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Abstract
Background: Predicting the survival of cancer patients provides prognostic in-
formation and therapeutic guidance. However, improved prediction models are 
needed for use in diagnosis and treatment.
Objective: This study aimed to identify genomic prognostic biomarkers related 
to colon cancer (CC) based on computational data and to develop survival predic-
tion models.
Methods: We performed machine-learning (ML) analysis to screen pathogenic 
survival-related driver genes related to patient prognosis by integrating copy 
number variation and gene expression data. Moreover, in silico system analy-
sis was performed to clinically assess data from ML analysis, and we identified 
RABGAP1L, MYH9, and DRD4 as candidate genes. These three genes and tumor 
stages were used to generate survival prediction models. Moreover, the genes 
were validated by experimental and clinical analyses, and the theranostic appli-
cation of the survival prediction models was assessed.
Results: RABGAP1L, MYH9, and DRD4 were identified as survival-related can-
didate genes by ML and in silico system analysis. The survival prediction model 
using the expression of the three genes showed higher predictive performance 
when applied to predict the prognosis of CC patients. A series of functional analy-
ses revealed that each knockdown of three genes reduced the protumor activity 
of CC cells. In particular, validation with an independent cohort of CC patients 
confirmed that the coexpression of MYH9 and DRD4 gene expression reflected 
poorer clinical outcomes in terms of overall survival and disease-free survival.
Conclusions: Our survival prediction approach will contribute to providing in-
formation on patients and developing a therapeutic strategy for CC patients.
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1   |   INTRODUCTION

Colon cancer (CC) is one of the most frequently diag-
nosed cancers and a leading cause of cancer-related 
death worldwide. CC patients, even those with the same 
disease stage, have different survival outcomes accord-
ing to molecular characteristics related to their genetic 
and environmental factors. To understand such tumor 
heterogeneity, prognostic markers need to be developed 
and used in treatment strategies. Thus, further develop-
ment of prognostic models integrating multiple prognos-
tic markers may help to optimize individualized clinical 
decision-making regarding adjuvant treatment for those 
at higher risk of mortality, contributing to the successful 
treatment of CC.

Survival prediction models are designed to assist 
treatment decision-making by predicting the patient's 
risk class, diagnosis, prognosis, and recurrence risk ac-
cording to information on individual patients.1 To make 
predictions, large and complex patient data sets should 
be analyzed to identify important patient characteristics 
and classify patients accordingly.2–5 Machine learning 
(ML) has recently been widely used in the field of biol-
ogy to develop survival prediction models; ML can facil-
itate classification, feature selection, and prediction by 
analyzing large, complex data.4–6 ML can conduct self-
learning by using diverse algorithms to develop survival 
prediction models. The survival prediction model inter-
prets patient characteristics and predicts patient prog-
nosis by using genomic biomarkers, including mutation, 
copy number, and gene expression, which are identified 
based on computational data.7,8 Recently, many cancer 
studies have used ML to discover biomarkers in var-
ious cancers, such as CC, pancreatic cancer, and liver 
cancer, and to develop survival prediction models using 
biomarkers from ML.9,10 However, it remains a chal-
lenge whether survival prediction models based on ML 
can achieve high prognostic performance when applied 
clinically.

In this study, we identified survival-related genes by 
integrating copy number variation (CNV) and gene ex-
pression data by ML and performed further validation by 
in silico system analysis based on clinical genomic data. 
Then, RABGAP1L, MYH9, and DRD4 were identified. 
Using these three genes and tumor stage information, 
we built a survival prediction model. In parallel, a series 
of functional analyses were conducted to verify that the 
three genes facilitated malignant behaviors in CC cells, 
and clinical validation with an in-house cohort of CC pa-
tients validated that the genes were related to poor survival 
outcomes. This study provides new prognostic biomarkers 
and insights into the development of survival prediction 
models.

2   |   MATERIALS AND METHODS

2.1  |  Data preprocessing

2.1.1  |  Data sources

Ribonucleic acid sequencing (RNA-seq) gene expression 
and CNV data and clinical information were downloaded 
from the TCGA-COAD project. This data set is publicly 
available on the Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/). The RNA-seq data were 
sequenced using an Illumina HiSeq 2000 system; the ex-
pression levels are expressed herein as fragments per kilo-
base per million sequenced reads. The deoxyribonucleic 
acid (DNA) CNV data were obtained from Affymetrix 
single nucleotide polymorphism (SNP) 6.0 arrays, and the 
data type is the copy number segment. The averaged log2 
ratios of CNVs in each segment are given with their asso-
ciated contiguous chromosome regions in a tab-delimited 
format. Clinical information was collected from cBioPor-
tal for Cancer Genomics (http://www.cbiop​ortal.org/).

