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We study the time evolution of entanglement entropy in expanding universes with various matters. 
To describe expanding universes holographically, we take into account a braneworld moving in an 
asymptotic AdS space involving a uniform p-brane gas. In the braneworld model, an observer living in 
the braneworld detects the bulk motion of the braneworld as an expanding universe. We show that the 
entanglement entropy of expanding universes increases by the volume law in the early time and by the 
area law in the late time. We further consider the cosmological horizon, which is the border of the visible 
and invisible universe, and then investigate the time-dependent quantum entanglement between them 
across the cosmological horizon.
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1. Introduction

Recently, people have paid attention to the AdS/CFT correspondence or holography for looking into nonperturbative features of a 
strongly interacting system [1–5]. The holographic technique was further exploited to account for nontrivial quantum nature like entan-
glement of a ground state [6–10]. Based on the AdS/CFT correspondence, in this work, we discuss the holographic dual of expanding 
universes with various matters and investigate the time evolution of the entanglement entropy across the cosmological (or particle) hori-
zon.

Although the concept of the entanglement entropy is manifest in a quantum field theory (QFT) [9,10], it is hard to calculate the entan-
glement entropy of an interacting QFT. In this situation, the AdS/CFT correspondence asserts that a one-dimensional higher gravity theory 
corresponds to a strongly interacting QFT. Intriguingly, Ryu and Takayanagi (RT) showed how to calculate the entanglement entropy of a 
strongly interacting system on the dual gravity side [6,7]. The background metric of the RT formula is static, so that there is no nontrivial 
time-dependence due to the time-translational symmetry. After that, Hubeny, Rangammani, and Takayanagi (HRT) further claimed that in 
order to calculate the holographic entanglement entropy in the time-dependent geometry, one has to exploit the covariant (or HRT) for-
mulation rather than the RT formula due to breaking of the time translation symmetry [11]. The HRT formulation was used to investigate 
the entanglement entropy change in the thermalization process [12,13] and in the eternal inflation of the dS boundary model [14–18].

In the standard cosmology [19,20], one can obtain various expanding universes relying on the involved matter. Although an AdS space 
easily realizes the eternal inflation at the boundary, it is not easy to find the dual bulk geometry of universes expanding by a power-law. 
In order to realize the standard Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology holographically, we need to take into account 
another holographic model called the braneworld model (or Randall-Sundrum model) [21–27]. The braneworld model is described by 
two AdS bulk geometries bordering at a one-dimensional lower hypersurface which we call a braneworld. Depending on the cosmological 
constants of two bulk geometries and the tension of the braneworld, the braneworld moves in the radial direction perpendicular to the 
brane’s worldvolume. In string theory, gauge fields and their supersymmetric partners live in the braneworld and then are identified with 
the open string’s fluctuations. On the other hand, the graviton is described by a closed string that lives in the ten-dimensional bulk space. 
In the braneworld model, the brane has a delta-function potential which makes a zero-mode of graviton confined at the brane. As a 
consequence, all fundamental particles we detect in nature live in the braneworld. Due to this reason, we can identify the braneworld 
with the universe we live in. Interestingly, the braneworld model enables us to investigate the cosmological evolution of the universe 
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holographically. It is worth noting that in the braneworld model the expansion of the universe is described by the junction equation, 
instead of the Einstein equation, which determines the radial motion of the braneworld in the bulk [23,26,27].

