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Abstract
This paper presents the uncertainty quantification (UQ) framework with a data-driven approach using experimental data in 
wire + arc additive manufacturing (WAAM). This framework consists of four steps. First, the experimental data, including 
process parameters and signatures, are obtained by performing tests in various conditions. Next, the model is constructed 
by surrogate modeling or a machine learning algorithm using the obtained data. Then, the uncertainties in a quantity of 
interest (QoI), such as bead geometry, surface roughness, microstructure, or mechanical properties, are quantified. Lastly, 
the UQ is verified and validated using the experimental data. The proposed framework is demonstrated with the data-driven 
UQ of the bead geometry on the bead-on-plate in gas tungsten arc welding (GTAW)-based WAAM. In this case study, the 
uncertainty sources are process parameters and signatures, and the QoI is bead geometry. The process parameters are wire 
feed rate (WFR), travel speed (TS), and current, while the process signatures are voltage-related features. The bead geometry 
includes the width and height of single-layer single bead. The results of the case study has revealed that (1) verifying and 
validating the data-driven UQ of bead geometry with the normal beads is conducted, and the predicted values are within 
the 99% confidence intervals, (2) the bead width is negatively correlated with TS, and (3) the bead height has a positive and 
negative correlation with WFR and TS, respectively.
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1 Introduction

Uncertainty quantification (UQ) aims to describe the distri-
bution of the outputs from a model using statistical metrics 
to analyze the effect of uncertainty sources on the varia-
tions of quantities of interest (QoIs) [1]. There are two types 
of sources: aleatory and epistemic. Aleatory uncertainty 
comes from the natural variabilities and is categorized into 
homoscedastic and heteroscedastic. The homoscedastic 

type remains the same regardless of the inputs, while het-
eroscedastic varies depending on the inputs [2]. Epistemic 
uncertainty originates from the lack of knowledge and is 
categorized into data uncertainty (limited or imprecise meas-
urement) and model uncertainty (assumptions, simplifica-
tions, and numerical discretization). The model uncertainty 
is classified into a model form, solution approximation, or 
model parameter [3]. The assumptions and simplification 
in simulations cause the model form uncertainty, while the 
numerical discretization, reduced-order modeling, and an 
approximated solution method in simulations cause the solu-
tion approximation uncertainty [3]. In the cases of manufac-
turing processes, the uncertainties should be quantified since 
they significantly influence the process repeatability and part 
reproducibility [4].

UQ study can be categorized into physic-based [5, 
6], physics-informed data-driven [7–9], and data-driven 
[10–13]. Physics-based UQ has a basis on physical laws 
and does not need a large amount of data and is physi-
cally accurate, but for complex processes such as additive 
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manufacturing (AM), there is insufficient understanding of 
the underlying physics, and simplification is required. In 
addition, it needs calibration by experimental observation, 
which is computationally expensive [6, 8, 10]. Physics-
informed data-driven UQ integrates physics knowledge and 
data and is time-saving and cost-effective because it is based 
on computer simulations [8, 10]. But, it does not provide 
the methodology for the validation because the simulation 
itself cannot represent the actual process. Data-driven UQ 
can reduce the uncertainties originating from inaccurate 
knowledge and the computational model [14]. Also, it can 
easily find the optimized process parameters for the desired 
properties of parts if the data are sufficient [15]. However, 
the accuracy of the data-driven model highly depends on the 
data integrity used for constructing the model [6].

Meanwhile, AM technology is used to overcome tradi-
tional subtractive manufacturing limitations with the benefits 
of lead time reduction, the ability to fabricate complicated 
geometries, and having a low buy-to-fly (BTF) ratio [16]. 
For example, the BTF ratio in AM is about 1.5, while it 
reaches 11 for subtractive manufacturing [17]. Despite these 
benefits, due to several tens of process parameters in AM 
and its inherent variabilities, poor process repeatability and 
part reproducibility [18, 19] are inevitable, and it is challeng-
ing to establish the design rule and the relation between the 
process-structure–property-performance (PSPP) [20–22]. 
These issues affect product reliability, business reputation, 
and profitability [23].

To overcome these problems, metal AM community has 
been focusing on process monitoring and control with uncer-
tainty consideration [24, 25]. Since metal AM processes 
require time-consuming and cost-intensive data acquisition 
tasks for the model development and validations, research 
groups prefer physics-based and physics-informed machine 
learning-based approaches for modeling or understanding 
underlying physics [26, 27]. In contrast, the real experimen-
tal data obtained from metal AM, also called data-driven, 
has a number of benefits. First, unlike other approaches in 
which verification and validation (V&V) are highly chal-
lenging, the process signature and the data acquired can 
be used to verify and validate the model [28]. Second, this 
approach obtains a reliable confidence interval of the pro-
cess. However, knowledge and methodology of data-driven 
UQ in metal AM is significantly lacking, especially based on 
the real-time process parameters and signatures.