2.1.2  |  CNV preprocessing

As the CNV data were given as locus information, chro-
mosomal regions were annotated using the Human Gene 
Organization (HUGO) Gene Nomenclature Committee 
gene symbols11 to allow for systematic comparison with 
expression data. If a gene matched multiple probes, it 
was given a value equal to the sum of the segment mean, 
multiplied by the proportion of each segment (refer to 
Figure  S1 for details). After this procedure, genes with 
zero values in all samples or those with “not available 
(NA)” values in more than 10% of their samples were ex-
cluded. The remaining missing values were replaced with 
average values from other samples within the same gene. 
Subsequently, GISTIC 212 was applied to the CNV data 
using the Homo sapiens (hg38) reference sequence gene 
annotation. CNV values were obtained by examining the 
distribution of log2 ratios to identify peaks related to CNV 
status. Default GISTIC log2 thresholds (0.1% and −0.1%) 
were used to identify gains and losses of genes with focal 
CNV changes.

2.1.3  |  Gene expression preprocessing

The Ensembl IDs of gene expression data were remapped 
to gene symbols with the package “biomaRt” (ver. 2.40.5) 
in R; no coding genes were removed from the data. To iso-
late differentially expressed human protein-coding genes, 
the “DESeq2” (ver. 1.24.0) package13 was used in R v.3.6.3. 
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Genes with a value of zero in all normal samples were 
removed.

2.2  |  Calculation of candidate driver 
gene scores

The dominant effect of the cancer driver genes (DEOD) 
method was previously developed to measure the poten-
tial effects of driver genes across an entire network.14 
For each gene with focal copy number changes, DEOD 
was used to estimate weights from CNVs in relation to 
the expression changes of its neighboring genes. It was 
then used to calculate a driver score for the gene in ques-
tion. Here, DEOD was applied to the preprocessed CNV 
and gene expression data from TCGA-COAD to obtain 
the driver scores for the candidate cancer driver genes. 
In this process, the human protein–protein interaction 
network, which has 8549 reference proteins and 362,553 
interactions, was obtained from BioGRID (vHomo_sa-
piens_3_5.187. Table  3); these data were also used as 
inputs for the DEOD method.

2.3  |  ML-based survival analysis

To determine how the CNVs or expression of the candi-
date cancer driver genes affected the clinical prognosis 
of patients with colorectal cancer (CRC), Kaplan–Meier 
survival curves were plotted for overall survival (OS) and 
disease-free survival (DFS) in each of the amplification 
and deletion groups. The detailed methods are provided 
in Supplementary Method 1.1.

2.4  |  Regression analysis of 
expression profiles

2.4.1  |  In-house test data set for 
prediction models

A total of 137 patients with stage II and III colon cancer 
after curative surgical resection from Jan 2013 to Dec 2014 
were included in this study. Normal and tumor tissue sam-
ples from each patient were provided by the Biobank of 
Chonnam National University Hwasun Hospital, a mem-
ber of the Korea Biobank Network, with informed con-
sent. This study was approved by the Chonnam National 
University Hwasun Hospital Institutional Review Board 
(approval number: IRB CNUHH-2020-173) and con-
ducted in accordance with the Declaration of Helsinki. 
The clinical information on the 137 patients is shown in 
Table S1. This data set is referred to as Chonnam-COAD.

2.4.2  |  Public cohorts of metastatic 
CRC patients

To verify the robustness and stability of our prediction 
models, two public data sets for CRC patients (GSE17536 
and GSE17537) were used. GSE17536 has 177 patients, 
with 73 deceased patients and 36 recurrence patients. 
GSE17537 has 55 patients, with 20 deceased patients 
and 19 recurrence patients. The gene expression and 
clinical information on the public cohorts GSE17536 and 
GSE17537 were downloaded from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/).

2.4.3  |  Logistic regression models for 
predicting patient prognosis

We developed logistic regression models for predicting 
patient prognosis as previously described.8 The TCGA-
COAD data set was used to train logistic regression mod-
els for the prediction of clinical prognosis (OS and DFS) 
for cancer patients. A logistic regression algorithm is a 
statistical model that understands relationships between 
variables and is a generalized linear model that can be 
used when the dependent variable is binary. The logistic 
regression model predicts an outcome based on some pre-
dictor variable, so the formula follows Equation 1.

The input features (X1,X2, ⋯) in Equation (1) included com-
binations of expression profiles of the three selected cancer-
driver candidate genes and American Joint Committee on 
Cancer (AJCC) tumor stages. As the OS and DFS prediction 
models yield prediction probabilities, the results needed to 
be classified as binary values (alive/dead and disease-free/
recurrent for OS and DFS, respectively). Prior to the analy-
sis, all cohorts, including TCGA-COAD, Chonnam-COAD, 
GSE17536, and GSE17537, were rescaled according to 
Equation 2:

where xij′ represents sample i with gene j, xj is the arithmetic 
mean of gene j, and �j is its standard deviation (SD).

The clinical prognosis was predicted using logistic re-
gression analysis of gene expression; this process was di-
vided into three steps. In the first step, logistic regression 
models with different feature combinations were fitted 
with the TCGA-COAD data set. In the second step, the 

(1)log

(

p

1 − p

)

= �1X1 + �2X2 + ⋯ + �0.