In the standard cosmology, the expansion rate is determined by the matter contained in the universe [19,20]. When a four-dimensional 
universe contains uniformly distributed (p − 1)-dimensional objects, the expansion rate is given by a ∼ τ 2/(p−2) where a and τ are a 
scale factor and cosmological time respectively. In this case, the dimension of the extended object is related to the equation of state 
parameter, w = (1 − p)/3. To describe the standard cosmology holographically, we need to understand how we can realize such matter in 
the braneworld model. In string theory, the fundamental matter is described by an open string attached to the brane [28,29]. Therefore, 
the gravitational backreaction of open strings can describe massive particles in the braneworld. This geometry was known as the string 
cloud geometry [30–36]. In this work, we concern a more general geometry with a p-brane gas [37–39], where p-branes mean NSp- or 
Dp-branes without a dilaton field in string theory. Then, the string cloud geometry corresponds to a p-brane gas geometry with p = 1. We 
show that the braneworld model in a p-brane gas geometry reproduces the standard cosmology caused by (p − 1)-dimensional extended 
or solitonic objects. In this p-brane gas geometry, we further study the time evolution of the entanglement entropy. We find that the 
entanglement entropy evolves by the volume law in the early time era and by the area law in the late time era. In this case, since the 
expansion rate of the universe relies on the involved matter, the time-dependence of the entanglement entropy also crucially depends on 
the contained matter.

Classical information carriers cannot be delivered faster than the light velocity, so we can define a cosmological or particle horizon in 
expanding universes [19,20]. The inside and outside of the cosmological horizon are called a visible and invisible universe, respectively. 
Since these two universes are causally disconnected, there is no correlation at the classical level. However, this is not the case if regarding 
quantum correlations. Since the quantum correlation is nonlocal, there is still nontrivial correlation between two causally disconnected 
universes. This leads to a nontrivial entanglement entropy across the cosmological horizon. We also investigate how the entanglement 
entropy between visible and invisible universes changes with time in expanding universes.

The rest of this paper is organized as follows. In Sec. 2, we begin with summarizing the standard cosmology and compare it with 
the braneworld cosmology defined in the p-brane gas geometry. In Sec. 3, we investigate the time-dependent entanglement entropy in 
the expanding universe with (p − 1)-dimensional objects. In Sec. 4, we further look into the entanglement entropy between visible and 
invisible universes across the cosmological horizon. Lastly, we finish this work with some concluding remarks in Sec. 5.

2. Holographic dual of the standard cosmology

For later comparison with the braneworld model, we begin with briefly summarizing the standard FLRW cosmology with a flat spatial 
section [19,20]. Assuming that an ideal gas satisfying p = wρ , where ρ and p are its energy density and pressure, is uniformly distributed 
in the universe, the Friedmann equation

(
ȧ

a

)2

= κ2

3

ρ0

a3(1+w)
, (2.1)

determines the scale factor a(τ ) to be

a(τ ) ∼ τ
2

3(1+w) , (2.2)

where τ is the cosmological time. From this relation, we see that the scale factor crucially relies on the equation of state parameter w . If 
the matter is a relativistic massless field, we call it radiation and its equation of state parameter is given by w = 1/3. In this radiation-
dominated era, the scale factor increases with time by a ∼ τ 1/2. If the universe is filled with non-relativistic massive particles instead of 
radiation, we call such a non-relativistic matter a dust with w = 0. In the matter-dominated era, the scale factor increases by a ∼ τ 2/3. 
Lastly, if the universe has a positive constant vacuum energy without any matter, the universe expands exponentially by a ∼ eHτ which 
we call eternal inflation. During the eternal inflation, the vacuum energy satisfies w = −1. If we further take into account extended or 
solitonic objects like cosmic strings and domain walls, such extended objects allow the universe to expand with a different power. For 
example, the cosmic strings with w = −1/3 enforce the universe to expand linearly with time, a ∼ τ . On the other hand, the uniform 
distribution of domain walls, whose equation of state parameter is w = −2/3, makes the universe expand by a ∼ τ 2.

Now, we investigate the holographic dual of the standard cosmology [22,23,40–43]. Assume that two (d + 1)-dimensional bulk spaces 
are bordered by a d-dimensional braneworld. To obtain a smooth (d + 1)-dimensional manifold, the metrics of two bulk spaces must be 
continuous at the braneworld. However, the derivatives of the metrics on both sides of the braneworld usually have different values. To 
avoid this mismatch, we have to introduce a delta function-like potential which is associated with the stress tensor of the braneworld 
[24,44,45]. This prescription leads to the junction equation and determines the radial motion of the braneworld in the bulk. Although 
we are able to consider the braneworld model with two different bulk geometries, here we focus on the same bulk geometries, for 
convenience, with a Z2 symmetry. This implies that one bulk geometry is the mirror of the other.