Especially wire + arc additive manufacturing (WAAM) is 
receiving attention among metal AM processes because it 
has a high deposition rate, efficient usage of materials, and 
low production cost compared to other metal AM processes 
[29]. WAAM is similar to the welding process; it utilizes an 
arc as a heat source for melting metal wires, produces a layer 
consisting of continuously connected weld beads, and stacks 
the layers one by one. Three arcs are commonly used for heat 

sources: gas metal arc, gas tungsten arc, and plasma arc [30]. 
The gas metal arc welding (GMAW)-based WAAM uses the 
metal wire as a consumable electrode, meaning that there is 
a metal wire inside a welding torch. Therefore, it enables the 
mechanic system simple. That’s why GMAW-based WAAM 
has been used for path planning and optimization [31–33]. 
On the other hand, the gas tungsten arc welding (GTAW)-
based and plasma arc welding (PAW)-based WAAM has an 
external wire feeding system with a non-consumable elec-
trode. The gas tungsten arc is conical-shaped and can be 
applied to deposit large-sized structures, while the plasma 
arc is cylindrical-shaped and is suitable for deposition with 
smaller weld distortion [34]. These heat sources and wires 
have recently been integrated with robot arms and control 
units, so semi- or fully automated WAAM systems are avail-
able [34–37]. It makes researchers to get real experimental 
data in the WAAM process more efficiently and practically.

However, WAAM is a complicated process that has sev-
eral uncertainty sources [10]. The quality of the deposited 
parts often exhibits significant variability for the same manu-
facturing types, materials, and parameters, which is a con-
siderable hindrance to widespread adoption [38]. Because 
of this variability, both the repeatability of the processes 
and the reproducibility of high-quality products have dif-
ficulties [39]. In addition, this limits the production of accu-
rate and reliable WAAM components. Thus, understanding 
the uncertainty sources and their impact on the process and 
product quality is required to achieve quality control of 
WAAM processes through UQ.

Like this, WAAM processes are difficult to be modeled 
analytically since the process parameters accompany uncer-
tainties and the deposited parts have unexpected variability 
[16]. In that point, the data-driven approach is suitable for 
the process repeatability and product integrity in WAAM. 
Integrating a data-driven approach and WAAM leads to the 
connection between the input parameter process and the 
output product quality, helping users optimize the process, 
make decisions, and select cost-effective materials [40]. That 
is why the data-driven approach is essential for establishing 
a process-property relation, optimizing the tool path, and 
carrying out accurate and stable in-situ monitoring in the 
WAAM process.

In this paper, we propose a data-driven UQ framework 
for WAAM, which consists of four steps: data acquisition, 
data-driven model construction, uncertainty quantification, 
and verification and validation. As a case study, the UQ of 
bead geometry in WAAM is investigated. The V&V showed 
that the predicted values for bead height and width are suc-
cessfully predicted in a 99% confidence interval, and the 
sensitivity analysis revealed the correlation between the 
process parameters/signatures and the bead geometry. This 
paper is organized as follows. In Section 2, the proposed 
framework for the data-driven UQ framework for WAAM is 
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explained. In Section 3, the UQ of bead geometry in GTAW-
based WAAM will be presented as the case study of the pro-
posed framework for data-driven UQ. Section 4 will discuss 
the issues in more detail, and the conclusion is provided in 
Section 5.

2  Data‑driven uncertainty quantification 
for wire + arc additive manufacturing

A UQ framework for WAAM using a data-driven approach 
is proposed, as shown in Fig. 1. It has four steps: (1) data 
acquisition, where the process parameter and the real-time 
process signatures are collected for the subsequent steps; (2) 
data-driven model construction, where surrogate or neural 
network-based models are created using the acquired data; 
(3) uncertainty quantification and establishment of confi-
dence intervals; and (4) verification and validation, where 
errors are detected, efforts are made to correct them and 
decide whether the mathematical model can accurately pre-
dict the actual process. Each step will be explained in detail 
as follows.

2.1  Data acquisition

The first step for data-driven UQ is to get data during 
WAAM processes. The data can be collected via com-
puter simulation or real experiments, but real-time pro-
cess signatures can only be measured by real experiments. 
This data will be critical in analyzing the faults’ formation 
and propagation as the layers are stacked. The accuracy of 
the UQ is highly dependent on the availability of reliable 
data, which is hampered by the unpredictability and inher-
ent uncertainties in the WAAM. There are a considerable 

number of parameters in the WAAM processes: wire feed 
rate (WFR), travel speed (TS), torch angle, the diameter 
of electrode or wire, stick-out, the distance between torch 
and substrate, substrate thickness, temperature, arc power, 
arc length, arc spread, arc rotation, welding current, weld-
ing voltage, pulse frequency, shielding gas pressure or 
flow rate, and proportion of mixed flux [25, 31, 41–44]. 
They can be measured as signatures in real time during 
the process (i.e., process signatures). For example, WFR 
can be measured via encoders, TS via accelerometers, the 
distance between torch and substrate via ultrasonic sen-
sors, and the temperature via thermocouples or thermal 
image video cameras. The arc-related parameters, such as 
length, spread, and rotation, are measured by high-speed 
cameras. In addition, the physics-related parameters, such 
as specific heat, and density, are the unique characteristics 
of materials. They are assumed to be distributed around 
specific values and are commonly considered uncertainty 
sources.

The QoIs in WAAM are the bead geometry, surface 
roughness, microstructure, and mechanical properties. The 
QoI-related elements for bead geometry are the bead width 
and height, toe angles, and the penetrated depth (also called 
melt-through depth) [25, 44–47]. Those for surface rough-
ness can be average roughness, quadratic average roughness, 
maximum valley depth, reduced valley depth, maximum 
peak height, reduced dale height, maximum peak to valley 
height, surface skewness, surface kurtosis, and wall sym-
metry [44]. Those for microstructure are the compositions, 
phases, and grain morphology (e.g., grain size, and aspect 
ratio) [10, 14, 39, 48]. Those of mechanical properties are 
tensile strength, compression strength, elasticity, elastic 
modulus, hardness, fracture toughness, brittleness, stiffness, 
ductility, fatigue, and creep [10, 39, 49].

