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Encoder-decoder-based image captioning techniques are generally utilized to describe
meaningful information present in an image. In this work, we investigate two unexplored
ideas for image captioning using the transformer: 1) an object-focused label attention
module (LAM), and 2) a geometrically coherent proposal (GCP) module that focuses on
the scale and position of objects to benefit the transformer model by attaining better image
perception. These modules demonstrate the enforcement of objects’ relevance in the sur-
rounding environment. Furthermore, they explore the effectiveness of learning an explicit
association between vision and language constructs. LAM and GCP tolerate the variation in
objects’ class and its association with labels in multi-label classification. The proposed
framework, label-attention transformer with geometrically coherent objects (LATGeO),
acquires proposals of geometrically coherent objects using a deep neural network (DNN)
and generates captions by investigating their relationships using LAM. The module LAM
associates the extracted objects classes to the available dictionary using self-attention lay-
ers. Object coherence is acquired in the GCP module using the localized ratio of the propos-
als’ geometrical features. In this study, experimentation results are performed on MSCOCO
dataset. The evaluation of LATGeO on MSCOCO advocates that objects’ relevance in sur-
roundings and their visual features binding with geometrically localized ratios and associ-
ated labels generate improved and meaningful captions.

� 2022 Published by Elsevier Inc.
1. Introduction

Image captioning is one of the prevalent challenges in scene understanding and commonly used techniques leverage solu-
tions in computer vision (CV) and natural language processing (NLP). It manifests the inherent challenges of spatial, tempo-
ral, and sequential data modalities. Another obtrusive challenge in image captioning is the transformation of a spatial
modality to a sequential modality that establishes transcriptions of a scene. A widely adopted solution presented in litera-
ture is to use an encoder-decoder architecture where an encoder extracts features, and a decoder transcribes the captions.
For instance, in the deep learning frameworks, convolution neural networks (CNNs) and recurrent neural networks (RNNs)
are adopted for encoding and decoding, respectively. CNNs are employed for extracting spatial visual features from the given
dankook.
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image and RNNs are frequently used with attention layers to preserve and capture the distant association in sequential data
[43,48]. An inherent bound in a language is the length of sentences which does not allow the use of an attention layer with
feed-forward networks and thus requires sequential modeling. Despite of state-of-the-art (SOTA) algorithms showing
promising results, they do not learn relationships among objects and surroundings and are intolerant to variation in class
to label associations in multi-label classification tasks. In this study, a ‘‘class” represents the detected object’s class, and
the ‘‘label” represents the word present in the dictionary.

This study proposes a novel architecture for image captioning that uses concrete features of objects and their surround-
ings, the localized ratio of objects by utilizing their geometrical properties, and employs a label-attention module (LAM) for
objects compliance following the language rules. In particular, we assimilate high-level cognition by generating proposals
from images, utilizing the available geometrical formations of proposals, and learning their relationship with surroundings
and labels. The proposals are common identifiable vision interpretations that are detected objects in images. The learning of
the proposed system is inspired by the recent advancements in encoder-decoder neural networks with self-attention layers
called transformers [32]. Variants of transformers are in active use in image captioning and are discussed in detail in Sec-
tion 2. Briefly, this study proposes a novel architecture that uses a label-attention transformer with geometrically coherent
objects (LATGeO).

LATGeO uses geometrically coherent object proposals and label-attention to learn the relationship among objects. Here,
the object detector is used for extracting object proposals. The main idea of extracting objects from images is to provide the
proposed architecture with fine-grained information about the content of the image along with the entire image, while the
geometrical properties identify the association among objects. The geometrically coherent properties are encapsulated for
better learning of the relative positions and size of objects; for example, to learn the relative size of objects, van!car, from
‘‘a young boy standing in front of a van” to ‘‘a young boy standing in front of a police car” and to learn the relative positions of
objects, parked next!leaning against, and background ‘‘flooded street”, from ‘‘a bike parked next to a metal rack in a” to ‘‘a
bicycle leaning against fence in a flooded street” (see Fig. 1). A similar study is proposed in [14], but our proposed architec-
ture considers the ratio of objects’ dimensions. In a transformer composition, multiple encoders are stacked, and the output
of an encoder is passed to the next encoder in the stack. Usually, the output of the last encoder in a stack is passed to the first
decoder in similarly stacked decoders. However, a recent study [5] discusses a composition of an encoder stack fully con-
nected to a decoder stack. The fully connected composition inspires LATGeO because it explores multi-level geometrical
and visual representations of objects in an image. Recently, ConVit [7] has shown promising results by improving the per-
formance of the model in image classification tasks which is an explicit result of utilizing inductive bias in a transformer-
based model. Similarly, this study also explores both hard- and soft-inductive biases’ impact on the image captioning task.

Contributions of this study are summed up as follows:

1. An extrinsic and novel technique, label-attention module (LAM), emphasizes grammatical constructs, particularly nouns/
pronouns, resulting in the improvement of image captioning. LAM bridges the gap between visual and language domains.
It benefits the soft-inductive bias of a transformer to attend the visual information in images using language constructs.

2. Geometrically coherent proposals (GCP) module, focuses on the structure of detected objects utilizing localized ratios of
their geometrical features.

3. A LATGeO framework that integrates LAM and GCP in a transformer for the image captioning task.1 LATGeO relates object
proposal embeddings with less significant surroundings to discover objects and background coherence, which supports the
GCP module.

4. Extensive experimentation that includes evaluation on the MSCOCO dataset, a comprehensive ablation study, and visu-
alization of the impact of LAM and GCP on LATGeO.

This paper is organized as follows: Section 2 details the recent developments in image captioning research, and Section 3
explains the proposed architecture LATGeO. Section 4 details extensive experiments performed to support the proposed
methodology with ablation studies, and Section 5 briefs the conclusion of this work.
2. Related works

Machine vision algorithms evolved over the past two decades and extend to resolve challenging problems in scene under-
standing like image captioning problems. Image captioning fuses the progress in cutting-edge approaches from CV and NLP.
The progress in image captioning techniques is categorized into four sections in our review work: template-based, deep neu-
ral network-based, attention-based, and transformer-based.

2.1. Template-based image captioning

Conventional algorithms are based on two approaches: 1) in earlier strategies like in [21], image retrieval techniques use
a few collections of keywords as templates from image-caption data pairs and generate captions for the retrieved images
1 The code is publicly available on https://github.com/shikha-gist/Image-Captioning/.
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GT: a bicycle leans against a fence near 

some flood waters

M1: a bike parked next to a metal rack in 

a

LATGeO (Ours): a bicycle leaning 
against a fence in a flooded street

Relative Position

GT: a young boy standing in front of a

sponsored car

M1: a young boy standing in front of a

van

LATGeO (Ours): a young boy standing in 

front of a police car

Relative Size

Fig. 1. Examples of images with captions show the utility of background and geometrically localized ratio information. The text in red shows the significant
improvements in the captions (LATGeO captions) compared to the baseline transformer model (M1). GT: ground truth. Ml: Model without relative
localization, size, and background information. Boxes filled in yellow and blue contain generated captions.
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utilizing annotated captions, and 2) later approaches like in [20] practice bottom-up algorithms that infer sentence parts like
nouns, verbs, and adjectives from images and apply pre-defined caption templates to generate the image descriptions.
Recently, Lu et al. [25] have adopted specific image regions explicitly bound to slot locations of template captions. These
template slots are packed with visual features of the extracted objects. Template-based captioning methods require
human-crafted templates, which limits the generalization of these techniques. Conventional image captioning methods treat
this task as a combination of CV and NLP, though process them in independent pipelines. The pipeline often is not scaleable
and becomes intractable with a huge amount of data available today. Whereas, deep neural networks (DNNs) glue the pipe-
line in an atomic end-to-end system and niche big data for its learning.