(2)x�ij =
xij − xj

�j
,
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model was tested on the Chonnam-COAD data set and 
three other public data sets. Finally, the predicted proba-
bility was assessed with four statistical metrics: area under 
the curve (AUC), F1 score (F1), precision (Prec), and sen-
sitivity (Sens). When the F1 score was the highest, the cor-
responding probability value was set as the threshold to 
divide the predicted probability scores into binary labels.

2.4.4  |  Comparison methods

To further evaluate the performance of the three selected 
genes for predicting prognosis in CRC patients, we built 
two additional predictive models using the larger numbers 
of genes and compared the performance outcomes of the 
models. The first model used candidate driver genes iden-
tified by DEOD, and the second model used DEOD input 
genes. Because both models consider a large number of 
genes, a dimension reduction process was applied using 
a three-layer autoencoder. An autoencoder is an artificial 
neural network architecture that aims to learn how to re-
construct input data. The autoencoder consists of an en-
coder and a decoder and an embedding layer that connects 
them. The encoder reaches the embedding layer while re-
ducing the dimension of the input data, and the decoder 
expands the reduced embedding layer using data with the 
same dimension as the input data such that the output of 
the decoder becomes similar to the input of the encoder. In 
this study, both employ a rectified linear unit for their acti-
vation function and mean squared error as their loss func-
tion. The hyperparameter was used as the best-case among 
several combinations of trials (epochs 2000, learning rate 
0.0001, weight decay 0.0001, and drop rate 0.1). Then, lo-
gistic regression with reduced variables and tumor stage 
was used to predict survival. All predictive models in this 
subsection were trained and tested with stratified five-fold 
cross-validation on 223 patients from TCGA-COAD.

2.5  |  Cell culture

The human CC cell line HCT116 was obtained from the 
Korean Cell Line Bank (Seoul, Republic of Korea) and 
grown in RPMI-1640 (Welgene, Daegu, Republic of Korea) 
supplemented with 5% fetal bovine serum (Welgene) and 
1% penicillin/streptomycin (Welgene) at 37 °C in a 5% 
CO2 incubator.

2.6  |  Knockdown of target genes

Small interfering RNAs (siRNAs) were purchased from 
Bioneer (Daejeon, Republic of Korea). siRNA transfection 

was performed using NEPA21 (Nepa Gene, Shioyaki, 
Japan). The electroporation parameters for HCT116 cells 
were the following: voltage 175 V, pulse length 50 ms, pulse 
interval 50 ms, and a number of pulses 5. Knockdown ef-
ficiencies were measured by RT-qPCR and Western blot-
ting. The siRNA sequences are listed in Table S2.

2.7  |  RNA isolation and real  
time-quantitative polymerase chain 
reaction (RT-qPCR)

RNA isolation from the cell lines and RT-qPCR were con-
ducted as previously described.15 The detailed methods 
are provided in the online supplement.

For RNA isolation from patient tissue, total RNA was ex-
tracted using Hybrid-RTM (GeneAll Biotechnology). cDNA 
synthesis was performed using GoScript Reverse Transcription 
Mix (Promega) according to the supplier's instructions. Real-
time qPCR was conducted using a Bio-Rad CFX96 Connect 
Real-Time PCR Detection System (Bio-Rad). The relative 
mRNA expression of selected genes was normalized to  
β-actin. The sequences of the primers are listed in Table S3.

2.8  |  Protein isolation and 
western blotting

Protein isolation and Western blot analysis were con-
ducted as previously described.15 The detailed methods 
are provided in the online supplement. The antibodies 
used for the Western blot assay are listed in Table S4.

2.9  |  Cell viability assay

Cell viability assays were conducted using thiazolyl blue 
tetrazolium bromide (MTT, Sigma–Aldrich) according to 
the manufacturer's instructions. The detailed methods are 
provided in the online supplement.

2.10  |  Clonogenic assay

The clonogenic assay was conducted as previously described.15 
The detailed methods are provided in the online supplement.

2.11  |  Apoptosis assay

Quantitative analysis of the apoptotic cells was performed 
as previously described.15 The detailed methods are pro-
vided in the online supplement.
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2.12  |  In vitro limiting dilution assay

An in vitro limiting dilution assay was performed as pre-
viously described with slight modifications. The detailed 
methods are provided in the online supplement.

2.13  |  Wound healing assay

A wound healing assay was performed as previously de-
scribed with slight modifications. The detailed methods 
are provided in the online supplement.

2.14  |  Statistical analysis

All data are presented as the means ± SDs. All statistical 
data were analyzed by GraphPad Prism 7.0 (GraphPad 
Software). Statistical comparisons were measured by 
Student's t-test or two-way ANOVA with the Bonferroni 
multiple comparison test, and comparisons among more 
than three groups were measured by one-way ANOVA 
with Dunnett's multiple comparison test. Kaplan–Meier 
analysis was performed using the log-rank test. Statistical 
significance was designated with asterisks as follows: 
*, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001, 
respectively.