To see more details, we first take into account a p-brane gas geometry [27]. When p-branes are distributed in an AdS space, a p-brane 
gas geometry is governed by the following action

S = 1

2κ2

∫
dd+1x

√−G (R− 2�)

+ T p Np

∫
dp+1ξ

√
−h ∂αxM hαβ ∂βxN G MN , (2.3)

where Np and T p are the number and tension of p-branes. Here, xM (M = 0, · · · , d) and ξα (α = 0, · · · , p − 1, d) indicate coordinates of a 
bulk spacetime and brane’s worldvolume, respectively. The variation of the action with respect to a bulk metric reduces to
2
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δS = 1

2κ2

∫
dd+1x

√−G

(
RMN − 1

2
RG MN + �G MN

)
δG MN

+T p Np

∫
dp+1ξ

√
−h ∂αxM hαβ ∂βxN δG MN . (2.4)

Note that the integral measure of the bulk has a different dimension from the one of the brane’s worldvolume. Due to this reason, 
we cannot directly write the Einstein equation. To avoid this problem, we assume that p-branes are uniformly distributed in spatial 
directions perpendicular to the brane’s worldvolume. Denoting the coordinates perpendicular to the worldvolume as ya , ya becomes 
coordinates of a (d − p)-dimensional space with an appropriate metric gab . Now, we take a static gauge satisfying ξα = xα and ya = xa

with α = {0, · · · , p − 1,d} and a = {p, · · · ,d − 1) and denote the temporal and radial coordinates as x0 = t and xd = r. In this case, the 
background metric involving the gravitational backreaction of branes is given by

ds2 = r2

R2

(
− f (r) dt2 + δi jdxidx j

)
+ R2

r2 f (r)
dr2, (2.5)

where i = {1, · · · ,d − 1}. To obtain an asymptotic AdS geometry, we require f (∞) = 1.
Above, the number of p-branes can be expressed in terms of the number density n̄p

Np =
∫

dd−p y
√

g n̄p, (2.6)

where the integral measure indicates an integration over the perpendicular directions to the p-brane’s worldvolume. It is worth noting that 
the number density n̄p depends on the radial position because the perpendicular volume relies on the radial position. If we further rewrite 
n̄p = np/

√
g = np Rd−p/rd−p , np corresponds to a constant number density independent of the radial position. Under this parameterization, 

the integration over the brane worldvolume is rewritten as the integral over the bulk space∫
dp+1ξa

√
−h

∫
dd−p y

√
g =

∫
dd+1x

√−G. (2.7)

Then, the variation of the p-brane’s action is rewritten as

δS p =
∫

dd+1x
√−G T MN δG MN , (2.8)

where the stress tensor of p-branes becomes

T MM = − T pnp Rd−p

rd−p

{
Gtt,

p − 1

d − 1
G11, · · · ,

p − 1

d − 1
G(d−1) (d−1), Grr

}
, (2.9)

with T MN = 0 for M �= N . Here, (p − 1)/(d − 1) indicates the average number of p-branes extending to one of the spatial directions.
After resolving the issue on different integral measures, we can derive the Einstein equation

R MN − 1

2
G MN R + G MN� = 2κ2T MN . (2.10)

Substituting the metric ansatz in (2.5) into this Einstein equation and solving it, the metric solution finally becomes

ds2 = G MNdxMdxN = R2

r2 f (r)
dr2 + γμν(r)dxμdxν (2.11)

where γμν indicates the metric on the braneworld

γμν(r)dxμdxν = − r2 f (r)

R2
dt2 + r2

R2
δi jdxidx j (2.12)

with a metric factor

f (r) = 1 − ρp

rd−p
. (2.13)

Here, ρp is related to the p-brane’s energy density

ρp = cp κ2np T p Rd−p+2. (2.14)

This geometric solution was known as the p-brane gas geometry [27]. Here cp is an appropriate numerical number replying on p, for 
example, c1 = 4/3, c2 = 2/3, and c3 = 4/9 for d = 4. For p = d, d-branes fill up the bulk space so that their gravitational backreaction 
modifies only the bulk cosmological constant. For p = d − 2, intriguingly, the p-brane gas geometry results in an isotropic momentum 
relaxation geometry [46]. More precisely, the scalar field in the momentum relaxation geometry is associated with the hodge dual of a 
(p + 1)-form gauge field generated by the p-brane.