2.2. Deep neural network-based image captioning

With the advent of artificial intelligence (AI), DNNs have influenced all branches of AI with no exception to image cap-
tioning [33,44,19,50,6]. Early works of image captioning employing CNN and RNN or long short-term memory (LSTM) in
an encoder-decoder composition created a remarkable impact. In [33], image captioning is treated as a conventional
machine translation problem by transforming an image into N-dimensional vector representation and feeding it as an input
to the RNN decoder. Vinyals et al. [33] apply a deep CNN network to encode vision features from the entire image and utilize
RNN to generate captions by maximizing the likelihood of a target caption. A constraint of this procedure is that it is chal-
lenging to represent all objects and their attributes in an image as a single feature vector. Consequently, scene graphs and
object detection techniques [41,44,50] are incorporated for image captioning to address this constraint. Likewise, the attri-
butes information is additionally presented to the RNN input to learn the relationship among objects [44,50]. Furthermore,
the authors of [37] propose a recall network, an encoder-decoder architecture. This network is constructed with CNN and
two LSTMs. CNN is for extracting visual features, and LSTMs are for the transmission of sequential information and integrat-
ing visual features. However, DNNs are still inefficient to associate the visual features with the language model, due to the
data modalities of domain’s constructs. Our model, LATGeO explores these relationships between the modalities of different
domains by utilizing the proposed attention modules in the transformer network.

Model optimization plays a vital role in training DNN. Recently, [47,28] have suggested improvements in the optimization
technique for training. [47] attempts to boost the training using actor-critic reinforcement learning (RL) to optimize non-
differentiable quality metrics. Our proposed framework also incorporates a similar boosting training technique to improve
the model’s final performance. Moreover, the policy gradient technique [6] for RL also exhibited improved performance. Fur-
thermore, Ren et al. [28] introduce a policy network (comprising of CNN and RNN), and a value network (consisting of CNN,
RNN, and multi-layer perceptron (MLP)) to generate captions.

2.3. Attention-based image captioning

The attention layers added to the DNN particularly to obtain the superior results of sequential learning tasks and revive
recent image captioning developments [29,24,34,42,4]. The early development of attention-based techniques introduces a
spatial attention model using image feature maps to generate image captions, which is further extended to a channel-
wise attention module in [4]. Next, Xu et al. [38] propose an attention-gated LSTMmodel where the output gate incorporates
visual attention forwarded to the cell state of LSTM. Lu et al. [24] introduce an adaptive attention model on visual sentinel by
deciding which region of an image should be attended to for extracting meaningful image features to generate sequential
caption words. To learn the multi-level dependencies in objects, [11] proposes a multi-stage image captioning model con-
sisting of one convolutional encoder and multiple stacked attention-based decoders to generate fine captions. In our pro-
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posed technique, multi-level dependencies are learned by a single transformer. A series of recent works address the rela-
tional reasoning among regions using various compositions of activation layers in RNN and CNN [17,34,2,48,36,10]. Huang
et al. [16] propose the refinement network to correlate semantic information with attributes to improve image captions.
Whereas [45] proposes a transformation matrix to map visual features to context features. Our proposed framework learns
such a relationship using geometrical information of the extracted objects without additional attributes similar to [14].

To utilize the individual object features for more reliable context learning, object detection and attention module are
combined in [1,22]. These studies encode the visual features of extracted objects and transfer them to the attention recurrent
network for generating image captions. Likewise [1] has additional information on object attributes to refine the predicted
captions. [22] utilizes a convolutional graphical model to represent structured information in the form of detected objects
and their relationships. This information is passed through a hierarchical attention-based module for caption generation
at each time step. [39] studies Hierarchical-Attention by using a generative adversarial network (GAN) based model. The
authors of [8] also propose an attention module on LSTM generative model. Recent algorithms [43,48] propose the visual
relationship attention on extracted objects region and investigate the visual relationship among them for generating cap-
tions. However, the algorithm [43] employs a Graph Convolutional Networks on detected objects and a LSTM network to
generate captions based on the attention module. Several studies [13,40,30,35,9] have proposed attention modules for visual
semantics to achieve better association among visual and contextual/textual information. CaptionNet [40] initializes mem-
ory to achieving better visual semantics in a LSTM network, similarly, Sammani et al. [30] propose selective memory atten-
tion in an LSTM-based auto-encoder-decoder network. Furthermore, image-level semantics are fused with textual context
using a context-gating technique proposed by [35]. For model optimization, Rennie et al. [29] propose self-critical learning,
which optimizes models based on evaluation metrics such as CIDEr-D, resulting in significant performance improvements
over the methods that use cross-entropy objectives only. The authors in [46] propose a Context-Aware Visual Policy network
(CAVP) for RL-based algorithms to attend complex visual compositions every time step.

These attention mechanisms have exhibited promising results on the image captioning task, however, lack in learning the
relationship among background and objects. Beyond that, these methods lack in learning long-range dependencies among
objects and language constructs.
2.4. Transformer-based image captioning

Because transformers are SOTA in NLP [32], image captioning adopted transformers for caption transcription. [49]
recently explored the transformer by learning an attention module using contextualized embedding for individual regions
and examined visual relationships with the help of spatial object regions. [15] proposed additional attention on top of the
multi-head attention of the transformer for image captioning. A recent study [14] transfers encoded visual features of the
extracted objects through the transformer architecture to learn the relative appearance among objects. Next, the extracted
encoded information of objects’ bounding boxes along with the visual information is passed through a multi-head self-
attention mechanism to learn the object dependencies on each other. In comparison, [5] learns such dependencies among
the regions of interest (objects spatial regions) with the help of memory-augmented attention. Moreover, the authors in
[18] have exploited an object detector, Faster R-CNN, to extract multi-view features of objects before passing them through
the encoder of the transformer. Faster R-CNNs are employed at the multi-level of the network to extract deep visual features.
Although our proposed method, LATGeO, is motivated by these recent works of self-attention mechanisms [14,5], it is
diverse in many aspects. LATGeO learns the relationship among objects as well as a relationship with a background. Further-
more, LATGeO proposes to combine different geometrically coherent features using localized ratios which is distinctive from
the method proposed in [14]. Beyond meshed transformer [5], LATGeO utilizes the LAM in the decoder part of the multi-head
attention module. In addition, we have experimented LATGeO with several object proposal methods like DETR [3], a newly
introduced transformer-based object detection method. Our proposed technique learns relationships among objects and
their context without requiring any additional information such as attributes and semantics. Details of our proposed
approach are presented in the following sections.
3. Method