3   |   RESULTS

3.1  |  Processing the data from the  
TCGA-COAD database

CNV and gene expression data for 224 tumors and 10 
normal samples were downloaded from the colon ad-
enocarcinoma (COAD) project of The Cancer Genome 
Atlas (TCGA) database (Table 1).16 In total, 24,776 genes 
with log2 thresholds > 0.1 for amplification or lower 
than −0.1 for deletion were identified in tumor sam-
ples by using the Genomic Identification of Significant 
Targets in Cancer (GISTIC) 2 algorithm.12 Preprocessing 

of gene expression using DESeq213 identified 11,340 
protein-coding genes that were differentially expressed 
in tumor tissues and normal tissues (p < 0.05). A com-
parison of the 24,776 genes identified from CNV pre-
processing and the 11,340 genes identified from gene 
expression preprocessing revealed 10,605 overlapping 
genes (Figure  1A). To identify the cancer driver can-
didate genes that were pathogenic biomarkers, 10,605 
genes were analyzed by the DEOD approach,14 and 366 
genes were identified as cancer driver candidate genes 
(Figure  1B, Table  S5 for detailed scores). These 366 
genes were further screened to identify survival-related 
genes in subsequent analyses.

3.2  |  Association of molecular features 
with clinical prognosis

The threshold values shown in Table 2 were used to iden-
tify survival-related cancer driver genes when grouping 
patients by the CNV values of the 366 genes identified 
by DEOD based on 224 tumor samples. For each of the 
1%, 3%, and 5% thresholds, samples with values above 
the amplified threshold for each gene are classified as 
1%, 3%, and 5% amplification groups of the gene, and 
samples below the deleted threshold are classified as 
1%, 3%, and 5% del groups of the gene. Threshold val-
ues were determined as upper/lower values of 1%, 3%, 
and 5% of the total copy number. Excluding genes with 
no sample in either the amplification or deletion group, 
the numbers of genes in the 1%, 3%, and 5% groups that 
complied with the threshold values were 61, 212, and 
302, respectively, for OS and 109, 247, and 323, respec-
tively, for DFS (Table  3). Conducting survival analysis 
by plotting Kaplan–Meier curves for OS and DFS using 
these genes revealed that for OS, there were one, three, 
and four genes with significant differences between 
their amplification and deletion groups for the 1%, 3%, 
and 5% groups, respectively. For DFS, there were 5, 
20, and 23 genes with significant differences between 
these groups (see Table S6 for the gene list). There were 
six genes that showed significant differences between 
the amplification and deletion groups for at least one 
threshold regarding OS; there were 31 corresponding 
genes related to DFS (Table  S7). Among genes in the 
1%, 3%, and 5% groups, a total of 34 genes, including 
three overlapping genes (ARAP2, GK5, and RPRD2), had 
significant effects on OS and DFS. Furthermore, these 
genes were compared with CNV data to identify rela-
tionships between the amplification of CNVs in tumors 
and their high expression in the cancer tissue samples of 
deceased patients compared with alive patients, or vice 
versa. Twenty-three candidate genes were identified by 

T A B L E  1   Clinical prognostic information on TCGA-COAD 
patients

Category
Number of 
patients

Alive 198 (88%)

Deceased 26 (12%)

Disease free 163 (73%)

Recurrence 63 (27%)

Total 224
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survival analysis based on the TCGA-COAD database 
(Figure 1C).

3.3  |  Verification of candidate genes by 
in silico system analysis

We conducted verification of 23 candidate genes using the 
Oncomine and R2 platforms and in silico system analysis to 

evaluate markers to be used in the survival prediction model. 
CNV involves the amplification or deletion of 1 kb or larger 
DNA segments and promotes tumor progression via alteration 
of the expression levels of genes. Several studies have shown 
that amplification increases gene expression and deletion de-
creases gene expression, showing that CNV alterations are pos-
itively and linearly related to gene expression.29–31 Therefore, 
to match the CNV data with gene expression data, we collected 
the expression data of 23 genes in tumor tissues and normal 

F I G U R E  1   A schematic flow chart of our approach and identification of candidate genes. (A) The pipeline started with data collection 
and preprocessing from the TCGA-COAD project, which consists of expression and CNV data. (B) The preprocessed data were sent to a 
gene scoring approach to compute weights for all effects of genes. (C) Survival analyses identified significant associations between the 
clinical prognosis of patients and CNV and expression. (D–F) We downloaded the expression data of each gene from public data sets. (D) 
Prognosis-related genes were analyzed by meta-analysis to identify a positive linear correlation between CNV and expression data in 14 data 
sets, which were the Alon,17 Gaedcke,18 Gaspar,19 Graudens,20 Kaiser,21 Ki,22 Kurashina,23 Notterman,24 Sabates-Bellver,25 Skrzypczak,26 
Skrzypczak226 and Zou27 studies and the TCGA28 and TCGA228 data sets provided by Oncomine. Then, we identified RABGAP1L, MYH9, 
DRD4, ARAP2, and CWF19L2. (E and F) We analyzed the five genes using the R2 platform to compare expression in stage 2 colorectal 
cancer (CRC) versus stage 3 CRC (GSE75316 for RABGAP1L, GSE37892 for MYH9, DRD4, ARAP2, and CWF19L2) and recurrent versus 
recurrent-free tumors (xin130617 for RABGAP1L, GSE24551 for DRD4, and GSE18088 for MYH9, ARAP2, and CWF19L2).