Now, we discuss a braneworld model described by the junction equation in the previous p-brane gas geometry (see the more details 
in Ref. [27]). First, we assume that two p-brane gas geometries with a Z2 symmetry are bordered at a d-dimensional braneworld whose 
radial position is denoted by r̄(t). Since the braneworld can move in the radial direction, r̄(t) is usually given by a time-dependent function. 
Then, the radial motion of the braneworld is determined by the following junction equation near the braneworld position, r = r̄(t),
3
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π
(+)
μν − π

(−)
μν = Tμν, (2.15)

with

π
(±)
μν = ± 1

2κ2

(
Kμν − γμν K

)
, (2.16)

where (±) indicate two p-brane gas geometries on the both sides of the braneworld. In this case, Kμν = ∇μnν means an extrinsic 
curvature at the braneworld and nν is a unit normal vector. Due to the Z2 symmetry we imposed, π(±)

μν satisfy π(−)
μν = −π

(+)
μν . If the 

braneworld has a vacuum energy or tension σ , the energy-momentum tensor of the braneworld is given by

Tμν = σ

κ2
γμν, (2.17)

and the junction equation reduces to

Kμν = − σ

d − 1
γμν. (2.18)

In the p-brane gas geometry in (2.11), the unit normal vector is given by

nM =
√

Gtt Grr√
Gtt − Grrṙ2

{˙̄r,−1,0, · · · ,0
}
, (2.19)

which leads to the following extrinsic curvature in the spatial direction

Kii = −
√

Gtt Grr√
Gtt − Grrṙ2

G ′
ii

Grr Gii
γii, (2.20)

where the dot and prime mean derivatives with respect to t and r̄ , respectively. Introducing a cosmological time in the braneworld as

dτ 2 =
[

Gtt − Grr

(
dr̄

dt

)2
]

dt2, (2.21)

the induced metric in the braneworld reduces to a FLRW-type metric

ds2
B = −dτ 2 + r̄2

R2
δi jdxidx j . (2.22)

In this case, the braneworld position r̄(τ )/R plays a role of the scale factor a(τ ) to an observer living in the braneworld. Plugging the 
above p-brane gas metric (2.11) into the junction equation (2.18) and representing it in terms of τ , we finally obtain

(
dr̄

dτ

)2

= σ 2

(d − 1)2

G2
ii

G ′2
ii

− 1

Grr
=

(
σ 2 − σ 2

c

)
r̄2

4(d − 1)2
+ ρp

R2

1

r̄d−2−p
, (2.23)

with a critical tension

σc = 2(d − 1)

R
. (2.24)

After identifying r̄(τ ) = R a(τ ), the junction equation for σ = σc and d = 4 is reinterpreted as the following Friedmann equation

1

a2

(
da

dτ

)2

= 1

R6−p

ρp

a4−p
. (2.25)

Comparing this holographic result with the previous Friedmann equation (2.1), we find that the p-brane gas geometry leads to the 
following equation of state parameter

w = 1 − p

3
, (2.26)

which corresponds to that of (p − 1)-dimensional solitonic objects, as expected, and reproduces the scale factor of the standard cosmology

a = r̄

R
∼ τ

2
4−p . (2.27)

Regarding p-branes as Dp-branes of the string theory, the bulk 0- and 1-branes are dual of radiation (w = 1/3) and massive particles 
(or dust with w = 0) in the braneworld. Moreover, a 2-brane gas gives rise to w = −1/3 which is the value of one-dimensional cosmic 
strings. For p = 3, a 3-brane gas reduces to two-dimensional domain walls with w = −2/3. This shows that the holographic braneworld 
model can reproduce the results of the standard cosmology in a consistent way.
4
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3. Entanglement entropy in the universe with extended objects

Now, we look into how the entanglement entropy evolves in expanding universes. For d = 2 with p = 0 and 1, the time-dependent 
entanglement entropy was investigated and compared with another holographic model called the dS boundary model [17]. Here, we study 
the time-dependent entanglement entropy of the four-dimensional standard cosmology with matters.