Fig. 1  Schematic workflow of data-driven UQ for WAAM
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The QoIs are correlated to each other in terms of the pro-
cess parameters. The bead geometry (e.g., the bead width 
and height, toe angles, and penetrated depth) can be corre-
lated to surface roughness and mechanical properties. The 
surface roughness ( R ) on the deposited surface of a part is 
defined as the sum of the distances from the surface points 
to a fitted plane ( 

∑
di ) divided by the number of the sur-

face points ( N ) [50]. Here, the surface points represent the 
outer shape of a bead, which can be captured by the bead 
width, height, and toe angle. Therefore, the bead geometry 
is directly related to the surface roughness. It is affected 
by the process parameters such as the WFR, TS, and so 
on. So is surface roughness. For a single-layer single bead 
(bead track), the variations of the bead width, height, and 
toe angles during the WAAM process are directly related 
to the roughness along the length of the bead tracks. The 
larger the variations are, the rougher the surface of the bead 
track is. The bead tracks with high roughness are not suitable 
for WAAM applications. Among the process parameters in 
WAAM, the arc current is known as the significant param-
eter that affects the roughness of the bead tracks [46]. For 
a multi-layer single-bead (thin wall) case, the bead width 
and toe angles are directly related to the surface roughness. 
The roughness increases as the bead height and toe angles 
increase when the wire feed rate increases [51]. Also, when 
the travel speed increases, it decreases up to a certain value 
and increases slightly. It is noted that the bead width and the 
penetrated depth decrease and the toe angles increase at that 
time. For single-layer multi-beads (thin plate), rather than 
the wire feed rate and travel, the distance between the centers 
of adjacent beads is a dominant factor for surface roughness 
[50]. The center distance in a thin plate, also called the over-
lapping distance, has the same role as the bead height in a 
thin wall case. To generate the smoothest surface, the center 
distance can be optimized until the area of the valley equals 
the overlapping area among the adjacent beads [41]. It is 
revealed that 0.738 of the bead width is a critical distance 
between the beads for the least rough surface of a thin plate.

The mechanical properties (e.g., hardness, yield 
strength, tensile strength, ductility, and elongation) of the 
thin wall are also affected by the process parameters. In 
this case, the ratio of wire feed rate to travel speed (RWT) 
is a significant parameter. RWT can be increased by reduc-
ing the travel speed or enhancing the wire feed rate. It is 
noted that the travel speed has more influence on RWT 
than the wire feed rate. If RWT increases, then heat input 
also increases. The heat is accumulated in the deposited 
parts, which makes the cooling rate slow. The slow cool-
ing rate eventually decreases the martensite content and 
increases the ferrite content in the deposited parts. There-
fore, the hardness, yield strength, and tensile strength 
decrease, but ductility and elongation increase [52]. 
Taken together, the increased bead width, penetrated depth 

and decreased toe angles by the reduced travel speed, as 
well as the increased bead height and toe angles by the 
enhanced wire feed rate, can be correlated to the decreased 
hardness, yield strength, and tensile strength as well as the 
increased ductility and elongation. In the case of multi-
layer multi-beads (thick wall), the center distance between 
two weld beads has an effect on the mechanical properties 
[41, 42]. If the horizontal center distance decreases where 
the bead width is constant, more weld beads are needed for 
the desired width of the deposited part. It means that the 
deposited part with more weld beads is heated more fre-
quently during the deposition. Compared to the deposited 
part with fewer weld beads, the cooling rate and tempera-
ture gradient of the deposited part with more weld beads 
decrease, so its hardness also decreases. For the same 
reason, the yield strength and tensile strength decrease 
as the center distance between weld beads reduces, while 
the elongation and ductility are reported to increase [53].

The QoI-related elements can be obtained during or 
after the WAAM process using data-driven approaches. For 
example, the bead geometry- and surface roughness-related 
elements can be measured using line scanners attached near 
the torch during the WAAM process or a coordinate meas-
urement machine (CMM) after the process. Especially the 
width and length of a melt pool can be captured on a real-
time basis using image processing techniques with a high-
dynamic range (HDR) or a thermal camera, as shown in 
Fig. 2. The camera is attached to a welding robot arm and 
captures a melt pool. If it is configured as in Fig. 2a in the 
traveling direction, then images, as shown in Fig. 2b, will 
be obtained. In this case, the melt pool width is the main 
element to be measured. If the camera is set as in Fig. 2c in 
a way perpendicular to the traveling direction, then an image 
as Fig. 2d will be captured. In this case, the melt pool length 
is the main element to be measured. The melt pool width is 
the same as the width of the bead shape since the melt pool 
solidifies into a bead. So, the camera is commonly set as in 
Fig. 2c, and the melt pool length is obtained as shown in 
Fig. 2e. The melt pool depth can be captured in the simula-
tion-based approach using finite element analysis with ther-
mal surrogate models. However, it is not possible to measure 
the melt pool depth in the experiment-based approach since 
there is no means to monitor the inside of the substrate in 
real-time. The porosity can be captured by calculating the 
area of cavities in the region of interest of an image on a 
real-time basis during the WAAM process [54]. Only after 
the WAAM process is finished the microstructure-related 
properties can be obtained via microscopes such as an opti-
cal microscope, a scanning electron microscope, or energy-
dispersive X-ray spectroscopy by cutting the cross-section 
of the deposited beads or thin/thick walls of metal alloys 
(i.e., destructive evaluation) [35]. The mechanical prop-
erty-related ones are also obtained in tension, compression, 
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fatigue, and creep tests using test machines after the multi-
layer deposition and the precision cutting.