This work proposes a label-attention transformer that uses geometrically coherent objects for image captioning. The com-
plete framework is depicted in Fig. 2. LATGeO generates meaningful transcriptions by exploring tangible objects’ multi-level
fine-grained features representation of an image. In the LATGeO framework, first, we extract objects from an image called
object proposals inside the ‘‘Object Detector” block. Second, these proposals are assigned to labels from the known classes,
‘‘Objects’ Classes”, after passing these classes through the LAM, ‘‘Label-Attention Module” block. Next, an effective geomet-
rical relationship of the object proposals is computed inside the ‘‘Geometrically Coherent Proposals” module. Finally, a multi-
level representation of the object proposals and the less significant features are passed as input to the final learnable block of
LATGeO, a fully connected encoder-decoder transformer. In the end, the decoder generates an image caption. The details of
each component of the framework are explained in subsequent subsections.
815
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Fig. 2. The proposed architecture for image captioning, LATGeO. The ‘‘Object Detector” block extracts the object proposals with their classes, probabilities,
features, and bounding boxes. ‘‘Geometrically Coherent Proposals” block or GCP block generates the objects’ coherence utilizing objects geometrical
properties. ‘‘Label-Attention Module” (LAM) associates objects classes with the dictionary labels. At last, all this information along with background features
are passed through the ‘‘LATGeO” transformer block to generate image captions.
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3.1. Object proposals and background

Proposals are essential components of the strategy presented in this study, therefore, we deliberate numerous choices of a
proposal with distinctive features. An essential proposal is translated into invariant and covariant features, which helps to
define a semantic relationship among proposals. It is empirically decided to use object detection in images to generate mean-
ingful proposals. The detected objects, termed as object proposals, generate 2048-dimensional visual features. Furthermore,
each object proposals’ class probabilities, classes, visual features, and geometrical features are exploited for their use in
image captioning. The classes and their probabilities generated from object proposals are fed to the LAM, and visual and geo-
metrical features are fed to the transformer module in LATGeO. This methodology has generated proposals data by utilizing
the SOTA DNN object detectors, i.e., Faster R-CNN [27], and DETR [3].

The first DNN network, Faster R-CNN is a two-stage object detection model; a base CNN model (ResNet in our study) for
features extraction in the first stage, and a region proposal network (RPN) to generate the bounding boxes using the inter-
section over union (IoU) method in the second stage. The second DNN network for proposal generation employed in this
study is DETR, which uses a transformer architecture for multiple objects detection.

Faster R-CNN is specifically fine-tuned for image captioning, making it suitable for further use in our detailed experi-
ments. Performance comparison of our proposed architecture using both object detectors, DETR and Faster R-CNN, is pro-
vided in the discussion Section 4.4.1 to assert the choice later. In addition to the proposals, visibly less-significant
features are fed to LATGeO, which renders the relationships between object proposals and background. A pre-trained ResNet
[12] model is used to extract the background features then, these features undergo LATGeO block.

3.2. Geometrically coherent proposals

Image captions are hard to generate with proposals’ features and labels only; therefore, this study adopts a natural coher-
ence among proposals. In the GCP block, the coherent relationship is computed using the geometrical properties of the
bounding boxes of the object proposals. Any pair of object proposals a; bð Þ can be fed to the GCP block, where
a ¼ xa; ya;wa;hað Þ, and b ¼ xb; yb;wb;hbð Þ are coordinates of the bounding boxes. In this block, the relative geometrical coher-
ence n a; bð Þ of these proposals is calculated as follows:
n a; bð Þ ¼ log
xa
xb

� �
; log

ya
yb

� �
;

�
log

wa

wb

� �
; log

ha

hb

� ��
; ð1Þ
where xa; yað Þ; xb; ybð Þ are center coordinates, wa;hað Þ and wb;hbð Þ are widths and heights of objects a and b, respectively.
Semantically, Eq. (1) gives a simple ratio of the scale dimensions (Ratio-Comparison) of two object proposals, different from
(L1-Comparison) of object proposals used in [14]. Moreover, a coherent relationship of each object proposal with the back-
ground is calculated using Eq. (1), where the input image dimension is considered as the bounding box of the background.
For further processing, the weights g for the attention mechanism utilizing these geometrical features are calculated as
below:
gab
G ¼ ReLU Emb nð ÞwG;MG½ �ð Þ; ð2Þ
where Emb �ð Þ represents the embedding of objects’ relative geometrical features. The embedding function, Emb �ð Þ projects
the proposals’ relative geometrical coherence vector n a; bð Þ into a high-dimensional embedding using a sinusoidal function,
similar to the study [14]. Weight wG is a learned dmodel-dimensional vector that projects embedding vectors down to a scalar,
where G represents geometrical components. The term MG is the trainable memory slots of size M, concatenated with the
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projected scalars. Then, a non-linear activation function ReLU �ð Þ is applied. The weights gab
G computed in Eq. (2) pass through

the encoder layer (see Eq. (22) below) and the geometrical features are propagated through the LATGeO block.

3.3. Label-attention module

It is challenging to transcribe the features extracted from images into meaningful captions because the dictionary has
more transcriptions (words) than their equivalent detected proposals. Therefore, this study considers meaningful labels from
language models to reduce the combinations of transcription. This is achieved by passing the extracted features through a
LAM as illustrated in Fig. 3(a). LAM learns the association between labels and detected proposals, and attends meaningful
related classes of proposals. LAM generates embeddings of label-attention, which are fed to the LATGeOmodule. The detailed
working of LAM is as follows:

First, LAM associates all object proposals’ classes with the available dictionary D and generates label embeddings using
the following equation:
LO ¼ emb Idx wj : Ci
O ¼¼ D wj

� �� �� �h i
; i ¼ 1;2; . . . ; on þ 1; ð3Þ
where Ci
O represents a class of the ith object proposal, D wj

� �
represents the jth word present in dictionary D, and Idx �ð Þmaps an

object proposal’s class to the corresponding word in the dictionary and returns the corresponding index of the jth word as a

label. The function emb �ð Þ converts the label of the ith object proposal into a learnable high-dimensional embedding of order
dmodel. Further, on is the number of object proposals, and plus one denotes the background. In Eq. (3), LO 2 R onþ1ð Þ�dmodel rep-

resents the label embeddings, where ith row is a dmodel-dimensional embedded label of the ith object proposal. Afterward,
LAM adjusts the significance of the associated LO, such that proposals with higher probabilities give preference to their cor-
responding LO, and computes weightage matrix WL. This matrix is computed using element-wise multiplication of LO with
the class probabilities of object proposals as given in the following equations:
RO ¼ Pr Ci
O

� �� �
�dmodel

� 	
; i ¼ 1;2; . . . ; on þ 1; ð4Þ

WL ¼ LO � RO: ð5Þ
In Eq. (4), Pr Ci
O

� �
represents the probability of the ith object proposal’s class, and RO 2 R onþ1ð Þ�dmodel defined as ranks of the

detected classes. The ith row of RO is a dmodel-dimensional vector with dmodel times repeated value of Pr Ci
O

� �
. Next, we pass

LO, andWL to the multi-head attention module,Multi� Head �ð Þ of the vanilla transformer [32], whereMulti� Head �ð Þ consists
of h numbers of identical attention heads as given below:
LAtt ¼ r Multi� Head Q ;K;Vð Þð Þ; ð6Þ