CNV

Threshold

1% 3% 5%

Threshold Amp 2.71 1.89 1.55

Del −2.95 −1.95 −1.52

Average N samples Amp 2.4 5.7 9.7

Del 2.4 5.5 8.9

Note: After listing all CN values in the data set, the upper and lower 1, 3, and 5% values were set as 
threshold values for grouping.
Abbreviations: Amp, amplified group; Del, deleted group.

T A B L E  2   Amplified and deleted 
group for each threshold

 20457634, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cam

4.5420 by G
w

angju Institute of Science and T
echnology (G

IST
), W

iley O
nline L

ibrary on [10/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  7609LEE et al.

tissues using 14 datasets from the Oncomine database and 
performed a meta-analysis. We identified five candidate genes 
with higher gene expression associated with amplification in 
tumor tissues versus normal tissues: Rab GTPase activating 
protein 1-like (RABGAP1L), myosin heavy chain 9 (MYH9), 
dopamine receptor D4 (DRD4), ArfGAP with RhoGAP do-
main ankyrin repeat and PH domain 2 (ARAP2), and CWF19-
like protein 2 (CWF19L2). There were no genes that had both 
lower gene expression and gene deletion in tumors compared 
with normal tissues (Figure 1D, Table S8).

To examine whether the five candidate genes were 
related to survival and recurrence, we conducted further 
analysis by exploring the RNA-sequencing data of CRC 
patients using a public database, R2: Genomics Analysis 
and Visualization Platform (http://r2.amc.nl). Genes with 
high expression in advanced and metastatic cancer are 
associated with poor patient prognosis.32 Therefore, we 
compared the gene expression between nonmetastatic 
stage II CRC and metastatic stage III CRC. RABGAP1L, 
MYH9, and DRD4 were significantly more highly ex-
pressed in stage III CRC than in stage II CRC (Figure 1E). 
Next, we verified the candidate genes by comparing the 
expression in recurrent tumors and nonrecurrent tumors. 
RABGAP1L, MYH9, and DRD4 expression were signifi-
cantly increased in recurrent tumors (Figure 1F). The re-
sults from the R2 platform indicated that the three genes 
affect the progression and recurrence of CRC and even the 
survival of CRC patients. Therefore, we identified three 
genes, RABGAP1L, MYH9, and DRD4, that may be used as 
biomarkers for survival prediction models.

3.4  |  Development of ML models to 
predict CRC patient survival

To predict the OS and DFS of patients with CC, we devel-
oped ML models using tumor stage features and the ex-
pression of three genes. There were some clinical features 
for predicting the survival of patients, such as age, tumor 
stage, and sex. In several studies, tumor stage features 

were the most significant for predicting survival.8,33–35 
Therefore, we selected tumor stage as a clinical feature 
to develop the ML models. Based on tumor stage features 
and the expression of the three identified candidate genes, 
RABGAP1L, MYH9, and DRD4, we developed logistic re-
gression models for the prediction of CRC patient prog-
nosis by ML. The baseline model is a logistic regression 
model using only AJCC tumor stage as a variable, and 
models 1–7 are logistic regression models using all pos-
sible combinations of three candidate genes and tumor 
stage as variables.

First, we trained the models using the gene expres-
sion profiles of the three genes and tumor stages from 
the TCGA-COAD data set. To test which combinations 
of three gene expressions and tumor stage information 
are the best-selected features for the prediction, seven 
trained models were tested using the Chonnam-COAD 
data set (137 patients) (Figure  2B). The area under the 
ROC curve (AUC), F1 score, precision (Prec), and sensi-
tivity (Sens) were used to evaluate the prediction perfor-
mance. Interestingly, Model 1 (the model of tumor stage 
and RABGAP1L) showed the highest performance of OS 
predictions (AUC = 0.69, F1 score = 0.26) compared with 
baseline (AUC =  0.66, F1 score =  0.24) and other mod-
els (average AUC = 0.64, F1 score = 0.242) in Chonnam-
COAD. For the prediction of Chonnam-COAD DFS 
prognosis, Model 3 (tumor stage + DRD4) had the high-
est AUC (0.72 vs. 0.64 ± 0.02), whereas Model 7 (tumor 
stage + RABGAP1L + MYH9 + DRD4) had the highest 
F1 score (0.33 vs. 0.3 ± 0.015). In general, the prediction 
performance of the prediction models (Models 1–7) was 
better than that of the baseline variable (tumor stage) 
(Figure 2B, Table S9).

