6

) 1
r#

+
√
π Γ

(
4
3

) (
1260 + 13440α2 + 281α2ε2)

7560 Γ
(

11
6

) (
1
r#

)5

−
√
π Γ

(
5
3

) (
4480α2 + 467α2ε2)

2520 Γ
(

13
6

) (
1
r#

)7

. . .

(3.23)

The inverse relation of this is

1
r#

=
Γ
(

1
6

)
2
√
π Γ

(
2
3

) d− Γ
(

1
6

)6
Γ
(

4
3

) (
1260 + 13440α2 + 281α2ε2)

483840 π5/2 Γ
(

2
3

)6
Γ
(

11
6

) d5

+
Γ
(

1
6

)8
Γ
(

5
3

) (
4480α2 + 467α2ε2)

645120 π7/2Γ
(

2
3

)8
Γ
(

13
6

) d7 . . .

(3.24)

Together with the relation (3.24) and the expression of A2 given in (3.21), the holo-
graphic entanglement entropy is given by

S
(ren)
2 = 2π

κ2
5

Σ2A2, (3.25)

where S(ren)
2 = S2 − S(AdS) and Σ2 represents Σ2 = L1L3. We note that again to evaluate

the integration in the expression, A2, we expand that upto leading order in α2 and ε2α2

together with 1
r#

expansion with an assumption that r# � 1 and d� 1.
The A2 is also defined as the similar fashion as we did in the previous computation,

being given by
A2 = A(0)

2 + α2A(α)
2 + ε2α2A(ε)

2 , (3.26)

where

A(0)
2 = A(0)

1 , A(α)
2 = A(α)

1 (3.27)

and

A(ε)
2 = 281

134400π7/2 Γ
(1

3

)3
Γ
(1

6

)3
d2 − 1401

√
3

125440π9/2 Γ
(1

3

)3
Γ
(1

6

)3
d4 (3.28)

− 6723
1146880π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1 + 3653
√

3
4033800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
d6 +O(d7).
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3.3 Properties of holographic entanglement entropy near critical point

Scaling behavior of entanglement entropy near critical point. As we discussed in
section 1, this Einstein-SU(2)Yang-Mills system undergoes second order phase transition
near the critical point, T = Tc, which is the phase transition from “isotropic phase” to
“anisotropic phase” being affected by the appearance of vector order ω(r). Again, the ω(r)
is the spatial component, B1

1 of Yang-Mills fields, Ba
µ.

Now, we define the “isotropic” and the “anisotropic” phases as follows. In isotropic
phase, ω(r) = 0 and there is no backreaction to the background geometry from it. Since
there is no spatial component of Yang-Mills fields turned on, the SO(3) isometry(spatial
rotation symmetry) in the bulk spacetime is retained. However, once the field ω(r) is
turned on, this spatial isometry is broken down to SO(2) and we call it anisotropic phase.
The field ω(r) is normalizable mode in the bulk, which means that this mode corresponds
to a state in dual field theory. We note that SO(3) isometry is broken spontaneously.

In many literatures [18–20], it is widely discussed that once ω(r) appears near critical
point, the anisotropic phase is thermodynamically favored than the isotropic phase, and so
there will be thermodynamic phase transition from isotropic phase to anisotropic phase,
near the critical point.

The leading order backreaction from the field solution, ω(r) is order of ε2α2(Remember
that ω(r) ∼ ε). Therefore, if we compute a quantity where we turn off ε = 0, then it
corresponds to the quantity in isotropic phase whereas if we turn on ε and keep the leading
order backreactions to the background geometry upto ε2α2, then that quantity will be that
in anisotropic phase. We call them Qiso and Qaniso respectively for some quantity, Q.

Now, we want see how much entanglement entropy excess arises, when the system
undergoes phase transition. To see this, we define

∆εSi ≡ Siso
i − Saniso

i = S
(ren)iso
i − S(ren)aniso

i , (3.29)

where i = 1, 2 to express, S1 and S2 respectively. We note that ∆εSi is order of ε2α2 ∼(
1− T

Tc

)
, which will show scaling behavior near the critical temperature T = Tc. In fact,

by using black brane (critical)temperature (2.19) and (2.21), we get

∆εSi = 2520π2

17κ2
5

ΣiA(ε)
i Tc

(
1− T

Tc

)β
, (3.30)

where β is the critical exponent of the entropy, and it turns out that

β = 1, (3.31)

upto leading order corrections in α and ε in our analytic calculation.

Order parameter measuring spatial anisotropy from entanglement entropy. In
fact, one can introduce a new order parameter near the critical point by employing (holo-
graphic) entanglement entropy. We define an order parameter of anisotropy near the critical
point, being given by

O12 ≡ S1 − S2, (3.32)
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which denotes the difference of entanglement entropies between the slabs being perpendic-
ular to the vector order, x1-direction and lying along the vector order. Once we make the
cross section area of the slabs be the same, Σ1 = Σ2 ≡ Σ, then the quantity O12 vanishes
in isotropic phase. However, near the critical point, this quantity shows non-zero value
such that

O12 ≡ Saniso
1 − Saniso

2 = −2520π2

17κ2
5

ΣA(ε)Tc

(
1− T

Tc

)β
, (3.33)

where

A(ε) = A(ε)
1 −A

(ε)
2 = 3

√
3

448π9/2 Γ
(1

6

)3
Γ
(1

3

)3
d4 + 2943

573440π9 Γ
(1

6

)6
Γ
(1

3

)6
d6 +O(d7).

(3.34)

Again the critical exponent, β = 1 in our analytic analysis.
The leading dependence on the thickness of the slab, “d”in the order parameter, O12 is

∼ d4. The difference between S1 and S2 near the critical point stems from the F (r) in the
metric factor f(r) which are given in (2.12) and (2.13). The reason why this happens is
that g11 6= g22 = g33, which are the spatial components of bulk spacetime metric factors(See
the metric (2.7). The leading backreaction to the metric from the vector order, appears
at Nε(r) in the metric factor N(r), but Nε(r) does not give spatial anisotropy in the bulk
spacetime metric. In fact, Nε(r) ∼ O(r−4), whereas the metric factor F (r) ∼ O(r−6).
Therefore, F (r) gives subleading correction as contrasted with Nε(r) correction once we
consider near AdS boundary expansion order by order in small 1/r∗ or 1/r#. However,
Once we think of O12 = S1 − S2, then contributions from F (r) becomes leading, it grows
as the subsystem becomes larger being proportional to d4 and also shows scaling behavior
as we addressed in (3.34).