2.2  Data‑driven model construction

For data-driven models, there are two options. One is math-
ematical surrogate models, and the other is neural network 
models. Both can present data-driven models for simulation-
based and experiment-based approaches. Two review papers 
[40, 55] provide references for more information for those 
who are interested. This paper focuses on data-driven mod-
els with an experiment-based approach.

The data-driven model can be implemented using math-
ematical surrogate models. The mathematical surrogate 
models can be of three different kinds [55]. (1) Genetic 
algorithm is a method that mimics biological evolution to 
solve constrained or unconstrained optimization problems 
[56]. It can help solve complex issues such as nonlinear and 
nonconvex problems in WAAM [57]. (2) Polynomial regres-
sion uses the polynomial functions for regression problems. 
It can express the nonlinear relation between the input vari-
ables and the output response of QoIs in WAAM using n-th 
degree polynomials. And (3) Gaussian process regression 
is a powerful technique to approximate the distribution of 
regression functions and estimate the uncertainty.

The data-driven models can be built using neural net-
work models in six different types. (1) Artificial neural net-
work (ANN) consists of an input layer, hidden layers, and 
an output layer with fully connected neurons. (2) Convolu-
tion neural network (CNN) is an image-based algorithm that 
retains the spatial information of the image data and detects 
features by comparing the neighboring image data [58]. (3) 

Recurrent neural network (RNN) processes sequential data, 
such as time series process signatures through recursive 
loops. However, RNNs have a disadvantage that they cannot 
solve the problem of long-term dependence. For this reason, 
(4) long short-term memory (LSTM) has been developed 
to overcome the RNNs’ disadvantage. By storing the infor-
mation of process signatures in WAAM for a long time, it 
can reduce long-term dependence. (5) Gate recurrent unit 
(GRU) also overcomes RNNs’ disadvantages, simplifying 
the architecture of LSTM. It is known that GRU outperforms 
LSTM for a small amount of data. (6) Generative adversarial 
network (GAN) is an image-based network consisting of a 
generator and a discriminator. The former generates fake 
data similar to real data, while the latter decides whether 
the data is fake or real. But it is known that GANs cannot 
generate high-resolution images and their learning processes 
are unstable. Like this, each neural network model has its 
limitations, so it is common to (7) combine more than two 
neural network models to overcome the limitations of each 
model for data-driven modeling [59]. In most neural net-
work models, the designers determine the number of layers, 
nodes, and kernels to achieve the best performance. It is 
noted that the inputs to the models are process parameters, 
and the outputs are QoI-related elements.

2.3  Uncertainty quantification

The data-driven UQ implements big data obtained in a 
computer simulation or real experiments. In case the data 
is obtained through experiments, the UQ will be practical 
and reliable and V&V can be carried out using the process 
parameters and real-time process signatures. In addition, 

Fig. 2  Illustrations of the experimental setup to capture the melt pool 
width and length. a A camera setup in the traveling direction (a blue 
arrow) in case of back-feeding, b an example of the captured image 
for (a), c a camera setup perpendicular to the traveling direction in 

case of front-feeding, d an example of the captured image for (c), and 
e a captured image from a high-dynamic-range camera to obtain the 
melt pool length for (c)
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the histogram and the probability density functions (PDF) 
of uncertainty sources and QoI-related elements can be esti-
mated. The confidence intervals of QoI-related elements 
and sensitivity analysis can also be carried out. For the data-
driven UQ, the assumption that the sampled data distribution 
is Gaussian or uniform is not applicable. Instead, the PDF of 
experimental input parameters can be directly obtained by 
kernel density estimation (KDE) from the experimental data 
of uncertainty sources and QoI-related elements after getting 
their histograms. The KDE is one of the nonparametric and 
can estimate the PDF from the dataset [60, 61]. More details 
can be found in [60] and [61].

The variance for QoI varies within a certain range depend-
ing on the uncertainty sources, such as the process parameters 
and signatures. This range is called the confidence interval and 
is a measure of repeatability and reproducibility. The confi-
dence interval is calculated using the mean and the standard 
deviation as follows [10, 62, 63].

where x and s are the mean and the standard deviation, 
respectively, Z is the Z value determined by the confidence 
level, and n is the number of observations or samples. 
Table 1 shows the Z value according to the confidence levels 
such as 90%, 95, or 99%. In the data-driven UQ of WAAM, 
x and s can be the mean and standard deviation of the QoI-
related elements from bead geometry, surface roughness, 
microstructures, or mechanical properties.

After quantifying uncertainties, the sensitivity analysis will 
be performed by obtaining the confidence interval with the 
confidence levels. It quantifies the contribution of each vari-
able ( X ) to variance � (Y) of QoI ( Y  ) of the model [39, 64]. 
The analysis can be local sensitivity analysis (LSA) or global 
sensitivity analysis (GSA) [65]. In this paper, the GSA is only 
concerned. There are two indices, which are the first-order 
Sobol index (also called the main effect sensitivity index, I) 
and the total effect Sobol index (also called the total effect 
sensitivity index, T) [65–67]. The first-order Sobol index is 
defined as

where � and �  are the expected value and the variance, 
respectively, Xi is the i-th variable, X∼i is a vector, array, or 
matrix of variables except Xi , and �X∼i

(
Y|Xi

)
 is the expected 

value of Y  over X∼i with Xi fixed [39, 68]. Even though the 

Confidence Interval (CI) = x ± Z
s

√
n
=

�
x − Z

s
√
n
, x + Z

s
√
n

�

SI
i
=

�Xi
(�X∼i

(
Y|Xi

)
)

� (Y)

first-order Sobol index of Xi is small, it does not mean that 
the variable Xi has a small contribution to Y  [64]. That is 
why the other index should also be considered together. The 
total effects Sobol index is defined as

where �Xi

(
Y|X∼i

)
 and �Xi

(
Y|X∼i

)
 are the expected value 

and the variance of Y  over Xi with X∼i fixed, respectively 
[66–69].