Multi� Head Q ;K;Vð Þ ¼ Head1;Head2; ::Headh½ �W0; ð7Þ

Headi ¼ Att Qi;Ki;Við Þ; i ¼ 1;2; . . . ;h: ð8Þ

Eq. (6) gives the embedded label-attention LAtt , by taking sigmoid, r �ð Þ of Multi� Head �ð Þ attention’s output. Eq. (7) concate-
nates the output of all the attention heads, whereW0 2 Rdmodel�dmodel is the learned projection matrix for multi-head attention.
Each head calculates the self-attention Att �ð Þ simultaneously, given in Eq. (8), using different projection matrices WQ ;WK ,
and WV for queries Q, keys K, and values V, respectively. In the case of LAtt , matrices Q ;K , and V are calculated as follows:
Qi ¼ LO WQ
i ; ð9Þ

Ki ¼ WL WK
i ; ð10Þ

Vi ¼ LO WV
i : ð11Þ
In Eqs. (9), (10), (11), matrices Qi;Ki, and Vi are Q ;K , and V for the ith head, respectively. Similarly,

WQ
i 2 Rdmodel�dQ ;WK

i 2 Rdmodel�dK , and WV
i 2 Rdmodel�dV are projection matrices for the ith head, Headi, and

dQ ¼ dK ¼ dV ¼ dmodel=h. Self-attention, Att �ð Þ, for each head is calculated as follows:
Att Q ;K;Vð Þ ¼ softmax
QKTffiffiffiffiffiffi
dK

p !
V ; ð12Þ
817



Fig. 3. Configurations of (a) LAM: associates objects’ classes with dictionary words, and (b) LATGeO: fully-connects encoder and decoder layers, where the
encoder layer encapsulates visual and geometrical features and decoder layer encapsulates LAM and target captions.
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where dK is a scaling factor in Att �ð Þ module. The softmax �ð Þ function assigns higher probability to the Q ;Kð Þ pair which are
more correlated. Later, LAtt is used to enforce the output of each encoder layer EOut nð Þð Þ by utilizing element-wise multipli-
cation as follows:
bI ¼ EOut nð Þ � LAtt; n ¼ 1; . . . ; L; ð13Þ

where L is the number of encoder layers, and bI is used as inputs to sigmoid gating (see Eq. (26) below) of the decoder layer in
LATGeO, described in Section 3.4.3.

3.4. LATGeO

Detailed configuration of the LATGeO block is presented in Fig. 3(b) and Fig. 4. This block of transformer takes embedded
visual features of proposals and background, LAM features, and GCP features as input and generates image-caption as output.
The encoder inputs are the embeddings of proposals, background, and GCP and the decoder inputs are the LAM embedding,
and encoder output. The details are provided in the following sections.

3.4.1. Embedded visual features
Features of object proposals and background are concatenated together (shown in Fig. 2) and then, these concatenated

features X, projected down to a dmodel-dimensional vector as an embedding using trainable matrix W (see Eq. (14) and Eq.
(15) below). This process generates embeddings of the visual features (shown in Fig. 3(b)).
X ¼ x1; x2; . . . xon ; xonþ1

� �
; xi 2 R2048�1; ð14Þ
818
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Vf ¼ XT W: ð15Þ

In Eq. (14) and Eq. (15), x1; x2; . . . ; xon represent n number of objects features, xonþ1 represents background features, Vf rep-

resents embedded visual features, and weights W 2 R2048�dmodel .

3.4.2. Encoder layer
LATGeO encoder is composed of L identical encoder layers. Each layer is composed of two components: a multi-head

memory-augmented-attentionMAAtt �ð Þ and a position-wise feed-forward network. These two components also have residual
connections among themselves [5]. The detailed structure of the LATGeO encoder layer is shown in Fig. 4(a). The GCP embed-
dings, along with the embedded visual features, are utilized in the MAAtt �ð Þ mechanism as follows:
MAAtt QE;KE;VE;gGð Þ ¼ Multi� HeadE QE;KE;VE;gGð Þ; ð16Þ

Multi� HeadE QE;KE;VE;gGð Þ ¼ HeadE1 ;HeadE2 ; ::HeadEh

� �
W0

1; ð17Þ

where gG represents GCP embeddings already defined in Eq. (2). The terms QE;KE, and VE represent Q ;K , and V, respectively,
for the encoder (E) layer. The module Multi� HeadE �ð Þ represents the multi-head attention process in the encoder layer, and
W0

1 is the learned projection matrix for Multi� HeadE �ð Þ.

QEi ¼ WqiVf ; ð18Þ

KEi ¼ WkiVf ;Mki

� �
; ð19Þ

VEi ¼ Wv i
V f ;Mv i

� �
: ð20Þ
In Eqs. (18), (19), (20), matrices QEi ;KEi , and VEi are Q ;K , and V for the ith encoder head, respectively. Similarly, Wqi ;Wki , and

Wv i are learnable projection matrices for the ith encoder head, HeadEi along with different trainable memory slots Mki , and
Mv i of size M, respectively, like in [5]. Each head HeadEi is simultaneously calculated as below:
HeadEi QEi ;KEi ;VEi ;gG

� � ¼ g VEi ; i ¼ 1;2; . . . ;h; ð21Þ

where h is the number of heads. The term gab is calculated as follows [5]:
gab ¼ gab
G exp gab

V

� �
Xonþ1þMð Þ

l¼1

gal
G exp gal

V

� � ; ð22Þ

gV ¼ QEK
T
Effiffiffiffiffi

dk

p : ð23Þ
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In Eq. (22), gV represents attention weights of visual features (calculated using Eq. (23)), and gab represents the fused atten-
tion weights for theMAAtt �ð Þmechanism. The weights gab are calculated by incorporating geometric attention weights gG and

visual attention weights gV . Moreover, all the encoder layers, consisting of h number of heads, are stacked so that the lth layer

takes input from the previous layer l—1ð Þth. The output from MAAtt �ð Þ is passed through the next component, a position-wise
feed-forward network, to generate embedded non-singular affine transformations. Thus, each encoder layer generates
EOut nð Þ (employed in Eq. (13)) after encapsulatingMAAtt �ð Þ and embedded transformations. Note that both embedded features
passed through residual connection and a layer norm operation.