The first law of entanglement entropy. It is widely discussed that in small “d”
region, there is an interesting relation between the energy and its entanglement entropy
of the subsystem [24, 33]. The relation is called the first law of entanglement entropy,
which can be understood as an analogy of thermodynamic first law. In short, the relation
is given by

∆E = T ∆S, (3.35)

where T is called entanglement temperature, which is inversely proportional to the sub-
system size. ∆S means entanglement entropy changes from its background to a new
state, where the background is pure AdS space, which corresponds to vacuum defined
in (AdS)boundary field theory in holographic dictionary. An interesting property of the
entanglement temperature is that it is universal in a sense that it only depends on the
shape of the subsystem and the dimensionality of (AdS) boundary spacetime, not any
other details of the subsystem.

We find that even in the case that the vector order appears, the universality does not
be broken. To discuss this, let us see the energy of the subsystem when we consider wide
and thin slabs defined in AdS boundary. In the following discussion, we restrict ourselves
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in the case of the subsystem in 4−dimensional spacetime. According to the prescription
suggested in [24, 35, 37–41],

∆E = E − Eg =
∫

subsystem
d3x〈Ttt〉, (3.36)

where 〈Ttt〉 is temporal component of boundary stress-energy tensor, the energy density of
the subsystem when the subsystem is excited from its ground state.

∫
subsystem d

3x is the
spatial volume integration of the subsystem. When, the energy density 〈Ttt〉 is a constant
in the subsystem,

∆Ei = Σid〈Ttt〉, (3.37)

for each slab, where ∆E1 is the energy for the slab lying on x2 − x3 plane whereas ∆E2
is the energy for the slab lying on x1 − x3 plane. E is the subsystem energy, and Eg is
its ground state energy, which corresponds to pure AdS space in its gravity dual. 〈Ttt〉 is
related to black brane mass and the relation is

〈Ttt〉 = 3M
2κ2

5
, 3 (3.38)

where M is mass of the 5-dimensional charged black brane near critical point. We read off
M from the coefficient of 1/r4 term in the metric factor, N(r)/r2 in its large r(small 1/r)
expansion.

In isotropic phase, the mass of the charged black brane, M is given by

M iso = 1 + 32
3 α

2. (3.39)

We note that we rescale the coordinate variables, r, t and xi in the metric to fix the charged
black brane horizon rh = 1.

The first term in (3.39) is related to the energy difference between black brane and
pure AdS space. Once we turn on the temporal component of Yang-Mills fields, B3

0 = φ(r),
the black brane becomes charged and so (electric) chemical potential comes in. This effect
comes with α2 corrections in the spacetime metric, and so in M . In summary, we have

∆Ei = ∆0Ei + ∆αEi, (3.40)

where
∆0Ei = 3

2κ2
5
Σid and ∆αEi = 16

κ2
5
α2Σid. (3.41)

We note that ∆0Q represents the difference between the quantity, Q computed in black
brane background and in pure AdS background. ∆αQ is the α2 correction to the quantity,
Q when the chemical potential is turned on. The entanglement entropy change is given by

∆Si = ∆0S + ∆αSi, (3.42)

where
∆0Si = 2

κ2
5
ΣiA(0)

i and ∆αSi = 2
κ2

5
α2ΣiA(α)

i , (3.43)

3In general, 〈Ttt〉 = (d−1)M
2κ2
d+1

, where d is the dimensionality of AdS boundary spacetime [24].
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and the surface area A(0)
i and A(α)

i are given in (3.15), (3.16), and (3.27). By considering
all the details in the above discussion, we get

lim
d→0

∆Ei
∆Si

= lim
d→0

∆0Ei
∆0Si

= lim
d→0

∆αEi
∆αSi

= T , (3.44)

where
T = 80π5/2

Γ
(

1
3

)3
Γ
(

1
6

)3
d
h

0.422059
d

(3.45)

In anisotropic phase, ε2α2 correction comes into the black brane mass, M by con-
sidering backreactions from the vector order, ω(r). The black brane mass in anisotropic
phase is

Maniso = M iso + 281
1260ε

2α2, (3.46)

which can be read off from the metric factor N(r) as we discussed above. By using black
brane temperature (2.19) and (2.21), we obtain

∆εEi ≡ Eiso
i − Eaniso

i = 843π
34κ2

5
ΣidTc

(
1− T

Tc

)β
, (3.47)

with β = 1. How much entanglement entropy changes when the vector order, ω(r) is
turned on is given in (3.30). Therefore, the ratio of ∆εEi to ∆εSi can be computed, which
is given by

lim
d→0

∆εEi
∆εSi

= 80π5/2

Γ
(

1
3

)3
Γ
(

1
6

)3
d

= T , (3.48)

where we understand that the entanglement temperature is still universal even in anisotropic
phase.

4 Holographic computation of entanglement entropy of a long cylinder
with its radius, a and its length, L1 along x1-direction

4.1 Holographic entanglement calculation of cylinder

In this section, we consider a subsystem, of which shape is a cylinder lying along the
direction of the vector order, ω(r) on AdS boundary spacetime (x1−direction).4 This
cylinder is given as, 0 ≤ ρ ≤ a, 0 ≤ φ ≤ 2π and −L1

2 ≤ x1 ≤ L1
2 . The variables, ρ and φ are

ρ =
√
x2

2 + x2
3 and φ = cot−1

(
x2
x3

)
. By using these new coordinate variables, we introduce

plane polar coordinate on the x2 − x3 plane as

ds2 = 1
z2

{
−z2N(z)σ2(z)dt2 + dz2

z2N(z) + f−4(z)dx2
1 + f2(z)(dρ2 + ρ2dφ2)

}
, (4.1)

4We note that there are some of entanglement entropy computations on cylinder. Field theory com-
putations of entanglement entropy by employing numerics are in [35, 36]. For holographic computations,
hyperbolic cylinder R×Hd−1 is considered [34] and cylinder in the pure AdS background is also considered
in [21].
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where z = r−1, f(z) and N(z) are given in (2.16), (2.17) and (2.18). Now, we consider
surface area from the cylinder on AdS boundary, where φ and x1 are to be symmetric
directions and we take L1 is to be very large. The surface area is given by

Acy1 = 2πL1 lim
δ→0

∫ zcy∗

δ
dz z−3ρ(z)

√
1

z2f2(z)N(z) +
(
dρ

dz

)2
, (4.2)

where zcy∗ is the maximum value of the coordinate z. To minimize the surface, we apply
variation principle to the surface. The condition for the extremization is given by√