2.4  Verification and validation

The definition of V&V has been developed since 1970s, pass-
ing through hands of Schlesinger, Institute of Electrical and 
Electronics Engineers (IEEE), Department of Defense (DoD), 
American Institute of Aeronautics and Astronautics (AIAA), 
and American Society of Mechanical Engineers (ASME) [70]. 
According to the most recent definition, verification is the 
detection and correction of errors caused by discretization 
of the mathematical model during implementing the model 
[71, 72]. Similarly, validation is the process that determines 
whether the mathematical model can accurately predict the 
QoI-related element values [71, 73].

Previous UQ researches finished their work without V&V of 
UQ since it was challenging. Likewise, V&V cannot be applied 
to UQ directly because there is rarely technique nor method to 
verify and validate the uncertainty itself. However, an indirect 
method in data-driven approaches enables to perform V&V 
with using the predicted QoI-related elements from surrogate 
or neural network models. If the predicted QoI-related ele-
ment values in testing datasets are within confidence intervals, 
the corresponding uncertainties from models are verified and 
validated. For example, the model with uncertainty predicts the 
QoI-related element values within the confidence intervals with 
a certain confidence level (e.g., 99%), and then the uncertainties 
are considered as being verified and validated by the model. It 
is the main direction that V&V of UQ pursues in this paper.

3  Implementation of data‑driven 
uncertainty quantification for bead 
geometry in WAAM

As a case study, the proposed framework of data-driven UQ 
is applied to the bead geometry in GTAW-based WAAM in 
a single-layer single-bead deposition (i.e., bead track) on 

ST
i
= 1 −

�X∼i
(�Xi

(
Y|X∼i

)
)

� (Y)
=

�X∼i
(�Xi

(
Y|X∼i

)
)

� (Y)

Table 1  Z value and its 
corresponding confidence level

Confidence level 50% 80% 85% 90% 95% 99% 99.5% 99.9%

Z value 0.674 1.282 1.440 1.645 1.960 2.576 2.807 3.291
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a plate considering bead width and height. There are four 
steps, as shown in Fig. 3. In step 1 (data acquisition), a 
WAAM system, including a power source, a welder, a wire 
feeder, and a robot arm, is set. Also, the process parameters, 
such as WFR, TS, current, voltage, or shielding gas flow, 
are determined. Then, the process signatures are recorded 
by a real-time measurement unit, and the deposited single-
layer single-bead tracks are scanned with a CMM. The 
one-dimensional (1D) recording data of process signature 
and the 3D scanning data of bead tracks are synchronized 
for a database. In step 2 (data-driven model construction), 
the database is split into a training and a testing dataset. 
This step uses a training dataset for training and validat-
ing a neural network model using cross-validation. A neural 
network model is chosen as a data-driven model. In step 3 
(uncertainty quantification), the uncertainty sources from the 
experimental data of the WAAM process are analyzed. Then, 
the uncertainty of bead geometry is quantified by calculat-
ing the confidence interval of bead geometry for a testing 
dataset. In step 4 (verification and validation), the model is 
verified and validated by the predicted bead geometry using 
a testing dataset with confidence intervals. Each step will be 
explained in Sections 3.1 to 3.4.

3.1  Step 1: data acquisition

3.1.1  WAAM system setup and process parameters

The GTAW-based WAAM process used for this research 
is shown in Fig.  4. It consists of a 6-axis robot arm 
(Fanuc Arc Mate 120iC), its controller (Fanuc R-30iA), 

an electric welder (Miller Dynasty 400), a wire feeder 
(VR7000), and a real-time voltage/current measurement 
unit (Miller Insight Arc Agent). The wire material is 
Inconel 625 (IN625) with a diameter of 1.2 mm, and the 
substrate material is low carbon steel (LCS) plate of five 
300 × 300 × 12 mm.

In GTAW-based WAAM, the operator can set the process 
parameters before the process. The controllable parameters 
include WFR, TS, current, voltage, and shielding gas flow 
rate. Among them, WFR, TS, and current are considered 
influential process parameters. In this paper, WFR and TS 

Fig. 3  Schematics of experiment-based data-driven UQ study for bead geometry in GTAW-based WAAM in four steps of data acquisition, 
model construction, UQ, and V&V