3.4.3. Decoder layer
LATGeO decoder is composed of L identical decoder layers. Each layer is composed of three components: masked multi-

head attention, a multi-head cross-attention, and a position-wise feed-forward network. These components also have resid-
ual connections among themselves [5]. The detailed structure of the LATGeO decoder layer is shown in Fig. 4(b). A target
caption CN of length N is a sequence of words in a particular order. The masked multi-head attention module complies with
the positional order only by taking input sequence C<t of length less than t for predicting the tth word. The positional order of
words is achieved by employing the sinusoidal positional encoding method [32]. The masked multi-head attention generates
embedded sequence vectors Y. In this component, Ct�1 induces Q, whereas K and V are derived from previous words C<t of the

target caption. The other components of the decoder layer take inputs bI and Y to predict the next word. The attention mech-
anism in the decoder layer MAtt �ð Þ is computed from the gated cross-attentions similar to the one used in the study [5], as
follows:
MAtt
bI;Y� �

¼
XL
i¼1

ai � CrossAtt bIi;Y� �
; ð24Þ

CrossAtt bIi;Y� �
¼ Att WqY ;Wk

bIi;WvbIi� �
; ð25Þ

ai ¼ r Wi Y;CrossAtt bIi;Y� �h i
þ bi

� �
: ð26Þ
In Eq. (24),MAtt
bI;Y� �

is a weighted sum over encoder-decoder cross-attention CrossAtt �ð Þ, which is employed in all the deco-

der layers to attend the outputs from each encoder layer. In CrossAtt �ð Þ; Î i represents the combined input from the ith encoder
layer output and LAM. In Eq. (25), the module CrossAtt �ð Þ computes cross associations between the encoder and decoder by
utilizing Att �ð Þ module, where Q is derived from the decoder, and K and V are derived from the encoder layer. A sigmoid gat-
ing technique in Eq. (26) is applied to the outputs of each encoder layer before passing them as inputs to the decoder layer.
Eq. (26) computes matrix ai, which yields encoders affinity with the sequence vector Y. This matrix provides relevance mea-
sures between CrossAtt �ð Þ and Y. The function r �ð Þ represents the sigmoid activation function, vector bi is a trainable bias, and
Wi represents a weight matrix. The multi-head cross-attention for the decoder layer is calculated by concatenating all atten-

tion heads, where each attention head of the decoder layer consists of MAtt
bI;Y� �

. At last, similar to [5], the next word Ct is

generated using the softmax function after encapsulating the output from the multi-head cross-attention with a position-
wise feed-forward network, residual connection, and a layer norm.

3.4.4. Encoder decoder connection
The connections from the encoder to decoder layers used in LATGeO are shown in Fig. 3(b), which depicts that our pro-

posed model has a fully connected encoder-decoder. The results from Eq. (26) provide gated input for each layer of the deco-
der. In this study, various compositions of the encoder-decoder connections are explored, such as single-connection,
skipped-connections, and residual-connections compositions, and they are described in A.2. The detailed structure of LAT-
GeO encoder and decoder layers is shown in Fig. 4. A benefit of using the selected composition of the encoder-decoder in
LATGeO is to attend the output of all encoder layers and reevaluate if the stack of encoders misses a valuable relationship.
The effectiveness of the selected composition is further discussed in Section 4.3.

3.5. Training objective functions

LATGeO is trained using masked cross-entropy objective function (XE) [14] and label-smoothing function [31]. Afterward,
it is tuned with RL using beam search on the generated sequence of words [1]. The XE objective function, L /ð Þ, is the sum of
the negative log-likelihood of the correctly predicted words at each step given as follows:
L /ð Þ ¼ �
XN
n¼1

log p/ SwLS
n jI; SwLS

1 ; . . . ; Sw
LS
n�1

� �� �
; ð27Þ
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where / is the learning parameters, Swn represents a one-hot vector for the nth word in a ground truth sentence, N is the
length of the image-caption, I is an input image, and LS represents label-smoothing with smoothing parameter � [31]. The
architecture optimized on the best validation score of CIDEr-D metrics is obtained after supervised learning. The reward
function r �ð Þ of RL based on the CIDEr-D score of a generated caption is utilized to calculate the final policy gradient. This
gradient [5] computes the reward for each step and it is calculated as follows:
r/L /ð Þ ¼ �1
k

Xk
j¼1

r Sj
� �

� b
� �

r/log p/ Sj
� �� �

:
�

ð28Þ
In Eq. (28), Sj is the jth sentence in the beam, k is the beam size, and p/ represents a policy: an ‘‘action” of predicting the next
word. The policy gradient employs a baseline b as a mean of the rewards, which differs from the rewards based on the greedy
decoding used in the earlier methods [29,1], given as below:
b ¼
Xk
j¼1

r Sj
� � !

=k: ð29Þ
The proposed architecture, LATGeO, is trained using captions of a specific length, N, represented as a vector. This vector rep-
resentation is generated using an embedding layer of dimensions of dmodel and then fed into a decoder layer. Elements’ order
in the sequence is represented using positional encoding, which is added to the decoder input. Positional encoding can be
seen as a vector representation of numbers in the range 1;N½ � projected to dmodel dimensional decoder. The model takes
the output of previously generated words as input to generate the next word during the prediction phase.
4. Implementation and evaluation

4.1. Dataset

In this study, we use the MSCOCO dataset [23]. The dataset consists of 123;287 labeled images and is split using the stan-
dard Karpathy technique [19] into 113;287 images in the train set, and 5;000 each in the validation set and the test set. Each
image in the dataset has 5 different target captions. For online testing, the split of the dataset is different in such a way that
there are 82;783 images in training, 40;504 images in the validation, and 40;775 images in the test sets. It is important to
note that target captions of images for online testing are not available publicly. During testing, the target captions are con-
verted into lower-case, and each caption is restricted to a length of N ¼ 22 words. Following the work of [5], we place
‘‘START”, and ‘‘END” keywords at the beginning and in the end, respectively, for each caption. For LAM, a dictionary is made
of words that occurred more than five times in the whole corpus, resulting in a vocabulary size of 10;021 distinct words. Less
frequent words are substituted with the ‘‘UNK” keyword.
4.2. Experimental design and implementation

During training and testing, the proposals are generated utilizing Faster R-CNN [27] with a base ResNet�101 [12]. Then
the features (classes, probabilities, and bounding boxes) of the extracted proposals along with background features are
passed through the GCP and LAM blocks as shown in Fig. 2. Finally, utilizing all this information the captions are generated
with the help of the LATGeO transformer. During training, we also pass the target captions to the decoder layer. Faster R-CNN
is fine-tuned on the Visual Genome dataset [1,5,19], which contains 1600 object classes. In addition to the objects classes,
this dataset provides annotations for objects attributes (like colors, sizes, etc.) and their relationships (like below, under,
on, in, etc.). However, this study only uses annotations of objects classes; for future experimentation the other available
annotations will be incorporated into the LAM of the proposed framework. Objects with class probabilities greater than
0:7 are selected as proposals, then a maximum of 50 object proposals per image are selected including the background. Sim-
ilarly, a 2048-dimensional features vector for less significant details is extracted for each image using ResNet�50 [12].
Words are embedded using linear projection of one-hot vector representations of 512-dimensions, which is the same as
the input dimensions of our proposed transformer model. Moreover, sinusoidal encoding is used for the positional encoding
of words in a target caption [5]. In our study, smoothing parameter � is set to 0:1. In LATGeO, input and output dimensions
dmodel of encoder-decoder architecture are set to 512. The number of heads h is set to 8, and memory size M is set to 40. The
number of stacked encoders and decoders layers L is set to 3 (further details in A.3).