Additionally, seven trained models have tested in two 
public data sets from western populations (GSE17536 
and GSE17537), which might show better performances 
as our gene selections were based on western cohorts 
(i.e., TCGA). When using GSE17536, Model 1 showed 
the highest AUC performance in OS and DFS (AUC of 
OS = 0.765, AUC of DFS = 0.572) compared with base-
line (AUC of OS = 0.763, AUC of DFS = 0.544) and other 
models (average AUC of OS  =  0.743; average AUC of 
DFS = 0.537) (Figure 2B, Table S10). In GSE17537, for the 
prediction of OS prognosis, Model 1 (AUC of OS = 0.796) 
and Model 4 (AUC of OS  =  0.790) showed significantly 
higher prognostic predictive performance than baseline 
(AUC of OS  =  0.766). For the prediction of DFS prog-
nosis, Model 3 showed the highest AUC performance 
(AUC of DFS = 0.963) compared with baseline (AUC of 
DFS  =  0.949) (Figure  2C, Table  S11). In the Chonnam-
COAD data set and two public data sets, predictive models 
using the candidate genes as variables performed bet-
ter than the baseline, especially in the case of analyzing 

T A B L E  3   Number of genes for survival analysis by threshold

Survival

Threshold

1% 3% 5%

Analyzed genes OS 61 212 302

DFS 109 247 323

Significant genes OS 1 3 4

DFS 5 20 23

Note: Analyzed genes, the number of genes for which survival analysis is 
possible among all candidate genes; Significant genes, the number of genes 
for which the results of survival analysis were significant.
Abbreviations: DFS, 5-year disease-free survival; OS, 5-year overall survival.
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public data sets, and most models had a high AUC value 
above 0.7. These results suggested that the candidate three 
genes had stable and robust predictive power as variables 
in multiple independent cohorts.

Next, we built two other predictive models: the first 
used candidate driver genes identified by DEOD, and 
the second used all the genes used as the DEOD input 
(Figure 2D). The first model used the expression values 
of 357 genes among 366 candidate genes, where genes 
with zero expression values were excluded. We also used 
an autoencoder model for dimension reduction, where 
hidden layers of 100, 3, and 100 dimensions were con-
nected. The second model used the expression profiles 
of 8837 genes among 10,605 DEOD input genes after re-
moving genes with zero expression values and low vari-
ations (< 10%). Based on the five-fold cross-validation 
of TCGA-COAD data, we compared the performance 
of these two models with that of the logistic regression 
model using the three genes identified in this study. In 
OS prediction, the proposed logistic regression model 
using the three identified genes showed the highest 
F1 score (0.33 ± 0.09) and the second-best AUC value 
(0.61 ± 0.15). In DFS prediction, although the proposed 
model had a lower F1 score (0.49 ± 0.03) than those of 
the other two models (0.50 ± 0.01 and 0.53 ± 0.09, re-
spectively), it had a higher F1 score than the baseline 

(0.47 ± 0.05) using only the tumor stage as a variable 
(Figure 2D). In conclusion, the model with information 
on the expression of the three genes and tumor stage 
performed better than the model with only tumor stage 
and showed high performance because there was no sig-
nificant difference in the performance of the model with 
a large number of genes.

3.5  |  Verifying the protumor 
activity of the three candidate genes

Because of the insufficient information on the role and 
function of the genes from computational analysis, 
there are premature or inappropriate uses of computa-
tional data before genes have been adequately tested and 
validated.36–38 Therefore, there is uncertainty regarding 
using these three candidate genes as therapeutic bio-
markers. Therefore, to validate the computational data 
and evaluate whether the three genes contribute to ma-
lignant behavior in CC, we investigated the protumor ac-
tivity by experimental analysis. Primarily, to perform the 
series of analyses, we determined the silencing effects of 
three different siRNA sequences targeting each gene and 
chose the siRNA that had the most potent silencing effect 
(Figure S2A) and confirmed the knockdown efficiency by 