1
z2f2(z)N(z) + (∂zρ)2 = z3 ∂

∂z

 ρ(z)∂zρ
z3
√

1
z2f2(z)N(z) + (∂zρ)2

 . (4.3)

Divergent pieces in the solution, ρ(z). To solve the equation (4.3), we use a fact
that the functions f(z) and N(z) have the form of (2.16) together with an expansion with
small ε and α such that

ρ(r) = ρ0(z) + α2ρα(z) + ε2α2ρε(z),

up to leading order in ε2α2. The solution can be obtained with a form of series solution in
small z, meaning that an expansion near boundary, z = 0. The solutions are given by

ρ0 = a− z2

4a +O
(
z4
)
, ρα = O

(
z4
)
, and ρε = O

(
z4
)
. (4.4)

This solution specifies the divergent pieces of the minimized surface area, which is
given by Acy1 ∼ 2πL1 limδ→0

(
a

2δ2 + 1
8a log δ

)
+finite, where the δ is again the radial cutoff

near AdS boundary [21].
In our computation, our purpose is to obtain finite pieces of the entanglement entropy of

the cylinder (its minimal area). To do this, we need to impose correct boundary conditions
at z = zcy∗ as well as z = δ (on the AdS boundary). However, the solution, (4.4) will require
a boundary condition at z = zcy∗ as

∂ρ

∂z

∣∣∣∣z=zcy∗
=∞,

since the variable z has a maximum at z = zcy∗ . This boundary condition is impossible to
impose.

The boundary conditions for the inverse solution, z(ρ). Therefore, we may try
an inverse solution, z(ρ). To get the solution, we define z(ρ) as a series expansion in ρ,

z(ρ) ≡ zcy∗ +
∞∑
n=1

bnρ
n (4.5)

together with boundary conditions

1. z(ρ = 0) = zcy∗ (automatically satisfied) (4.6)

2. z(ρ = a) = zcy∗ +
∞∑
n=1

bna
n = 0, (4.7)

where bn are coefficients of the expansion and zcy∗ is the maximum value of the coordinate z.
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To find zcy∗ , we need to solve a large degree polynomial equation (4.7) (practically
n-degree by truncation), which is given by

zcy∗ = −
∞∑
n=1

anbn. (4.8)

The final boundary condition at the turning point(z = zcy∗ ) is dz(ρ)
dρ

∣∣∣ρ=0
= 0 being given by

3. dz(ρ)
dρ

∣∣∣∣ρ=0
=
∞∑
n=1

nbnρ
n−1

∣∣∣∣∣
ρ=0

= 0, (4.9)

and that requires b1 = 0. Therefore, the form of the solution is

z(ρ) = zcy∗ +
∞∑
n=2

bnρ
n. (4.10)

The solution, z(ρ) will have the following terms in it:

z(ρ) = z0(ρ) + α2z(α)(ρ) + ε2α2z(ε)(ρ), (4.11)

where z0 is the solution in the background of black brane, and z(α) is α2 correction and
finally z(ε) is the ε2α2 correction near the critical point, T = Tc. Each z0(ρ), z(α)(ρ), and
z(ε)(ρ) is a series solution in ρ and so satisfies the same boundary conditions (4.6), (4.7)
and (4.9) as we have discussed above. We note that we define the maximum value of each
solution as z0(0) = z∗, z(α)(0) = zα∗ and z(ε)(0) = zε∗ and so

zcy∗ = z∗ + α2zα∗ + ε2α2zε∗. (4.12)

Getting solutions. Now, we illustrate the procedure how to get the solutions.

• We substitute the trial solution (4.11) into equation (4.3) and get series solutions
for z0, z(α), and z(ε), which are given in appendix B.1 in detail. We obtain each
series solution upto O(ρ30). First, by applying the boundary condition (4.7) to z0(ρ)
solution, we get the ratio of a to z∗, i.e. a

z∗
, with a given z∗. By using this information,

we can get the value of a with the given z∗. We summarize some of the results in
table 1.

• We also solve equations for z(α)(ρ) and z(ε)(ρ). The equations and the solutions
are given in appendix B.1. With the given values of a that we obtained from z0(ρ)
solution, we compute how much the turning point, zcy∗ (maximum value of z) changes
by α2 and ε2α2 corrections by employing the solutions of z(α)(ρ) and z(ε)(ρ). These
values are also given in table 1.
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z∗ 0 0.05 0.10 0.15 0.20 0.25
a 0 0.0398102 0.0796221 0.119444 0.159297 0.199223

a/z∗
deg:38 0.796204 0.796205 0.796221 0.796293 0.796485 0.796891

zα∗
deg:30 0 −7.34078 ∗ 10−7 −2.33482 ∗ 10−5 −1.75502 ∗ 10−4 −7.28959 ∗ 10−4 −2.18304 ∗ 10−3

zε∗
deg:30 0 −1.52560 ∗ 10−8 −4.76626 ∗ 10−7 −3.47876 ∗ 10−6 −1.38778 ∗ 10−5 −3.95175 ∗ 10−5

z∗ 0.30 0.35 0.40 0.45 0.50
a 0.239290 0.279601 0.320305 0.361608 0.403790

a/z∗
deg:38 0.797632 0.798860 0.800763 0.803573 0.807580

zα∗
deg:30 −5.30576 ∗ 10−3 −1.11452 ∗ 10−2 −2.10030 ∗ 10−2 −3.63615 ∗ 10−2 −5.87538 ∗ 10−2

zε∗
deg:30 −9.05120 ∗ 10−5 −1.77833 ∗ 10−4 −3.11644 ∗ 10−4 −4.99873 ∗ 10−4 −7.47390 ∗ 10−4

Table 1. In this table, we list the values of a(the radius of the cylinder), zα∗ (the α2 correction
to the maximum value of z∗), and zε∗(the ε2α2 correction to the maximum value of z∗) with given
values of z∗. These values are obtained by solving boundary condition (4.7). Solutions are obtained
upto O(a38) for z0 solution and upto O(a30) for z(α) and z(ε) solutions.

4.2 Evaluation of surface area and subtraction of UV-divergence

In this subsection, we plug the solutions (4.11) into the surface area (4.2) to evaluate it(The
detailed forms of the solutions are given in (B.3), (B.6) and (B.10)). We notice that once
one expands the minimal area by plugging the solution (4.11), the divergent pieces of the
area will appear. These need to be subtracted. As we did for the case of slabs, we subtract
the pure AdS parts from the surface area as follows.