LATGeO is trained on an Nvidia 1080Ti machine with RAM 16 GB, using masked cross-entropy objective function, XE (see
Eq. (27) above). We employ Adam optimizer with a learning rate scheduling strategy [32] and performed 10;000 warmup
iterations. After supervised learning, in RL, the reward function (see Eq. (28) above) is used with patience of 5 based on
the CIDEr-D score of the validation set. The reward is achieved by decoding sentences using beam search with a beam-
size of k ¼ 5 and a learning rate of 5 � 10�6. All experiments are performed with a batch size of 50. Moreover, the regular-
ization is constructed using an early-stopping technique based on the CIDEr-D score.
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4.3. Evaluation

4.3.1. Evaluation metrics
We have evaluated the proposed architecture’s performance using regularly used evaluation metrics [5], i.e., BLEU-1,

BLEU-4, METEOR, ROUGE-L, SPICE, and CIDEr-D. The quantitative results on the MSCOCO 2014 test set from the Karapathy
split and the MSCOCO server evaluation test set are given in Table 1, Table 2, and Table 3.
4.3.2. Evaluation on MSCOCO Karapathy split
LATGeO is compared with the recent best single-model algorithms as well as with recent ensemble-model algorithms.

The proposed model trained using XE objective function outperforms all SOTA single-model [44,37,50,25,48,4,
22,2,13,1,38,11,45,36,34,16,14,5] and ensemble-model algorithms [33,29,24], as shown in Table 1. Furthermore, it improves
scores for all evaluation metrics compared to the transformer-based algorithms such as MeshTrans [5] and ObjRel-Trans
[14], i.e., 2:7% and 3:2% improvement on CIDEr-D scores, respectively. For a fair comparison, we have trained MeshTrans
[5] (our base model) with a similar preprocessing and hyper-parameters to our training of LATGeO.

Furthermore, LATGeO, when trained with RL, boosts the performance and produces the highest BLEU-1, METEOR, SPICE,
and CIDEr-D scores, which are presented in Table 2. LATGeO outperforms DNN-based [28,6,37,47,44,41], attention-based
[39,29,1,22,11,36,10,9,17,46,40,43,30,35,42], and transformer-based algorithms [14,18,5,15,49] for most of the evaluation
metrics. As shown, LATGeO outperforms the MeshTrans (our base model) [5] for all evaluation metrics with a 2:5%
CIDEr-D score improvement and shows the superiority of our model over MeshTrans. It also outperforms with a 3:4%
CIDEr-D score improvement compared to another transformer-based algorithm [14], which includes geometrical features
different from ours, and with 1:9% CIDEr-D score improvement compared to [15]. Additionally, LATGeO outperforms the
transformer-based algorithm [49] for all metrics (except ROUGE-L) with a 2:5% CIDEr-D score improvement. LATGeO shows
0:8% CIDEr-D score improvement compared to [18]. Here, we have compared the SV model of the work [18] with LATGeO.
Although [41] gives better BLEU-4 and ROUGE-L scores than LATGeO, they use an ensemble technique to present their eval-
uation metrics. Similarly, [49] gives a better ROUGE-L score than LATGeO, because in their study they have additionally uti-
lized spatial relationship and visual region attention module. LATGeO single-model, however, shows better evaluation
results than [41,49] on other metrics, including CIDEr-D, where we achieve 2:6% and 2:5% improvement, respectively.
4.3.3. Evaluation on online COCO server
Table 3 illustrates the online performance of our proposed architecture, LATGeO, on the COCO test server. We have uti-

lized single-model LATGeO for the online evaluation. For a fair comparison, we have summarized the comparison of our
model only with the top-performing single-models from the server leader-board [37,47,44,13,8,45,38,34,22,11,10,46,40,
35,43,42]. Moreover, as per our knowledge, our proposed framework, LATGeO, is the first to report a transformer-based
Table 1
LATGeO evaluation using BLEU-1, BLEU-4, METEOR, ROUGE-L, and CIDEr-D scores on Karpathy’s split MSCOCO test dataset (all
values are in percentage % ). The symbol � denotes an ensemble model, and the rest are single models, Bold figures depict the best
results. The symbol ⁄ represents values after training the model using the authors’ code and employing the same data pre-
processing routine as ours. The studies marked with # utilize ResNet-152 based visual features.

822



Table 2
LATGeO results after training with RL (CIDEr-D optimization) (all values are in percentage % ). The symbol � denotes an ensemble model,
and the rest are single models, Bold figures depict the best results. The symbol ⁄ represents values after training the model using the authors’
code and employing the same data pre-processing routine as ours. The studies marked with # utilize ResNet-101 based visual features.

Table 3
Online evaluation of LATGeO on MSCOCO test server. The studies marked with ⁄, and # utilize ResNet-152 and ResNet-101 based visual features, respectively.
The results are sorted on the CIDEr-D scores. Only single model architectures are reported in this table (Oct, 2021).
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single-model for online evaluation. Table 3 demonstrates that our model surpasses all the current SOTA methods on most of
the evaluation metrics and achieves an improvement of 3:5% CIDEr-D score to the previous best single-model algorithm
[42].

4.4. Discussion

4.4.1. DETR objects proposals
We have also experimented LATGeO with proposals generated using DETR [3] because of its several advantages over Fas-

ter R-CNN e.g., DETR does not use any computational expensive hand-crafted techniques like non-maximum suppression
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(NMS). Object proposal is one of the essential parts of our proposed technique. In this study, ResNet-50 [12] is used as a base
network for DETR. The RGB features of object proposals are passed through another ResNet-50 model to generate 2048-
dimensional visual feature maps.

Table 4 presents a performance comparison of LATGeO using DETR and Faster R-CNN object detectors; when Faster R-
CNN was trained on the MSCOCO detection dataset, it is represented as LATGeO-Faster R-CNN, and when it was fined-
tuned with the Visual Genome dataset [19], it is represented as LATGeO-Faster R-CNN + G in Table 4. We further categorize
these comparisons using two different objective functions: XE and RL. Faster R-CNN + G outperforms LATGeO with DETR
because Faster R-CNN was fine-tuned on the Visual Genome dataset, which connects the visual domain to the language
domain using 1600 object classes, whereas DETR has 91 object classes. In Table 4, when both object detectors, DETR and
Faster R-CNN, have been trained on the MSCOCO detection dataset, LATGeO-DETR (XE and RL) models outperform
LATGeO-Faster R-CNN (XE and RL) models. Therefore, we can conclude that fine-tuned DETR model on the Visual Genome
dataset for image captioning may achieve better results than Faster R-CNN and will be investigated in future work. More-
over, Table 4 includes the performance evaluation on the decomposition of the SPICE metric to show the importance of
the object proposals using objects and relationships among objects, including color, count, and size [14]. Using the SPICE
metric decomposition, Faster R-CNN + G shows a better relationship among object proposals than LATGeO-DETR. This
demonstrates the importance of using a better object proposals technique.
4.4.2. Ablation study: effectiveness of LATGeO modules
Table 5 illustrates the effectiveness of individual modules proposed in LATGeO. It asserts that modules OP, Bg, GCP, and

LAM collectively produce the highest scores except for the BLEU-4 score. Moreover, Table 6 demonstrates the effectiveness of
the GCP module along with the LAM by decomposing the SPICE metric into objects, attributes, relation, color, count, and size
metrics. We have compared these metrics with a recent transformer-based model, MeshTrans [5], and other recent methods.
As illustrated, LATGeo shows improvements in relation, attribute, count, and object metrics, compared to all other men-
tioned methods, though outperforms in all metrics compared to the MeshTrans model. Tables 5 and 6 show that GCP and
LAM improve the overall performance of LATGeO and generate fine captions.
Table 4
LATGeO results using Faster R-CNN and DETR, where G stands for Visual Genome dataset.