Fig. 4  GTAW-based WAAM system setup consisting of the robot 
arm, nozzle, welder, controller, power source, shielding gas, and wire 
feeder
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were changed to adjust the deposition area and deposition 
rate. The WFR was set at a range of 75 to 300 cm/min, incre-
menting by 25 cm/min, preventing a periodic protruding con-
cave defect of beads in less than 40 cm/min. The TS was from 
10 to 100 cm/min, incrementing by 10 cm/min, going through 
a head accumulation of less than 20 cm/min, and an undercut 
or concave of more than 90 cm/min. The current was kept 
constant at a value of 200 A, since less than 140 A would 
cause a poor wetting condition in the solidification of the 
molten pool, and more than 300 A would form a poor bead 
geometry because of decreasing the surface tension of the 
molten pool at high temperature [74]. The voltage between 
the tip of the arc nozzle and the substrate varies during the 
process even though a voltage was set as 15 V, while the cur-
rent remains constant, as shown in Fig. 5. Since the varying 
voltage mainly affects the uncertainty of bead geometry when 
other process parameters, such as WFR, TS, and current, are 
constant, it is a parameter that should be investigated. The 
shielding gas was a mixture of 70% Argon and 30% Helium, 
and its flow rate was constant at 30 L/min. It was revealed 
that the shielding gas flow rate did not affect the bead geom-
etry. In this research, the single-layer single-bead deposition 
was conducted with 100 combinations of process parameters 
with the given WFR and TS in a full factorial experimental 
plan. Table 2 shows the process parameters used in this study.

3.1.2  Acquisition of WAAM process signatures and data 
preprocessing

The process signatures are real-time output signals from the 
welding machine. In this study, Miller Insight Arc Agent 
detected and recorded the voltage and current, as shown in 
Fig. 5.

For the 1D signature of the GTAW-based WAAM pro-
cess, seven features were extracted from a voltage as the 
process signatures: the mean, standard deviation, skewness, 
kurtosis, the absolute value of the difference between mean 

and maximum, between mean and minimum, and between 
mean and median over a period [75]. These voltage-related 
features were calculated during every period (e.g., period #1, 
#2, and #3) to form a datum within each period. The period 
is defined by bandwidths and intervals, as shown in Fig. 6. 
The bandwidth is the length of a period and is set to 1.0, 1.5, 
2.0, 3.0, and 4.0 s, and the interval is the length between the 
present period and the next one and is set to 0.1, 0.2, 0.5, and 
1.0 s. For example, if the bandwidth was 2.0 s, the interval 
was 0.5 s, and period #1 started at 1.0 s, then period #1 was 
from 1.0 s to 3.0 s, period #2 was from 1.5 s to 3.5 s, and 
period #3 was from 2.0 s to 4.0 s. One dataset consisted of 
seven voltage-related features with one bandwidth and one 
interval from 1D signature data of all single-layer single-
bead tracks. So, twenty datasets were generated for neural 
network models with all combinations of five bandwidths 
and four intervals.

3.1.3  Acquisition of bead geometry and data 
preprocessing

The QoI is bead geometry, which includes the bead width 
and height. The bead width is the distance between two 
points where two fitted curves of the LCS substrate and the 
IN625 weld bead meet. The bead height is the distance from 
the fitted curve of the LCS substrate to the highest point of 
the IN625 bead. It is necessary to measure the bead width 

Fig. 5  1D process signatures from process parameters (voltage and current) for a normal and b abnormal single-layer single beads

Table 2  Process parameters of GTAW-based WAAM

Parameters Unit Range

Wire feed rate (WFR) cm/min 75 ~ 300
Travel speed (TS) cm/min 10 ~ 100
Current A 200
Voltage V 15
Shielding gas flow rate L/min 30

5526 The International Journal of Advanced Manufacturing Technology (2023) 125:5519–5540



1 3

and height by cutting all single-layer single-bead tracks, but 
it is highly time-consuming. Therefore, laser scanning tech-
nology was used to measure the bead geometry.

After depositing single-layer single-bead tracks on sub-
strate plates, the bead tracks were scanned using a CMM. 
The scanning was automatically saved as computer-aided 
design (CAD) files in PC-DMIS software [76], as shown 
in Fig. 7a, but it was necessary to convert CAD files to 
3D point cloud files for further processing. Each single-
layer single-bead track was segmented on CloudCompare 
[77]. Using the single-layer single-bead track point cloud 
data, the robot arm’s moving direction and route were cal-
culated by slicing the bead track normal to the moving 
direction. The cross-section planes were generated when 
slicing the bead track for projecting the points onto planes 
within a certain tolerance. The bead width and height were 
obtained on each cross-section plane by fitting the bead 
profile and substrate with a quadratic curve, as shown 
in Fig. 7b. The bead width is computed using the points 
where the function meets the plane defining the substrate. 
The bead height is computed as the maximum value of the 
function with respect to the plane.

Similar to the 1D voltage signature, the five band-
widths and four intervals were also applied to the 3D 
scanned data, as shown in Fig. 8. The distance between 

the cross-sections was 0.1 mm, and the number of the 
cross-sections was considered for each period, as shown 
in Table 3. The means of the bead width and height were 
calculated in each period. For example, if the bandwidth 
was 2.0 s, the interval was 0.5 s, and the travel speed was 
30 cm/min, then the bead widths and heights from the 
67 cross-sections were averaged to form the mean of the 
bead width and height for the corresponding period. One 
dataset consisted of the mean values of the bead width 
and height with one bandwidth and one interval from the 
3D scanned data of all single-layer single-bead tracks. So, 
twenty datasets were generated for the 3D scanned data, 
as done for the voltage-related 1D process signature data.

3.1.4  Synchronization of process signatures and bead 
geometry

Matching the 1D voltage signature and the 3D CMM data 
was necessary. The best option is to synchronize a real-time 
voltage/current measurement unit with a robot arm controller, 
an electric welder, a wire feeder, and a CMM unit for on-site 
monitoring, but data processing method is more intuitive in 
data-driven approach. Figure 9 shows the schematic of the 
synchronization. The arc at the end of the welding machine 
was switched on and off for 1 s with respect to changing 
the voltage signature. The bead geometries at the start and 

Fig. 6  Periods defined by bandwidths and intervals for 1D voltage 
signature

Fig. 7  Data preprocessing for 
obtaining the bead geometry 
from the point cloud scanned 
by a CMM. a The scanned data 
was saved as a CAD file and 
was converted to point clouds. 
b The bead profile was fitted 
to estimate the bead width and 
height.