F I G U R E  2   Survival prediction models. (A–C) AUC, area under the curve; F1, F1 score; Prec, precision; Sens, sensitivity. (A) To develop 
the survival prediction model, we trained the logistic regression model using the TCGA-COAD data set to obtain tumor stage information 
and expression data for the three genes. We applied the survival prediction model to predict survival in the Chonnam-COAD data set. (B, 
C) Prediction results of three public CRC patient cohorts: (B) GSE17536 and (C) GSE17537. Logistic regression models were trained with 
TCGA-COAD and tested with each public cohort. (D) Each model is a logistic regression (LR) model. We used only tumor stage (TS) as 
the variable (baseline) or TS and three selected genes as variables. The autoencoder-LR joint model used TS and 366 DEOD score genes as 
variables (AE + LR) and the AE + LR model used TS and 10,605 DEOD input genes as variables. All models were trained and tested with 
five-fold stratified cross-validation on gene expression data from 223 TCGA-COAD patients. In all panels, data are reported as the means 
± SEMs. AUC, five-fold average area under the curve; F1, 5-fold average F1 score; Prec, five-fold average precision; Sens, 5-fold average 
sensitivity
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checking the protein level (Figure 3A). Using siRNA for 
each of the genes, we first evaluated whether the three 
genes affect cell proliferation and apoptosis. Knockdown 
of each gene attenuated cell proliferation (Figure  3B). 
In apoptosis analysis, the knockdown of the MYH9 and 
DRD4 genes increased the number of apoptotic cells, ex-
cept for the RABGAP1L gene (Figure  3C, Figure  S2B). 
Second, the migration ability of the three genes was 
assessed by a wound healing assay. Knocking down 
each gene in all groups reduced the migratory ability 
(Figure 3D, Figure S2C). Therefore, all three genes regu-
lated cell proliferation and migration, but only MYH9- 
and DRD4-regulated apoptosis.

Next, we investigated whether the three genes affected 
tumor-initiating ability and cell survival. We conducted a 

limiting dilution assay to assess tumor-initiating ability. 
The results revealed that silencing each gene impaired 
tumor-initiating ability, as the frequency of sphere cells 
was significantly decreased (Figure  3E). Additionally, 
the knockdown group of each gene reduced the colony-
forming ability compared with the wild-type group or the 
control group, revealing that all three genes affected cell 
survival ability (Figure 3F, Figure S2D). Inhibition of the 
expression of each gene in CC decreased the survival of 
tumor-initiating cells. Thus, all three genes play a role in 
cell survival and tumor initiation.

Collectively, a series of analyses revealed the protumor 
activity of the three genes, RABGAP1L, MYH9, and DRD4. 
These results confirmed that these genes could be bio-
markers for disease severity and therapeutic targets.

F I G U R E  3   Verification of the protumor activity of the three genes. (A) Western blot assays confirmed the knockdown of the three 
genes. (B) MTT assays were performed to assess cell proliferation. The absorbance (570 nm) was measured at each time point (n = 5/each 
point). (C) Apoptosis assays were performed to evaluate the effect of the knockdown of the three genes on apoptosis. The percentage of 
apoptotic cells was analyzed by flow cytometry after staining the cells using Annexin V-FITC and PI (n = 3/group). (D) Cell migration 
was assessed by the wound-healing assay to compare the knockdown group with the wild-type or control group. The wound area was 
photographed with a microscope at each time point (n = 3/group). (E) Limiting dilution assays were performed to assess the effect of the 
knockdown of the three genes on tumor initiation ability. Cancer cells at different dilutions were cultured in poly-HEMA-coated plates 
(n = 12/group). After 14 days, the number of wells with spheres was counted and analyzed by the extreme limiting dilution assay web tool. 
(F) Clonogenic assays were performed to assess the survival potential after the knockdown of the three genes. The number of colonies was 
counted after staining with crystal violet (n = 3/group). In all panels, data are reported as the means ± SEMs; *, **, and *** indicate p < 0.05, 
<0.01, and <0.001, respectively. Statistical comparisons between two groups were performed using Student's t-test or two-way ANOVA with 
the Bonferroni multiple comparison test or one-way ANOVA with Dunnett's multiple comparison tests for three or more groups.
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3.6  |  Prognostic value of the three genes 
used in survival prediction models

To evaluate the prognostic value of the three genes 
and the theranostic application of survival prediction 
models, clinical analysis was performed using CC pa-
tient data from Chonnam National University Hwasun 
Hospital. First, the expression of the three genes was 
higher in tumor tissue than in normal tissue of CC pa-
tients (Figure  4A). Next, we conducted DFS and OS 
analyses with multiple combinations of the three genes. 
When grouping by single genes, CC patients in the 
high expression group presented remarkably shorter 
OS than those in the low expression group, but in the 
DFS analysis, there was no significant difference be-
tween the high and low expression groups (Figure 4B). 
When the analysis was performed with two-gene com-
binations of the three genes, the results indicated that 
only the group with high expression of both MYH9 
and DRD4 presented significantly poorer DFS and OS 
than the groups with low expression. However, both 
groups that highly coexpressed RABGAP1L and MYH9 
and coexpressed RABGAP1L and DRD4 showed poorer 
OS without altering DFS (Figure 4C). Finally, high ex-
pression of all three genes was significantly associated 
with a poor clinical outcome in terms of OS but not DFS 
(Figure 4D). According to the results, patients with high 

levels of both MYH9 and DRD4 had a lower DFS and OS 
and an adverse prognosis. Other combinations yielded 
a significant difference in only OS. Clinical validation 
suggested that a combination of the MYH9 and DRD4 
genes is a prognostic biomarker that can provide insight 
into the survival prediction of CC patients.