Model B-1 B-4 M R C SPICE

All Object Att Relation Color Count Size

LATGeO-DETR (XE) 75.3 34.7 27.1 55.7 112.1 20.3 37.1 9.8 5.6 10.0 11.8 4.7
LATGeO-Faster R-CNN (XE) 70.6 30.2 – 52.3 94.1 – – – – – – –
LATGeO-Faster R-CNN + G (XE) 76.5 36.4 27.8 56.7 115.8 20.9 37.6 11.0 5.8 12.5 13.0 5.1

LATGeO-DETR (RL) 79.8 37.2 28.5 57.6 127.0 22.0 39.7 10.8 6.6 12.1 22.1 3.1
LATGeO-Faster R-CNN (RL) 76.0 33.1 – 54.5 110.5 – – – – – – –
LATGeO-Faster R-CNN + G (RL) 81.0 38.8 29.2 58.7 131.7 22.9 40.7 12.1 7.1 14.6 22.9 4.2

Table 5
A comparison of different modules proposed in LATGeO. Acronyms are defined as, OP: Object Proposals Module–Faster R-CNN, Bg: Background Features, GCP-
L1: Geometrically Coherent Proposals: L1-Comparison, GCP-Ratio: Geometrically Coherent Proposals: Ratio-Comparison (Default), LAM: Label-Attention
Module, GCP: Geometrically Coherent Proposals. Bold figures stand for the best performance in all.

Model BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr-D SPICE

OP 80.5 38.6 28.7 58.4 129.2 22.5
OP + GCP-L1 80.3 38.4 28.9 58.6 129.9 22.7

OP + GCP-Ratio 80.5 38.5 29.2 58.4 130.4 22.7
OP + GCP + Bg 80.6 38.9 29.2 58.5 130.7 22.9

OP + GCP + Bg + LAM (LATGeO) (Ours) 81.0 38.8 29.2 58.7 131.7 22.9

Table 6
LATGeO evaluation with SPICE shows significant improvement in Relation, Attributes, Object, and Count metrics.

Model SPICE
All Object Attributes Relation Color Count Size

Standard Transformer 21.1 38.6 9.6 6.3 9.2 17.5 2.0
ObjRel-Trans [14] 21.2 37.9 11.4 6.3 15.5 17.5 6.4
Up–Down [1] 21.4 39.1 10.0 6.5 11.4 18.4 3.2
hLSTMat [10] 22.3 40.3 11.2 6.4 15.2 14.4 3.7
MeshTrans [5] 22.6 40.0 11.6 6.9 12.9 20.4 3.5
LATGeO (Ours) 22.9 40.7 12.1 7.1 14.6 22.9 4.2

824



S. Dubey, F. Olimov, M.A. Rafique et al. Information Sciences 623 (2023) 812–831
4.4.3. Qualitative analysis of LATGeO
We have shown image captions of selected images generated by the proposed framework for qualitative analysis in Fig. 5.

This figure depicts the image captions generated by LATGeO and competitive techniques for parallel comparison. A row with
qualitative analysis of the generated caption for each selected image is appended to highlight the improvements introduced
in the captions presumably caused by proposed modules. For example, Fig. 5(a) depicts an improvement in the translation of
image features to a precise collective noun using object proposals (OP) with LAM in the generated caption: ‘‘a man riding! a
group of people riding”. Similarly, Fig. 5(b) shows improvement in the generated caption up to a precise common noun by
utilizing OP with label association: ‘‘two men ! two people”. Also, in Fig. 5(l), ‘‘a man and woman ! a couple of people”.
Additional examples in Fig. 5(c–h) accentuate OP inclusion in LAM and its efficacy for LATGeO. Furthermore, Fig. 5(b) depicts
the qualitative significance of GCP by adding an explicable adjective in the generated caption: ‘‘a kite ! a large kite”. The
effect of adding background features in LATGeO is also evident in Fig. 5(a-c), (e-g), and (i-l). For instance, in Fig. 5(c), the gen-
erated caption is corrected with an accurate object in the background: ‘‘a refrigerator! a bathtub”. Similarly, Fig. 5(g) shows
improved captions from ‘‘metal rack in a ! fence in a flooded street”. Finally, examples about the influence of fine use of OP
Fig. 5. Qualitative results of selected images from the MSCOCO test dataset. GT, MeshTrans, and GCP represent captions generated by ground truth,
MeshTrans [5], and the GCP module of LATGeO, respectively. For brevity, OP denotes object proposals, and B denotes background. (a) -(c), (e) -(g), and (i) -
(k), represent successful image captioning cases, and (d), (h), and (l) represent cases where LATGeO-generated captions show low accuracy. Last rows
(Qualitative Analysis) brief the expected modules of the LATGeO which could be involved in generating accurate captions as well as show the improvement
compared to the MeshTrans model. Highlighted words with red color in the LATGeO captions represent caption refinements compared to the MeshTrans
model.
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Fig. 6. Demonstration of correlation among object proposals after passing through LATGeO encoder. The top and bottom rows show results with and
without GCP, respectively. (a) shows the correlation maps of object proposals. (b) shows the top-3 objects in the yellow bounding box giving higher
correlated values with two randomly chosen object proposals 39 and 30 (left and right images, respectively). Correlated object proposals are highlighted on
the original image with their id numbers on the top-left corner of the highlighted part.
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with LAM and GCP are depicted in Figs. 5(d) and (l): ‘‘a sponsored car ! a police car”, and ‘‘cake ! a wedding cake”, respec-
tively. Therefore, the qualitative results in Fig. 5 highlight the efficacy of background, OP, LAM, and GCP in LATGeO to gen-
erate semantically and syntactically concise image captions.

Furthermore, Fig. 6 demonstrates the effectiveness of the GCP module, where the correlation maps of object proposals are
generated with the help of the encoder layer’s attention module. Fig. 6(a) top image shows a correlation map constructed
using a model trained with the GCP module, and the bottom image shows a correlation map generated without the GCP
module. As demonstrated, correlations among objects achieved from a model with GCP have more diverse dependencies
than the ones without GCP. Most object proposals are correlated with object numbers 35 and 41 (both belong to the ‘‘person”
class) without GCP, whereas the GCP adds variation in the inclusion of proposals. Moreover, we have demonstrated the cor-
relation of object proposals with the chosen proposals id numbers 30 and 39 marked in red bounding boxes and displayed
their top-3 correlated object proposals with yellow bounding boxes (Fig. 6(b)). Proposal id number 39 (‘‘football”) in the first
row is more correlated with proposal id numbers 24;13, and 15, which depicts the correlation with persons present in the
image showing an action of kicking a football, wearing football shoes, and football jerseys. Whereas, the model without the
GCP module in the second row depicts the correlation of proposal id number 39 with proposals 27;6, and 22, which mainly
give attention to the person’s face and shoes. Similarly, Fig. 6(b) also demonstrates the GCPmodule’s effect on the proposal id
number 30 (‘‘boy or person”). This proposal shows a high correlation with other proposals like other players in the field along
with the football field. Fig. 6 demonstrates that we achieve spatially distant object associations with the GCP module.