Once we evaluate the surface area by employing small α and ε expansion upto leading
order α2 and ε2α2, then we have

Acy1 ≡ 2πL1
(
γ(0) + α2γ(α) + ε2α2γ(ε)

)
,

where the divergence pieces are given in γ(0) only. When α = 0 and ε = 0, Acy1 becomes
2πL1γ

(0). γ(0) is the surface area in the background of black brane geometry, when f(z) =
σ(z) = 1 and z2N(z) = 1 − z4. In the factor of z2N(z) = 1 − z4, the second terms in
z2N(z) is the effect of black brane mass. Therefore once we consider a new factor,

z2N(z, ξ) ≡ 1− ξz4. (4.13)

We consider such a new metric factor z2N(z, ξ) and get γ(0) again. Then if ξ = 0, the
solution is in the background of pure AdS, and if ξ = 1 it becomes in the background of
black brane.

To regularize the surface area γ(0), we get solutions of z0 again by employing power
expansion order by order in ξ. This means that we try the following form of the solutions,

z0 = zA0 + ξzB0 +O(ξ2), (4.14)
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together with the new metric factor, N(z, ξ). The analytic forms of the solutions for zA0
and zB0 are given in appendix B.2. Then, we get the surface area γ(0) in power expansion
in ξ, as a form of

γ(0) = γ(AdS) + ξγ(ξ) +O(ξ2), (4.15)

where γ(AdS) contains the divergence pieces, which needs to be subtracted. We take the
first order in ξ only to estimate the regularized part, and this becomes more accurate near
boundary calculation since z � 1 there. Finally we take ξ = 1. Then, we define Acy(ren)

1 as

A
cy(ren)
1 ≡ Acy1 −A

cy(AdS)
1 , (4.16)

where Acy(AdS)
1 ≡ 2πL1γ

(AdS). Therefore,

A
cy(ren)
1 ≡ 2πL1

(
γ(ξ) + α2γ(α) + ε2α2γ(ε)

)
,

and our renormalized entanglement entropy Scy(ren) for the cylinder is given by

S(ren)
cy = 2π

κ2
5
A
cy(ren)
1 . (4.17)

Entanglement entropy of Cylinder. γ(ξ), γ(α) and γ(ε) are graphically obtained in
figure. 1, 2 and 3 in order. The analytic forms of these are given in appendix B.3. Their
leading behaviors when a is small are given by

γ(ξ)(a) = 0.73228506a3 +O(a4), (4.18)
γ(α)(a) = 7.8111218a3 +O(a4), (4.19)
γ(ε)(a) = 0.1633128a3 +O(a4). (4.20)

Once we define ∆εScy = Siso
cy − Saniso

cy as we discussed in the slab case, we find that

∆εScy = 5040π2L1
17κ2

5
γ(ε)(a)Tc

(
1− T

Tc

)β
, (4.21)

where a and L1 is the radius and the length of the cylinder. Our analytic computation
shows that holographic entanglement entropy excess ∆εScy for cylinder also presents scaling
behavior ∼

(
1− T

Tc

)β
and its critical exponent β = 1.

The first law of entanglement entropy and entanglement temperature. In fig-
ure. 4, we plot the following quantities in order:

1
a

∆0Scy
∆0E

= 8πγ(ξ)(a)
3a3 (ξ − graph), (4.22)

1
a

∆αScy
∆αE

= πγ(α)(a)
4a3 (α2 − graph), (4.23)

1
a

∆εScy
∆εE

= 3360πγ(ε)(a)
281a3 (ε2α2 − graph), (4.24)
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Figure 1. γ(ξ)(a) = 0.73228506a3 + . . .,
from a = 7.87386× 10−5 to a = 0.393693,
5000 data points.

Figure 2. γ(α)(a) = 7.8111218a3 + . . .,
from a = 7.96204× 10−5 to a = 0.403790,
5000 data points.

and it turns out that as a approach zero, they meet at one point. We again note that ∆0Q

represents the difference between the quantity, Q computed in black brane background and
in pure AdS background. ∆αQ is the α2 correction to the quantity, Q when the chemical
potential is turned on. Finally, ∆ε is ε2α2 correction to the quantity, Q when the vector
order appears near the critical point. Therefore, we conclude that when a→ 0,

lim
a→0

1
a

∆Scy
∆E = lim

a→0

1
a

∆0Scy
∆0E

= lim
a→0

1
a

∆αScy
∆αE

= lim
a→0

1
a

∆εScy
∆εE

= c−1
ent, (4.25)

where
cent = 0.163004± 0.000001. (4.26)

This value is obtained by computing the average and standard deviation of the values of
the functions (4.22), (4.23), and (4.24) at a = 0. By using the definition of entanglement
temperature (3.44), we understand that even in the case that the vector order appears
in anisotropic phase, the first law of entanglement entropy is retained. The entanglement
temperature is given by

Tcy = cent
a
. (4.27)

5 Discussion

In this paper, we explore 4-dimensional holographic anisotropic super fluids defined on
the boundary of 5-dimensional asymptotically AdS spacetime near its critical point T =
Tc, where a vector order parameter appears, and it breaks SO(3)-rotational symmetry
of spacetime down to SO(2). The gravity dual of such a system is Einstein-SU(2)Yang-
Mills theory, defined in asymptotically AdS spacetime. To understand properties of this
system, we compute holographic entanglement entropy in the background of the charged
black brane solution of this gravity system. We apply an analytic method and obtain
holographic entanglement entropies of subsystems with shapes of wide and thin slabs and
a long cylinder.

For the wide and thin slabs, we consider two different spatial directions: one is lying
along a direction which is parallel to the vector order whereas another is perpendicular to
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Figure 3. γ(ε)(a) = 0.1633128a3 + . . .,
from a = 7.96204× 10−5 to a = 0.403790,
5000 data points.

Figure 4. ξ → lima→0
8πγ(ξ)(a)

3a3 =
6.134777049077025,
α2 → lima→0

πγ(α)(a)
4a3 = 6.134840767351422,

ε2α2 → lima→0
3360πγ(ε)(a)

281a3 =
6.134840676290574,
100 data points each

the vector order. For the cylinder case, we consider the cylinder lying along the vector
order only. The entanglement entropies that we obtained for the slab and cylinder cases
share universal properties: these show a scaling behavior near critical point, which has a
form of

∆εS ∼
(

1− T

Tc

)β
, (5.1)

where ∆εS = Siso−Saniso, and Siso is the entanglement entropy in isotropic phase whereas
Saniso is that in anisotropic phase. The critical exponent, β = 1 for all of the cases that
we examine. Therefore, we understand that the critical exponent β = 1 is probably the
common feature of the entanglement entropy near the critical point of the system. We
note that the analytic approach is valid when α = κ5

g is small, and in this case, the system
undergoes second order phase transition near the critical point. We restrict our analysis in
this case only.