4   |   DISCUSSION

This study identified survival-related genes by integrat-
ing CNV and gene expression data using ML and further 
validated the genes using in silico system analysis, result-
ing in the discovery of RABGAP1L, MYH9, and DRD4. 
Using these three genes, we developed survival prediction 
models and confirmed their accuracy and performance in 
predicting CC prognosis by utilizing statistical estimation 
indicators. Moreover, the genes from the ML analysis were 
validated as potential therapeutic targets by experimental 
analysis and as diagnostic markers by clinical analysis. 
Thus, our survival prediction approach using ML, in silico 
system analysis and validation could be applied to patients.

To develop survival prediction models, previous 
studies revealed survival-related genes by Bayesian 
network-based methods that analyze diverse data types, 
such as copy number and gene expression data.39,40 
However, Bayesian network-based methods do not fully 

F I G U R E  4   Correlation of the expression of the three genes in patient tissues and clinical outcomes. (A) The expression of each gene 
at the mRNA level was measured in CC patient-derived tumor tissues and normal tissues from Chonnam National University Hwasun 
Hospital. (B-D) Prognostic implications of multiple combinations of the three genes in patients with CC. Kaplan–Meier survival curve 
analysis was performed using data from 137 patients for disease-free survival analysis and overall survival analysis. Patients were grouped 
based on the expression of a single gene (B), the coexpression of two genes (C), and the coexpression of all three genes (D). Statistical 
significance was determined by the log-rank test. R: RABGAP1L, M: MYH9, D: DRD4
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integrate copy number and gene expression data.41,42 In 
this study, we used an improved statistical approach, 
DEOD, which identified cancer driver genes by inte-
grating diverse data types, such as CNV, mutations, 
and expression data, analyzing genetic alterations and 
directional relationships between genes across vari-
ous data types.14 Cancer driver genes are pathogenic 
genes related to patient prognosis. Therefore, finding 
cancer driver genes by DEOD could pave the way for 
the identification of survival-related genes in cancer 
patients. Additional verification was performed using 
in silico system analysis, such as the Oncomine and R2 
platforms, which were constructed based on patients' 
genetic information. To identify the genes that are most 
suitable for predicting patient survival, we used the 
data from Oncomine to identify the genes whose CNV 
status and expression levels showed positive linear cor-
relations, and the R2 platform was used to discover the 
genes that were related to cancer progression and re-
currence. Through further verification of the data from 
the ML analysis by in silico system analysis, we iden-
tified RABGAP1L, MYH9, and DRD4, which could im-
prove the performance of patient survival prediction. 
The survival prediction models were constructed using 
diverse combinations of these genes and applied to the 
in-house cohort. Notably, the survival prediction mod-
els predicted the survival of CC patients with higher 
performance than the model based on only tumor stage 
information.

Prognostic values for various combinations of the 
three genes used to develop the survival prediction 
models were measured. The clinical analysis revealed 
that the coexpression of MYH9 and DRD4 was associ-
ated with significantly different survival rates between 
the high expression group and the low expression group 
in both the DFS and OS analyses. In parallel, a series 
of experimental analyses showed that MYH9 and DRD4 
contributed to malignant tumor behavior, and these 
results suggested that MYH9 and DRD4 have potential 
as therapeutic targets in CC. Indeed, numerous studies 
have provided evidence of the oncogenic roles of MYH9 
and DRD4 and suggested these two genes as potential 
therapeutic targets in diverse cancers. MYH9 plays on-
cogenic roles in hepatocellular carcinoma by enhancing 
cancer stemness properties, metastasis, and prolifera-
tion.43,44 DRD4 plays a role in tumorigenicity and me-
tastasis of glioblastoma.45 These previous studies firmly 
support our findings. Accordingly, in CC, further studies 
to understand the molecular mechanisms of MYH9 and 
DRD4 are expected to contribute to the proposal of new 
CC therapy strategies.

In summary, we developed a survival prediction 
model based on genes that were identified by ML and in 

silico system analysis. Furthermore, we verified genes 
that were used in the survival prediction model as diag-
nostic markers by clinical analysis and potential ther-
apeutic targets by experimental validation. Our study 
provides survival-related biomarkers and insight into 
the development of survival prediction models for CC 
patient survival to improve the performance of predic-
tive approaches.

5   |   CONCLUSION

In this study, we identified genes related to CC survival 
and developed survival prediction models. We performed 
ML to screen survival-related driver genes. Furthermore, 
in silico system analysis was performed to clinically as-
sess data from the ML analysis, and we then identified 
RABGAP1L, MYH9, and DRD4. The survival prediction 
models based on the expression of these three genes and 
tumor stage information had higher performance than the 
model with only tumor stage information when applied 
to predict the prognosis of CC patients. Of note, among 
these three genes, the combination of MYH9 and DRD4 
was verified to be a diagnostic biomarker by clinical analy-
sis and a therapeutic biomarker with protumor activity by 
experimental analysis. Therefore, our survival predictive 
approach developed by ML, in silico system analysis and 
validation will provide information regarding CC patient 
survival and guide treatment decision-making.
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