We consider the entanglement entropy contained in a disk-shaped region [8,47]. To parameterize the entangling surface which is the 
boundary of the entangling region, we introduce a new radial coordinate, z = R2/r, and rewrite the p-brane gas geometry for d = 4 as the 
following form

ds2 = 1

z2

(
− f (z)dt2 + du2 + u2ds2

S2 + 1

f (z)
dz2

)
, (3.1)

with

f (z) = 1 − ρp z4−p, (3.2)

where we set R = 1 for convenience. Parameterizing the entangling region by

0 ≤ u ≤ l, (3.3)

the entanglement entropy governed by the minimal surface is given by

S E = �2

4G

l∫
0

du
u2

√
z′2 + f (z)

z3
√

f (z)
, (3.4)

where �2 indicates a solid angle of a two-dimensional unit sphere. Notice that the subsystem size l is the size measured by a comoving 
observer. The physical size in the expanding universe is given by a(τ ) l. Depending on the physical system we are interested in, we can 
take several different subsystem sizes. The first one is to take a constant l. In this case, the subsystem size measured by a comoving 
observer does not change but the physical size expands because the background space expands. The second case we will consider later 
is to identify the cosmological horizon with an entangling surface. Since the velocity of light is always finite, there exists the bound of 
a visible universe, the so-called cosmological horizon, in the expanding universe. This cosmological horizon is time-dependent even to a 
comoving observer. To express the cosmological horizon appropriately, as will be seen later, we have to take a time-dependent subsystem 
size l(τ ).

We first take into account the case with a constant l. The entanglement entropy in the expanding universe with cosmic strings is 
described by the minimal surface extending to the 2-brane gas geometry on the dual gravity side. For p = 2, the equation of motion 
derived from (3.4) determines the configuration of the minimal surface

0 = z′′ + 2
(
z′)3

u
(
1 − ρ2z2

) + ρ2z
(
z′)2

1 − ρ2z2
+ 3

(
z′)2

z
+ 2z′

u
+ 3

(
1 − ρ2z2

)
z

. (3.5)

It is usually hard to find an analytic solution of this differential equation. Therefore, we take into account specific parameter regions 
allowing perturbation. To do so, we first introduce a turning point zt . Then, the minimal surface extends to only the range of z̄ ≤ z ≤ zt <

zh(= 1/
√

ρ2) where the radial position of the braneworld z̄ = R2/r̄ is time-dependent and zh corresponds to the black hole horizon.
We first focus on the case of z̄ ≤ z ≤ zt 	 zh . In this case, since z/zh is always small, we can use ρ2 = 1/z2

h as an expansion parameter 
in (3.4). Moreover, a small z̄, due to z̄ ∼ 1/a(τ ) ∼ τ−2/(4−p) , corresponds to a large scale factor in the late time era. In this late time era, 
the minimal surface can be determined by applying the following series expansion

z(u) = z0(u) + ρ2z1(u) + · · · , (3.6)

where the ellipsis indicates higher order corrections. After substituting the expansion form into the equation of motion and solving it 
order by order, the leading solution is given by

z0(u) =
√

z2
t − u2, (3.7)

where zt = √
l2 + z̄2. To obtained this solution, we impose two boundary conditions, z′

0(l) = 0 and z(l) = z̄. The first condition is required 
to obtain a smooth minimal surface at the turning point. On the other hand, the second condition implies that the minimal surface 
anchors to the entangling surface located at the braneworld. In order to determine z0(u), we imposed z0(l) = z̄ at leading order.