However, an interesting feature occurs when we consider anisotropy. The entanglement
entropy of slabs has the following expansion near the critical point

∆εSi = Ci(d)
(

1− T

Tc

)β
, (5.2)

where i = 1, 2 and i = 1 is for the slab being parallel to the vector order whereas i = 2 is for
the slab being perpendicular to the vector order. We assume that the shapes of those two
slabs are the same but their directions are different. We determine the coefficient, Ci(d),
by employing small “d” expansion such as

Ci(d) = C
(2)
i d2 + C

(4)
i d4 + . . . (5.3)

where the d is the thickness of the slabs. In the small d region, we probe ultraviolet degrees
of freedom and it corresponds to that the extended minimal surface to the bulk from the
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slab is still probing the bulk region near the AdS boundary. However, condensation is an
infrared effect. This means that we need to probe deeper in the infrared region to see the
effects of condensation. In its holographic dual, as d grows, the extended minimal surface
to the bulk from the slab probes deeper in the bulk.

In the small d region, the term being proportional to C(2) is the most dominant and
it turns out that C(2)

1 = C
(2)
2 . This implies that the ultraviolet degrees of freedom is still

universal in a sense that they are independent of the directions of the vector order param-
eter. An interesting anisotropy appears in C

(4)
i such that C(4)

1 6= C
(4)
2 . This observation

leads us to define a new order parameter from entanglement entropy, which is defined as

O12 ≡ S1 − S2. (5.4)

We understand that O12 = 0 above the critical temperature since SO(3)-rotational symme-
try is retained. However, O12 shows critical behavior together with its non-zero coefficient
near the critical point and it can be an indication of phase transition.

With the same reason, the condensation does not spoil the first law of entanglement
entropy, since the law holds in the d→ 0 limit, which implies that it is ultraviolet physics.
In the small size limit of the subsystem(d→ 0 limit), it turns out that the ratio of entropy
change to total energy change of the subsystem is universal. The term being proportional
to C(4) is relatively infrared effect and it is subleading in small d expansion.

In conclusion, in anisotropic holographic superfluid system, we find that the system
presents universal properties and anisotropy at the same time. The universal properties
are scaling behaviors of the entanglement entropies and all of the subsystems that we study
share their critical exponent β = 1. When one looks at ultraviolet degrees of freedom, the
first law of entanglement entropy is held for all the subsystems that we look at. This is
also a universal feature in a sense that it does not depend on the direction of the vector
order parameter. However, if one averts one’s eyes to the infrared region, one can see a
fact that entanglement entropy depends on the direction of the order parameter. By using
this fact, one can define an interesting order parameter near the critical point.
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A Slabs on the x2-x3 and x3-x1 planes

For the computations of the slabs, we need to evaluate the following form of the integration:

In ≡
∫ ∞

1

un√
u6 − 1

du, (A.1)

– 23 –



J
H
E
P
0
2
(
2
0
2
3
)
1
8
2

where n is an integer. For some specific n, there are some results:

I−8 =
4
√
πΓ
(

2
3

)
7 Γ

(
1
6

) , I−6 =
√
πΓ
(

1
3

)
15 Γ

(
5
6

) , I−4 = 1
3 , I−2 =

√
π Γ

(
2
3

)
Γ
(

1
6

) , I0 =
√
π Γ

(
1
3

)
6 Γ

(
5
6

) ,

I4 = lim
δ→0

[ 1
2δ2 +O(δ3)

]
−
√
π Γ

(
2
3

)
2 Γ

(
1
6

)
We define variables s = 1/r∗ and u = rs. In fact, to get the area of the slabs analyt-

ically, we expand the metric factors appearing in the calculation in terms of s, where we
expand f(r) and N(r) in terms of s. They are given by

f = 1− 1
18

(1− 2r2)
(1 + r2)4 ε2α2 (A.2)

= 1− 1
18ε

2α2
(

1− 2u2

s2

)(
1 + u2

s2

)−4

= 1 + ε2α2

9u6 s
6 − ε2α2

2u8 s
8 +O(s9)

and

N = r2 − 1
r2 + 32

3 α
2
( 1
r4 −

1
r2

)
− 4ε2α2

9r2

[
281
560

(
1− 1

r2

)
− 3r2

2(1 + r2)2 + 1 + 2r2

r2(1 + r2)3

]

= r2
(

1− 1
r4

)[
1− 32

3 α
2r−2(1 + r2)−1 + ε2α2

1260(279r−2 + 837− 3r2 − 281r4)(1 + r2)−4
]

= u2

s2

[
1−

(
1 + 32

3 α
2 + 281

1260ε
2α2

)
s4

u4 +
(32

3 α
2 + 1121

1260ε
2α2

)
s6

u6 −
4ε2α2

3
s8

u8

+10ε2α2

9
s10

u10

]
+O(s9) (A.3)

A.1 Slab on AdS boundary and divergence subtraction

For surface area computation in AdS space, we use metric (2.7) but the metric factors of
f , σ, and N are replaced by

σ = 1, f = 1, N(r) = r2.

Then, the relations between d, s, and the surface area A(AdS)
1 are given by

d = 2
∫ ∞
r∗

dr√
r2N(r)
f4

(
r6

r6
∗
− 1

) = 2
∫ ∞
r∗

dr

r2
√

r6

r6
∗
− 1

=
2
√
π Γ

(
2
3

)
Γ
(

1
6

) s,

namely,

s(d) =
Γ
(

1
6

)
2
√
π Γ

(
2
3

) d.
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The surface area A(AdS)
1 is given by

A
(AdS)
1 = 2L2L3

∫ ∞
r∗

dr
r2f2√
N(r)

(
1− r6

∗
r6

)− 1
2

= 2Σ1

∫ ∞
r∗

dr
r√

1− r6
∗
r6

= lim
δ→0

1
δ2 −

√
πΓ
(

2
3

)
Γ
(

1
6

) 1
s2

= lim
δ→0

1
δ2 + C−2

23
1
d2 .