Fig. 8  Periods defined by the bandwidths and intervals for the 3D 
CMM point cloud in a single-layer single-bead deposition
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the endpoint of the process were unstable. Therefore, 10 mm 
from both ends of the bead tracks in the CMM data were 
excluded. The intermediate region of the bead tracks (i.e., 
the effective region [25]) was used for acquiring the bead 
geometry. The corresponding time in 1D voltage signature 
for the 10 mm regions from both ends of the bead tracks and 
the effective region from the middle of the bead tracks was 
calculated using the TS for synchronization.

3.2  Step 2: data‑driven model construction

3.2.1  Model development

Either mathematical surrogate models or neural network 
models are typically used for data-driven techniques. The 
mathematical surrogate models are suitable for theoreti-
cal and simulation-based approaches since several physi-
cal principles such as arc physics, thermodynamics, heat 
transfer (e.g., conduction in beads and substrate, convection 
in a molten pool, and radiation from the heated deposited 
part), and fluid dynamics (e.g., the density and viscosity of 

molten pool, and their changes during cooling) can be given 
as mathematical equations. The variables in the equations 
are subjected to experimental settings such as wire/substrate 
materials, oxidation of materials, and ambient temperature 
in the WAAM process. However, it is challenging to con-
sider all the physical principles during the experiment in the 
real world. On the other hand, neural network models need 
input and output elements regardless of complex physical 
principles or corresponding mathematical relations. The 
input can be process parameters in the real experiment, and 
the outputs can be elements that researchers are interested 
in. This modeling technique is called black-box modeling, 
which is commonly used for understanding the relationship 
between input and output experimentally. This paper focuses 
on the framework for quantifying the uncertainty of output 
elements with respect to input parameters in real experi-
ments. Therefore, neural network models are used in this 
paper rather than mathematical surrogate models.

It was necessary to search for a proper neural network model 
for the case study of this paper. In the case study, one-dimen-
sional (1D) process parameters and signatures are input ele-
ments. 1D means that it has data as a specific number rather 
than a 2D image or a 3D space coordinate. Therefore, 2D image-
based neural networks (e.g., CNN, GAN) were not appropriate 
for this case study. The outputs are the bead width and height 
since the quantity of interest in the case study is bead geometry. 
Many research papers that concern the process parameters as 
input elements and the bead geometry as output have utilized 
an ANN as a model rather than other neural network models 
(e.g., RNN, LSTM, GRU) [31, 45, 78, 79]. Also, a review paper 
confirms that an ANN is one of the best data-driven models 
suitable for AM [55]. Therefore, an ANN model is utilized as a 
modeling technique in our paper. The architecture of the ANN 
is shown in Fig. 10. The inputs to the models are WFR, TS, 
current, and voltage-related features over a period, including 
mean, standard deviation, skewness, kurtosis, and the absolute 
difference between mean and maximum, mean and minimum, 
and mean and median. The outputs from the model are the mean 
of the bead width and the mean of the bead height.

Table 3  A number of cross-
sections for CMM data for a 
period to calculate the mean of 
bead width and height

Bandwidth or 
interval
[s]

Travel speed [cm/min]

10 20 30 40 50 60 70 80 90 100

0.1 2 3 5 7 8 10 12 13 15 17
0.2 3 7 10 13 17 20 23 27 30 33
0.5 8 17 25 33 42 50 58 67 75 83
1.0 17 33 50 67 83 100 117 133 150 167
1.5 25 50 75 100 125 150 175 200 225 250
2.0 33 67 100 133 167 200 233 267 300 333
3.0 50 100 150 200 250 300 350 400 450 500
4.0 67 133 200 267 333 400 467 533 600 667

Fig. 9  Synchronization of 1D voltage signature and 3D CMM data
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3.2.2  Model selection

For ANN, determining the number of layers and nodes in the 
hidden layer was needed. When there was one hidden layer in 
the neural network model, the model showing the smallest loss 
(i.e., mean squared error (MSE)) was selected. The procedure 
was performed with epoch 20 and by increasing the number of 
nodes in the hidden layer from 1 to 250. Among these architec-
tures, the one that has the lowest mean of loss in k-fold cross-
validation using a training dataset where k is equal to 5. The 
neural network architecture of 10–100-2 (i.e., 10, 100, and 2 
nodes in the input, hidden, and output layers, respectively) has 
been selected and used in this research. That is, the selected 
neural network architecture has the lowest mean of MSE in 
k-fold cross-validation using a training dataset. The model 
architecture selection was performed using a workstation with 
an Intel(R) Core™ i7-8700 K CPU (3.70 GHz) with 64 GB 
RAM and NVIDIA GeForce GTX1080 GPU using Python 3 
with TensorFlow and Keras, running on the Windows 10 64-bit 
operating system.