Now, we move to the first correction, z1(u). Using the leading solution, the first correction is determined as

z1(u) = c1 (zt − u) 2

u
√

z2
t − u2

+ 6
(
c2 + z4

t

) + 5z2
t u2 − u4

6
√

z2
t − u2

−
z3

t

(
2zt u log (zt + u) + (zt − u) 2 tanh−1

(
u
zt

))
u
√

(zt − u) (zt + u)
, (3.8)

where c1 and c2 are two integral constants. These integral constants can be fixed by imposing two natural boundary conditions. The first 
one is z′ (0) = 0 for the smooth minimal surface at u = 0 which determines one of the integral constants to be
1

5
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c1 = 0. (3.9)

The other boundary condition we must impose is z1(l) = 0, because z(u) in (3.6) has to satisfy z(l) = z̄ and we already imposed z0(l) = z̄
at the leading order. The second boundary condition fixes the remaining integral constant to be

c2 = 1

6

(
l4 − 5l2z2

t + 12z4
t log (l + zt) − 6z4

t

)
+

z3
t (zt − l) 2 tanh−1

(
l
zt

)
l

. (3.10)

Using these integral constants, we finally obtain

z1(u) = −
z3

t

(
2uzt log (zt + u) + (zt − u) 2 tanh−1

(
u
zt

))
u
√

z2
t − u2

+
l(l2 − u2)

(
l2 − 5z2

t + u2
) + 6z3

t

(
2lzt log (l + zt) + (zt − l) 2 tanh−1

(
l
zt

))
6l

√
z2

t − u2
. (3.11)

Plugging the obtained solutions into the entanglement entropy formula and performing the integral, the entanglement entropy results in

S E = �2

8G

[
l
√

l2 + z̄2

z̄2
− tanh−1

(
l√

l2 + z̄2

)]

−ρ2�2

48G

[
8l3 + 6lz̄2

√
l2 + z̄2

− 3
(

l2 + z̄2
){

3 log

(√
l2 + z̄2 + l√
l2 + z̄2 − l

)
− 4 tanh−1

(
l√

l2 + z̄2

)}]

+O
(
ρ2

2

)
. (3.12)

In the extremely late time era (z̄ → 0), the entanglement entropy further reduces to

S E ≈ �2

8G

l2

z̄2
+ �2

16G

(
2 log

z̄

2l
+ 1

)
− �2

24G

(
3 log

z̄

2l
+ 4

)
ρ2l2 + · · · . (3.13)

In this case, the leading contribution comes from the first term which is caused by the short-range correlation near the entangling surface 
and satisfies the area law, S E ∼ l2�2. This late time behavior universally appears regardless of the dimension p. For p = 3, for example, 
the entanglement entropy in the late time era is given by

S E ≈ �2

8G

l2

z̄2
+ �2

8G

l2ρ3

z̄
+ �2

16G

(
2 log

z̄

2l
+ 1

)
+ · · · , (3.14)

and the leading contribution again satisfies the area law. Despite this universal feature, the expansion rate relying on the p-brane gas 
leads to different time-dependence. Recalling the following relation z̄ ∼ τ−2/(4−p) , the entanglement entropy in the late time era increases 
by

S E ∼ l2�2

8G
τ 4/(4−p). (3.15)

Now, we take into account another parameter limit, z̄ → zh with satisfying z̄ ≤ z ≤ zt < zh . In this case, z̄, zt and zh have an almost 
same value, z̄ ≈ zt ≈ zh . Since z/zh is not sufficiently small, the previous perturbation is not valid anymore. Therefore, we have to exploit 
another method to investigate this parameter region. According to Ref. [48], for zt → zh the entanglement entropy (3.4) can be rewritten 
as

S E = �2

4Gz3
t

l∫
0

duu2 + �2

4Gz3
t

l∫
0

du
u2

(
z3

t

√
z′2 + f (z) − z3

√
f (z)

)
z3

√
f (z)

. (3.16)