Finally, we get

A
(ren)
1
Σ1

≡ A1 −A(AdS)
1

Σ1
= C2

23d
2 + C4

23d
4 + C6

23d
6 +O(d7). (A.4)

A.2 Slab on the x2-x3 plane

The relation between the thickness of the slab “d” and r∗, maximal depth of the stretched
surface (or, turning point) for the slab on the x2-x3 plane is given by

d= 2
∫ ∞
r∗

dr√
r2N(r)
f4(r)

(
r6

r6
∗
−1
) =

∫ ∞
1

du
2

u
√
u6−1

f2(u/s)√
N(u/s)

(A.5)

=
∫ ∞

1
du

2
u
√
u6−1

(
1+ 2ε2α2

9u6 s6− ε
2α2

u8 s8
)
s

u

[
1+ 1

2

(
1+ 32

3 α
2+ 281

1260ε
2α2

)
s4

u4

− 1
2

(32
3 α

2+ 1121
1260ε

2α2
)
s6

u6 + 2ε2α2

3
s8

u8

]

= (2I−2) s+I−6

(
1+ 32

3 α
2+ 281

1260ε
2α2

)
s5−I−8

(32
3 α

2+ 187
420ε

2α2
)
s7+O(s8)

=
2
√
π Γ

(
2
3

)
Γ
(

1
6

) s+
√
π Γ

(
1
3

)
15Γ

(
5
6

) (
1+ 32

3 α
2+ 281

1260ε
2α2

)
s5−

4
√
π Γ

(
2
3

)
7Γ
(

1
6

) (32
3 α

2+ 187
420ε

2α2
)
s7

+O(s8),

where we expand the integration in terms of s upto its 7th order.
From this form of the expansion, the expression for s can be given in series of small d.

s(d) =
Γ
(

1
6

)
2
√
π Γ

(
2
3

) d− 5Γ
(

1
3

)
Γ
(

1
6

)6

6912
√
π5 Γ

(
2
3

)6
Γ
(

5
6

) (1 + 32
3 α

2 + 281
1260ε

2α2
)
d5 (A.6)

+
Γ
(

1
6

)7

448
√
π7Γ

(
2
3

)7

(32
3 α

2 + 187
420ε

2α2
)
d7 +O(d8)
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A1 in terms of s, upto 6th order is given by.

A1
L2L3

= 2
∫ ∞
r∗

dr
r2f2(r)√
N(r)

(
1− r6

∗
r6

)− 1
2

(A.7)

=
∫ ∞

1
du

2u5
√
u6 − 1

1
s3

f2(u/s)√
N(u/s)

= 2I4
1
s2 + I0

(
1 + 32

3 α
2 + 281

1260ε
2α2

)
s2 − I−2

(32
3 α

2 + 187
420ε

2α2
)
s4

+ I−4

(3
4 + 16α2 − 93

280ε
2α2

)
s6 +O(s7)

= lim
δ→0

1
δ2 −

√
πΓ
(

2
3

)
Γ
(

1
6

) 1
s2 +

√
πΓ
(

1
3

)
6 Γ

(
5
6

) (
1 + 32

3 α
2 + 281

1260ε
2α2

)
s2

−
√
πΓ
(

2
3

)
Γ
(

1
6

) (32
3 α

2 + 187
420ε

2α2
)
s4 +

(1
4 + 16

3 α
2 − 31

280ε
2α2

)
s6 +O(s7)

Finally, by using the relations (A.6) and (A.7), we get

A1
L2L3

= lim
δ→0

1
δ2 + C−2

23
1
d2 + C2

23d
2 + C4

23d
4 + C6

23d
6 +O(d7) (A.8)

where

C−2
23 = −32

√
π9

3
√

3
1

Γ
(

1
3

)3
Γ
(

1
6

)3

C2
23 = 3

320
√
π7

Γ
(1

3

)3
Γ
(1

6

)3 (
1 + 32

3 α
2 + 281

1260ε
2α2

)
C4

23 = − 3
√

3
28
√
π9

Γ
(1

3

)3
Γ
(1

6

)3 (
α2 + 187

4480ε
2α2

)
C6

23 = 27
16384π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1− 13
√

3
1800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)

+ 9
256π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1− 13
√

3
1800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
α2

− 837
1146880π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1 + 3653
√

3
502200π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
ε2α2,

with Γ
(

2
3

)
and Γ

(
5
6

)
, which are

Γ
(2

3

)
= 2π
√

3 Γ
(

1
3

) ,
Γ
(5

6

)
= 2π

Γ
(

1
6

) .
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A.3 Slab on the x3-x1 plane

In this subsection we find the expression of A2 in terms of d, following the same steps as
we did in A.1. First, d is expanded in terms of s upto its 7th order.

d= 2
∫ ∞
r∗

dr√
r2f2(r)N(r)

(
r6

r6
∗
−1
) =

∫ ∞
1

du
2

u
√
u6−1

1
f(u/s)

√
N(u/s)

(A.9)

=
∫ ∞

1
du

2
u
√
u6−1

(
1− ε

2α2

9u6 s
6+ ε2α2

2u8 s
8
)
s

u

[
1+ 1

2

(
1+ 32

3 α
2+ 281

1260ε
2α2

)
s4

u4

− 1
2

(32
3 α

2+ 1121
1260ε

2α2
)
s6

u6 + 2ε2α2

3
s8

u8

]

= (2I−2) s+I−6

(
1+ 32

3 α
2+ 281

1260ε
2α2

)
s5−I−8

(32
3 α

2+ 467
420ε

2α2
)
s7+O(s8)

=
2
√
π Γ

(
2
3

)
Γ
(

1
6

) s+
√
π Γ

(
1
3

)
15Γ

(
5
6

) (
1+ 32

3 α
2+ 281

1260ε
2α2

)
s5−

4
√
π Γ

(
2
3

)
7Γ
(

1
6

) (32
3 α

2+ 467
420ε

2α2
)
s7

+O(s8)

The expression for s is given in series of small d.

s(d) =
Γ
(

1
6

)
2
√
π Γ

(
2
3

) d− 5Γ
(

1
3

)
Γ
(

1
6

)6

6912
√
π5 Γ

(
2
3

)6
Γ
(

5
6

) (1 + 32
3 α

2 + 281
1260ε

2α2
)
d5 (A.10)

+
Γ
(

1
6

)7

448
√
π7Γ

(
2
3

)7

(32
3 α

2 + 467
420ε

2α2
)
d7 +O(d8)

A2 in terms of s upto 6th order is given by

A2
L3L1

= 2
∫ ∞
r∗

dr
r2

f(r)
√
N(r)