The significance of the LAM in the decoder is shown in Fig. 7, where we have demonstrated the association of extracted
object proposals with particular words in the dictionary. This association is achieved from the decoder layer using a cross-
attention module, which employs LAM and encoders’ outputs. Such association process in LATGeO using the LAM module is
zoomed-out and demonstrated inside a dotted orange box. The colored lines represent such associations generated from the
high attention weights from the cross-attention module of the decoder. In the second row, the caption ‘‘young” shows more
attention to the object proposals, containing faces of the players and their actions of playing and running. Similarly, the cap-
tion ‘‘children” is associated with the object proposals, containing all young boys and girls playing on the ground. Despite
having many objects per image (max = 50), LATGeO can adequately generalize to map only a small number of objects per
word. Furthermore, Fig. A.8 in A.1 depicts a detailed comparison of attention mapping between generated captions with
and without LAM + GCP in LATGeO.
4.4.4. Future work
The proposed modules are tested with transformers for their seamless integration in end-to-end deep neural networks.

However, the modules can be trained independently with the same dataset and different ground truth. The image captioning
pipeline of conventional algorithms can include the output of LAM and GCP as additional data input for final caption gener-
ation. Moreover, the proposed techniques can be extended for the grounded situation recognition (GSR) [26] that describes
activities and the roles associated with the activity in a given image. LAM module pays attention to the noun detected in the
image and explores their relationship. GCP associates objects considering the geometric structure and scale. Apparently, the
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Fig. 7. Demonstration of extracted objects’ association to words using the proposed LAM in the decoder of LATGeO.
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proposed modules can help in improving the GSR performance. Moreover, attributes of the objects such as objects’ colors,
and sizes can be encapsulated as labels in the LAM to extract nouns present in the image along with their attributes. Another
potential application of LATGeO is scene understanding in videos (e.g. anomaly detection and action recognition), where the
two modules can add value by imposing vision constraints and biases.
5. Conclusions

This study demonstrates an image captioning technique named LATGeO, which explores the utility of object identity
preservation along with surrounding information to generate meaningful captions of still images. LATGeO binds objects’ fea-
tures, surroundings, geometrical properties, and associated labels of semantically coherent objects using a transformer. The
proposed architecture generates proposals using object detection algorithms and computes their geometrical coherence
using a novel scale ratio-comparison technique that helps the transformer to attend spatially distant objects in a given
image. The encoder and the associations of particular features of the objects are further reviewed, strengthened, and tran-
scribed using labels of the detected objects by a decoder. The labels are a mapping of classes to the dictionary words using a
proposed LAM. An extrinsic definition of proposal added to the decoder helped LATGeO to outperform SOTA algorithms on
the MSCOCO test dataset. The proposed technique is trained with cross-entropy loss and fine-tuned with reward-based RL,
which improves the results and scores better than many SOTA offline ensembles and shows outstanding performance in the
online evaluation. This study also shows the effectiveness of introducing different forms of inductive biases (soft- and hard-
inductive bias) in the transformer network. Future work can explore the utility of the proposed combination of biases in GSR,
scene understanding, and anomaly detection using captions. In this study, we examined object detection for proposals,
whereas other choices of proposals can be explored to explicitly guide the transformers. Similarly, object coherence and label
generation can be further explored to improve the results.
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Appendix A. Additional experimentation

A.1. Attention mapping from the decoder layer

Fig. A.8 demonstrates the effectiveness of the proposed LAM and GCP with the help of attention mapping obtained from
the decoder layer. The image on the left-side shows the cross-attention between detected objects and the words generated
by the decoder module of the model with LAM and GCP. The image on the right-side shows the results of the same image
Fig. A.8. Comparison of cross attention mappings of models with (left) and without (right) GCP + LAM.
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without the use of LAM and GCP. It can be observed in the first row of the left-side that strong attention between the phrase
‘‘group of” and the object proposals with a group of people in it when using the LAM and GCP modules. The same can not be
observed on the right-side image. In the second row, the word ‘‘playing” has more significant attention connections with
object proposals giving an impression of running, maneuvering, and handling the ball, which is visible with low frequency
on the word ‘‘kicking” on the right-side. It is also considered as a benefit of using LAM. Similar connections can be observed
in rows three and four with the words ‘‘soccer” and ‘‘field”, respectively. It is considered that LAM adds a semantic value to
the image to words translation.
A.2. Composition of encoder-decoder layers of proposed transformer

We have performed additional experiments to illustrate the effect of different types of connectivity between encoder-
decoder layers. Fig. A.9 and Fig. A.10 demonstrate the details for connections in 3-layers and 6-layer architectures, respec-
tively. Fig. A.9(a) shows the single-connection when one encoder output is passed as an input to the corresponding decoder
layer. Fig. A.9(b) shows skip-connection when a randomly selected few encoder layers outputs are passed as input to the
decoder layer after sigmoid gating. Fig. A.9(c) shows residual-connection [12] among encoder layers: when a residual con-
nection is included among encoder layers along with a fully-connected transformer. Fig. A.9(d) shows residual-connection in
encoder and decoder layers: a residual connection is included among encoder layers and decoder layers along with a fully-
connected transformer. Fig. A.10(a) and (b) represent similar connections in 6-layers architecture.

Table A.7 demonstrates the comparative analysis of using different connectivity in LATGeO. This table demonstrates that
our model with fully-connected encoder-decoder layers outperforms other mentioned connection techniques.
A.3. Number of encoder-decoder layers

Fig. A.9 and Fig. A.10 also demonstrate the proposed architecture with different numbers of encoder-decoder layers.
Table A.7 shows the effect of using 3-layers and 6-layers in the proposed algorithm. This table concludes that using 3-
layers of encoder-decoder and a fully-connected transformer shows the best results compared to other compositions.
Fig. A.9. Compositions of connectivity between encoder and decoder of the transformer using 3-Layers. (a) Single-Connection. (b) Skip-Connection. (c)
Residual-Connection among encoder layers with fully-connected layers. (d) Residual-connections in encoder and decoder layers with fully-connected
layers.
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Fig. A.10. Compositions of connectivity between encoder and decoder of the transformer using 6-Layers. (a) Residual-Connection among encoder layers
along with fully-connected layers. (b) Residual-connection in encoder and decoder layers with fully-connected layers.

Table A.7
LATGeO evaluation with various compositions of connectivity.

Model BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr-D SPICE

Types of Layer-Connections Layers

Single-Connection 3 80.4 38.8 29.2 58.5 129.5 22.9
Skipped-Connection 80.0 38.3 29.1 58.3 128.8 23.1

Residual-Connection in Encoder 80.7 39.0 29.0 58.5 128.4 22.8
Residual-Connection in Encoder Decoder 80.2 38.8 29.2 58.5 129.3 23.1

Residual-Connection in Encoder 6 80.9 38.7 28.7 57.9 130.0 22.1
Residual-Connection in Encoder Decoder 80.6 38.4 29.0 58.2 130.6 22.5

Fully-Connected 6 80.6 38.1 29.1 58.1 129.2 22.8

Fully-Connected LATGeO (Ours) 3 81.0 38.8 29.2 58.7 131.7 22.9
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