Since the second term is negligible near the turning point (u = 0 and z = zt with z′ = 0), the first term gives rise to main contribution. 
Remembering that the volume of the subsystem is given by V = �2

∫ l
0 duu2 = �2l3/3, the leading contribution is given by the black hole 

entropy for z̄ ≈ zt ≈ zh ,

S E ≈ S B H = 1

4G

V

z̄3
+ · · · , (3.17)

where the ellipsis means small quantum corrections. Here zh is the largest value which z̄ can have and z̄ = τ−2/(4−p) , so that z̄ ≈ zh

indicates the smallest scale factor appearing in the early time era of the expanding universe. As a result, the entanglement entropy in the 
early time era satisfies the volume law whose time dependence is given by

S E ≈ �2l3
τ 6/(4−p). (3.18)
12G
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In summary, the braneworld model shows how rapidly the entanglement entropy grows in expanding universes. When (p − 1)-
dimensional objects are uniformly distributed, the universe expands with the scale factor a(τ ) = τ 2/(4−p) as shown in (2.2). In this 
expanding universe, the entanglement entropy increases by the volume law in the early time era (S E ∼ τ 6/(4−p)), whereas it in the late 
time era grows by the area law (S E ∼ τ 4/(4−p)).

4. Entanglement entropy across the cosmological horizon

When the universe expands, we can see only the inside of the cosmological horizon because the outside is causally disconnected. 
Due to this reason, we call the inside and outside of the cosmological horizon a visible and invisible universe, respectively. In expanding 
universes, the cosmological horizon usually grows up with time. Although we cannot get any classical information from the invisible 
universe, it is not the case for quantum theory. Since quantum entanglement is nonlocal, there still exist nontrivial quantum correlation 
between two causally disconnected regions. Therefore, it would be interesting to study the quantum entanglement between the visible 
and invisible universes by identifying the cosmological horizon with the entangling surface.

In the expanding universe described by the FLRW metric, the distance traveled by light during the time interval, �τ = τ −τi , is defined 
as [19,20]

dc(τ ) = a(τ )

τ∫
τi

dτ ′

a(τ ′)
, (4.1)

where τi is an appropriate initial time and the light speed sets to be c = 1. From now on, we assume for simplicity that the cosmological 
horizon at the initial time (τi = 0) is located at zero (dc(τi) = 0). Then, dc(τ ) corresponds to the cosmological horizon measured at present 
time τ . For an expanding universe by a power-law, the cosmological horizon results in

dc(τ ) ∼ 4 − p

2 − p
τ . (4.2)

This indicates that the cosmological horizon in the power-law expansion increases linearly with time, regardless of the expansion power. 
In addition, the positivity of dc(τ ) restricts the value of p to be in the range of p < 2. If p > 2, there is no cosmological horizon. More 
precisely, the scale factor and cosmological horizon for p = 2 behave like a(τ ) ∼ τ and dc(τ ) ∼ τ log τ

τi
. On the other hand, the scale factor 

for p > 2 behaves like a(τ ) ∼ τ a with a > 1 and the cosmological horizon is given by

dc(τ ) = τ a
(
τ 1−a − τ 1−a

i

)
< 0. (4.3)

Since the cosmological horizon must be positive, it is not well defined for p > 2. This is because the expansion rate of universe is faster 
than the light velocity.

We now identify the cosmological horizon with an entangling surface to calculate the entanglement entropy between the visible and 
invisible universes. Since an observer living at the center of the visible universe cannot get any classical information from the invisible 
universe, it is natural to identify the cosmological horizon with an entangling surface. Recalling that we defined the subsystem size l
in the comoving frame, we need to know where the cosmological horizon appears in the comoving frame. Using (4.1), the cosmological 
horizon in the comoving frame appears at

l(τ ) = dc(τ )

a(τ )
. (4.4)

For a power-law expansion, the subsystem size must be time-dependent to describe the cosmological horizon correctly

l(τ ) ∼ 4 − p

2 − p
τ 1−2/(4−p). (4.5)