(
1− r6

∗
r6

)− 1
2

(A.11)

=
∫ ∞

1
du

2u5
√
u6 − 1

1
s3

1
f(u/s)

√
N(u/s)

= 2I4
1
s2 + I0

(
1 + 32

3 α
2 + 281

1260ε
2α2

)
s2 − I−2

(32
3 α

2 + 467
420ε

2α2
)
s4

+ I−4

(3
4 + 16α2 + 747

280ε
2α2

)
s6 +O(s7)

= lim
δ→0

1
δ2 −

√
πΓ
(

2
3

)
Γ
(

1
6

) 1
s2 +

√
πΓ
(

1
3

)
6 Γ

(
5
6

) (
1 + 32

3 α
2 + 281

1260ε
2α2

)
s2

−
√
πΓ
(

2
3

)
Γ
(

1
6

) (32
3 α

2 + 467
420ε

2α2
)
s4 +

(1
4 + 16

3 α
2 + 249

280ε
2α2

)
s6 +O(s7)
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Finally, we get A2(d) by using the relations (A.10) and (A.11), which is
A2
L3L1

= lim
δ→0

1
δ2 + C−2

31
1
d2 + C2

31d
2 + C4

31d
4 + C6

31d
6 +O(d7) (A.12)

where

C−2
31 = −32

√
π9

3
√

3
1

Γ
(

1
3

)3
Γ
(

1
6

)3

C2
31 = 3

320
√
π7

Γ
(1

3

)3
Γ
(1

6

)3 (
1 + 32

3 α
2 + 281

1260ε
2α2

)
C4

31 = − 3
√

3
28
√
π9

Γ
(1

3

)3
Γ
(1

6

)3 (
α2 + 467

4480ε
2α2

)
C6

31 = 27
16384π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1− 13
√

3
1800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)

+ 9
256π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1− 13
√

3
1800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
α2

− 6723
1146880π9 Γ

(1
3

)6
Γ
(1

6

)6
(

1 + 3653
√

3
4033800π5/2 Γ

(1
3

)3
Γ
(1

6

)3
)
ε2α2,

B Equations and solutions for the long cylinder

B.1 Solutions for z0(ρ), z(α)(ρ) and z(ε)(ρ)

As we discussed in section 4, we solve equation (4.3) by employing small α and ε expansion
upto leading order in α2 and ε2α2. The form of the solution is given by

z(ρ) = z0(ρ) + α2z(α)(ρ) + ε2α2z(ε)(ρ), (B.1)

and each z0,z(α),z(ε) can be solved in the form of series solution in ρ. With such a form
of the solution (B.1), we consider small α2 and ε2 expansion of equation (4.3) and solve
equations of zeroth order in α and ε, of leading order in α2, and ε2α2.

First, let us examine the equation for z0, which is zeroth order in α and ε, being
given by √

1 + (z′0)2

1− z4
0
− z3

0
∂

∂ρ

 ρ

z3
0

√
1 + (z′0)2

1−z4
0

 = 0, (B.2)

where prime denotes derivative with respect to ρ. The solution for z0 is given by

z0 = z∗ + 3
(
z4
∗ − 1

)
4z∗

ρ2 + 9
(
7z8
∗ − 2z4

∗ − 5
)

128z3
∗

ρ4 + 3
(
10z12
∗ − 13z8

∗ + 16z4
∗ − 13

)
128z5

∗
ρ6 (B.3)

+ 9
(
1275z16

∗ − 2456z12
∗ − 1354z8

∗ + 7216z4
∗ − 4681

)
131072z7

∗
ρ8

+ 27
(
23275z20

∗ − 49367z16
∗ + 36878z12

∗ − 184910z8
∗ + 356407z4

∗ − 182283
)

13107200z9
∗

ρ10 . . .

+ upto O(ρ38),
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where we get the series solution upto order of ρ38 but we just write the solution upto
O(ρ10). To get the relation between a and z∗, we apply the boundary condition (4.7).
The relation is obtained numerically. Some results are given in table 1. In fact, to draw
the graphs, we obtain more data points.

The equation of z(α)(ρ) is given by

1
2
z′0
z3

0

z′0Nα + 2z(α)′ + 4z(α)z3
0z
′
0

1−z4
0

1− z4
0 + (z′0)2

√
1 + (z′0)2

1− z4
0
− 3z

(α)

z4
0

√
1 + (z′0)2

1− z4
0

(B.4)

= ∂

∂ρ

−1
2ρ

z′0
z3

0

z′0Nα + 2z(α)′ + 4z(α)z3
0z
′
0

1−z4
0

1− z4
0 + (z′0)2

1√
1 + (z′0)2

1−z4
0

− 3ρ z
(α)

z4
0

1√
1 + (z′0)2

1−z4
0

 ,
where

Nα = 32
3

z4
0

1 + z2
0
. (B.5)

We note that the equation is that of leading order in α2. We put the zeroth order solution,
z0 that we obtained previously into the equation (B.4) and get the solution of z(α)(ρ) which
is also a series solution in small ρ. The solution, z(α)(ρ) is given by

z(α) = zα∗ + 9z4
∗z
α
∗ + 3zα∗ − 32z7

∗ + 32z5
∗

4z2
∗

ρ2 (B.6)

+ 315z8
∗z
α
∗ − 18z4

∗z
α
∗ + 135zα∗ − 1920z11

∗ + 1344z9
∗ + 768z7

∗ − 192z5
∗

128z4
∗

ρ4

+ 1
128z6

∗

(
210z12

∗ z
α
∗ − 117z8

∗z
α
∗ − 48z4

∗z
α
∗ + 195zα∗

−2000z15
∗ + 960z13

∗ + 2272z11
∗ − 832z9

∗ − 912z7
∗ + 512z5

∗

)
ρ6 . . .+ upto O(ρ30)

We also get the equation and the solution for z(ε), being given by

1
2
z′0
z3

0

z′0(Nε + 2F ) + 2z(ε)′ + 4z(ε)z3
0z
′
0

1−z4
0

1− z4
0 + (z′0)2

√
1 + (z′0)2

1− z4
0
− 3z

(ε)

z4
0

√
1 + (z′0)2

1− z4
0

(B.7)