When we identify the cosmological horizon with the entangling surface, the area of the minimal surface is again given by (3.15) and 
(3.18) with the time-dependent subsystem size (4.5) instead of the constant one studied in the previous section. Therefore, the leading 
entanglement entropy across the cosmological horizon increases in the early time era

S E ∼ τ 3. (4.6)

In the late time era, the entanglement entropy grows by

S E ∼ τ 2. (4.7)

These results show that, although the expansion rate crucially relies on the matter content, the entanglement entropy between visible and 
invisible universes, regardless of the matter content for p < 2, increases by τ 3 in the early time era and by τ 2 in the late time era. For 
p = 2, the entanglement entropy across the cosmological horizon increases by (τ logτ )3 in the early time and by (τ logτ )2 in the late 
time era.
7
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5. Discussion

We have studied the time-dependent entanglement entropy of expanding universes in the braneworld model. The braneworld cosmol-
ogy, unlike the standard cosmology, is determined by the junction equation rather than the Einstein equation. More precisely, the junction 
equation determines the brane’s radial motion, which is detected by the expansion of the universe to an observer living in the braneworld. 
We took into account p-branes uniformly distributed in the AdS space and found the p-brane gas geometry involving the gravitational 
backreaction of p-branes. When p-branes extend to the radial direction, the warping factor of the background AdS space allows a black 
hole-type geometry. Since an observer living in the braneworld cannot see the bulk’s radial direction, he or she detects p-branes as 
(p − 1)-dimensional extended objects. When (p − 1)-dimensional objects are uniformly distributed in the standard cosmology, the scaling 
behavior of the spatial coordinate determines the equation of state parameter, for example, w = 0 for the dust (p = 1), w = −1/3 for the 
cosmic string (p = 2), and w = −2/3 for the domain wall (p = 3). Intriguingly, we showed that the braneworld model in the p-brane gas 
geometry reproduces the exactly same equation of state parameters. This indicates that the braneworld model can holographically realize 
the standard cosmology.

In general, it is hard to calculate the entanglement entropy in the expanding universe even for a free QFT, because the time-dependent 
background geometry makes the equation of motion complicated. In this work, however, we showed how to calculate the time-dependent 
entanglement entropy of various expanding universes in the braneworld model. When the subsystem size in the comoving frame is fixed, 
we showed that the leading entanglement entropy in the early time era evolves by

S E ∼ τ 6/(4−p), (5.1)

whereas it in the late time era increases by

S E ∼ τ 4/(4−p). (5.2)

These features indicate that the entanglement entropy increases by the volume law in the early time era and by the area law in the late 
time era.

In the expanding universe, the visible universe which an observer can see is restricted due to the finiteness of the light velocity. In this 
case, the cosmological horizon naturally appears as a border of the visible and invisible universes. Since these two universes are causally 
disconnected at the classical level, there is no classical correlation. However, if we further concern quantum correlations, the entanglement 
entropy across the cosmological horizon does not vanish due to the nonlocality of the quantum correlation. Since an observer in the visible 
universe cannot get any information from the invisible universe, we can identify the cosmological horizon with an entangling surface. We 
studied how the entanglement entropy across the cosmological horizon evolves in the expanding universes. Intriguingly, the time evolution 
of the entanglement entropy across the horizon shows a different behavior from that of the expanding universe with a fixed comoving 
distance. We showed that the cosmological horizon in the four-dimensional spacetime is not well defined for p > 2. For p < 2, we found 
that the entanglement entropy, regardless of the matter content, increases in the early time era by

S E ∼ τ 3, (5.3)

while it in the late time era increases by

S E ∼ τ 2. (5.4)

For p = 2 which corresponds to cosmic strings in the braneworld, however, we found that the entanglement entropy grows up in the early 
time era by

S E ∼ (τ logτ )3 , (5.5)

and in the late time era by

S E ∼ (τ logτ )2 . (5.6)

It would be interesting to investigate how such quantum entanglement entropy affects the cosmological history and structure formation. 
We hope to report more interesting results on this issue in future works.
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