= ∂

∂ρ

−1
2ρ

z′0
z3

0

z′0(Nε + 2F ) + 2z(ε)′ + 4z(ε)z3
0z
′
0

1−z4
0

1− z4
0 + (z′0)2

1√
1 + (z′0)2

1−z4
0

− 3ρ z
(ε)

z4
0

1√
1 + (z′0)2

1−z4
0

 ,
where

Nε = 4
9 z4

0

(
281
560 −

2z6
0 + 6z4

0 + 3z2
0

2 (z2
0 + 1)4

)
, (B.8)

F = 1
18 z6

0
z2

0 − 2
(z2

0 + 1)4 . (B.9)
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The solution of z(ε) is given by

z(ε) = zε∗+
1

1680z2
∗ (z2
∗+1)3

(
3780z10

∗ z
ε
∗+11340z8

∗z
ε
∗+12600z6

∗z
ε
∗+7560z4

∗z
ε
∗+3780z2

∗z
ε
∗

(B.10)

+1260zε∗−281z15
∗ −283z13

∗ +418z11
∗ +142z9

∗−277z7
∗+281z5

∗

)
ρ2

+ 1
8960z4

∗ (z2
∗+1)3

(
22050z14

∗ z
ε
∗+66150z12

∗ z
ε
∗+64890z10

∗ z
ε
∗+18270z8

∗z
ε
∗+5670z6

∗z
ε
∗

+27090z4
∗z
ε
∗+28350z2

∗z
ε
∗+9450zε∗−3653z19

∗ −5359z17
∗ +4875z15

∗ +8009z13
∗ −3179z11

∗

−4049z9
∗+3637z7

∗−281z5
∗

)
ρ4

+ 1
53760z6

∗ (z2
∗+1)3

(
88200z18

∗ z
ε
∗+264600z16

∗ z
ε
∗+215460z14

∗ z
ε
∗−59220z12

∗ z
ε
∗−167580z10

∗ z
ε
∗

−109620z8
∗z
ε
∗+21420z6

∗z
ε
∗+225540z4

∗z
ε
∗+245700z2

∗z
ε
∗+81900zε∗−31191z23

∗ −58573z21
∗

+40445z19
∗ +121103z17

∗ +3111z15
∗ −89251z13

∗ −33693z11
∗ +61985z9

∗−18432z7
∗+4496z5

∗

)
ρ6

+ upto O(ρ30)

B.2 Black brane solution and entanglement temperature

In this subsection, we find the solutions of zA0 and zB0 . In this case, f(r) and N(r) are
given by

f = 1, N(r, ξ) = r2 − ξ

r2 ,

and z0 will have a form of
z0 = zA0 + ξzB0 +O(ξ2),

where ξ is a bookkeeping parameter and later we take ξ = 1. The equation of z0 is given by

√
1 + (z′0)2

1− ξz4
0
− z3

0
∂

∂ρ

 ρ

z3
0

√
1 + (z′0)2

1−ξz4
0

 = 0. (B.11)

The solutions for zA0 and zB0 are obtained by employing power expansion order by order in
ξ upto its first order. We get series solutions for zA0 and zB0 in ρ upto O(ρ75), which are
given by

zA0 = zA∗ −
3

4(zA∗ )ρ
2 − 45

128(zA∗ )3 ρ
4 − 39

128(zA∗ )5 ρ
6 + · · · , (B.12)

zB0 = zB∗ + 3(zA∗ )5 + 3zB∗
4(zA∗ )2 ρ2 + −18(zA∗ )5 + 135zB∗

128(zA∗ )4 ρ4 + 48(zA∗ )5 + 195zB∗
128(zA∗ )6 ρ6 + · · · .

The boundary condition zA0 (a) = 0 gives a constant ratio of a to zA∗ as

a

zA∗
= 0.789541. (B.13)
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With the given values of a from the previous computation, the boundary condition zB0 (a) =
0 gives the value of zB∗ . With these values we obtain

lim
a→0

γ(ξ)

a3 = 0.73228506. (B.14)

The solution of γ(ξ)(a) is given explicitly in the next subsection, upto 6th order.

B.3 Computation of the surface area for cylinder

Defining r ≡ z−1(ρ), the integral for the surface area of the cylinder becomes

Acy1 = 2πL1

∫ 0

a
z−3(ρ)ρ

(
∂z

∂ρ

)
dρ

√√√√ 1(
∂z
∂ρ

)2 + 1
z2N(z−1)f2(z−1) . (B.15)

We expand the integrand upto leading order of ξ, α2, and ε2α2, as we similarly did for
z(ρ):

Acy1 = 2πL1
(
γ(AdS) + ξγ(ξ) + α2γ(α) + ε2α2γ(ε)

)
.

The solutions of z(α)(ρ), z(ε)(ρ), zA0 (ρ) and zB0 (ρ) are given in appendix B.1 and B.2. With
these solutions we may expand the integrands in terms of ρ and integrate them to get γ(ξ),
γ(α), and γ(ε):

γ(ξ) = − 3zB∗
2(zA∗ )4a

2 − 27{(zA∗ )5 + 5zB∗ }
32(zA∗ )6 a4 − 45{3(zA∗ )5 + 14zB∗ }

64(zA∗ )8 a6 + upto O(a75), (B.16)

γ(α) = − 3z(α)
∗

2z4
∗
a2 + 9(−32z5

∗ + 32z7
∗ − 15z(α)

∗ + 3z4
∗z

(α)
∗ )

32z6
∗

a4 (B.17)

− 15(96z5
∗ − 80z7

∗ − 64z9
∗ + 48z11

∗ + 42z(α)
∗ − 27z4

∗z
(α)
∗ − 3z8

∗z
(α)
∗ )

64z8
∗

a6 + upto O(a30),

γ(ε) = − 3z(ε)
∗

2z4
∗
a2 (B.18)

+ 3
4480z6

∗(z2
∗ + 1)3

{
−281z5

∗ + 277z7
∗ − 142z9

∗ − 418z11
∗ + 283z13

∗ + 281z15
∗

+ z
(ε)
∗ (−6300− 18900z2

∗ − 17640z4
∗ − 2520z6

∗ + 3780z8
∗ + 1260z10

∗ )
}
a4

+ 1
1792z8

∗(1 + z2
∗)3

{
−843z5

∗ + 271z7
∗ + 1115z9

∗ − 1671z11
∗ + 11z13

∗ + 1401z15
∗ − 3z17

∗

− 281z19
∗ + z

(ε)
∗ (−17640 + 52920z2

∗ − 41580z4
∗ + 16380z6

∗ + 35280z8
∗ + 15120z10

∗

+3780z12
∗ + 1260z14

∗ )
}
a6 + upto O(a30).
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