3.3  Step 3: uncertainty quantification 

3.3.1  Uncertainty sources

The uncertainty sources that affect the bead geometry are (1) 
WFR, (2) TS, (3) current, and (4) voltage. The distribution of 
the WFR, TS, and current of training and testing datasets are 
illustrated in Fig. 11a, b, and c. However, even if the user sets 
the voltage at a specific value as a process parameter, the actual 
measured value of voltage changes, which is considered the 
major uncertainty source. Figure 11d shows the distribution of 
the average voltage within the periods in the training and test-
ing dataset. It has a similar shape to the Gaussian distribution. 
Similarly, Fig. 11e to j shows the distribution of voltage-related 
features. The standard deviation, Fig. 11e, and the absolute 

difference between mean and median, Fig. 11h, are similar to the 
exponential distribution. The absolute difference between mean 
and maximum, Fig. 11f, and mean and minimum, Fig. 11g, has a 
similar shape to the Poisson distribution. The skewness, Fig. 11i, 
and the kurtosis, Fig. 11j, have a similar shape to the Gaussian 
distribution.

3.3.2  Mean and variance of the bead geometry 
from the experiment‑based data

Table 4 describes the expected value ( � ) and variance ( �  ) 
of the bead width and height for normal and abnormal bead 
tracks as results of the experiments with the combination of 
the process parameters. The normal beads #17, #26, #35, 
#44, and #53 are in the testing dataset, but the abnormal 
bead tracks are not considered testing datasets. In Table 4, 
the expected values, �bwm and �bhm , are dependent on pro-
cess parameters such as WFR or TS. It will be discussed in 
Section 4.2. The variance of bead width and height, �bwm 
and �bhm respectively, in normal bead tracks are apt to be 
lower than in abnormal bead tracks. It means that the normal 
bead tracks are more stable than the abnormal ones.

3.3.3  Confidence interval

The advantage of this approach is that it can obtain the con-
fidence interval experimentally using the mean and variance 
of QoI-related elements. The QoI in this case study is the 
bead geometry, and the bead width and height are the QoI-
related elements. Figure 12 shows the confidence interval of 
the bead geometry for the normal bead tracks in the testing 
dataset. The confidence intervals for normal bead tracks are 
shown as the blue regions. The dark-shaded region represents 
the confidence interval with a 95% confidence level, and the 
light-shaded region is 99%. The solid blue line in the mid-
dle shows the mean value. From the confidence intervals of 
each bead track, the histograms of the bead width and height 
and their fitted PDF curves are shown in Fig. 13. It is noted 
that Fig. 13 is for the bead width and height on the positive 
side, which is magnified in Fig. 12. That is, the values on the 
horizontal axis in Fig. 13a, c, e, g, and i are half of the bead 
width, while the values on the horizontal axis in Fig. 13b, d, 
f, h, and j are the bead height.

3.3.4  Global sensitivity analysis

GSA was also performed using the Sobol indices dis-
cussed in Section  2.3 with the training dataset. The 
objective of GSA was to analyze the influence of vari-
ous uncertainty sources on the variability of bead geom-
etry. The SALib [80] was used for GSA in this research. 
Figure 14 shows the first-order Sobol index where the 
uncertainty in the bead geometry came from the current. 

Fig. 10  The architecture, inputs, and outputs of the artificial neural 
network model
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Fig. 11  Probability distribution of uncertainty sources that include 
the process parameters and signatures. a WFR, b TS, c current, and 
voltage-related features: d mean, e standard deviation, and the abso-

lute difference between f mean and max, g mean and min, h mean 
and median, i skewness, and j kurtosis
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If the current is excluded, the standard deviation of volt-
age affects the bead geometry. Figure 15 shows the total 
effect Sobol index, where the uncertainty mainly came 
from the WFR, followed by the kurtosis of voltage for 
the bead width and the standard deviation of voltage for 
the bead height.

3.4  Step 4: verification and validation

The bead width and height in the testing dataset were esti-
mated. Then, the bead geometry was drawn as a quadratic 
equation using the estimations. Figure 16 compares the con-
fidence intervals of bead geometry from the experiments and 

Table 4  Expected value ( � ) and 
variance ( �  ) of the bead width 
and height in the normal and 
abnormal tracks

Types Bead track WFR [cm/min] TS [cm/min] �
bwm

[mm] �
bwm

[mm2] �
bhm

[mm] �
bhm

[mm2]

Normal 
(testing 
dataset)

#17 100 20 7.593 0.2042 2.365 0.0362

#26 125 30 6.135 0.1852 1.552 0.0962

#35 150 40 4.436 0.1492 1.463 0.0332

#44 175 50 4.146 0.0832 1.101 0.0442

#53 200 60 3.710 0.0612 0.893 0.0212

Abnormal #60 200 60 4.313 0.4492 1.966 0.1972

#69 225 70 3.555 0.2132 1.627 0.1102

#78 250 80 3.612 0.2282 1.392 0.0662

#87 275 90 2.848 0.1622 1.700 0.3282

#98 300 100 3.155 0.3122 1.303 0.0882

Fig. 12  Confidence intervals of the bead geometry for tracks of a #17, b #26, c #35, d #44, and e #53
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the prediction using the UQ model. It is revealed that verify-
ing and validating the data-driven UQ of bead geometry with 
the normal beads is suitable since the predicted values are 
within the confidence intervals.

4  Discussion

4.1  Window map

As explained in Section 3.1, 100 single-layer single beads 
were deposited using a full factorial experimental plan by 
combining the process parameters, WFR and TS. The bead 
width and height were measured on each cross-section 

plane, as described in Fig. 7. Their mean and standard 
deviation were calculated in the reliable region. An expert 
decided whether a bead track was normal or abnormal. 
So, 100 bead tracks were classified as 54 normal and 46 
abnormal; each notated as blue for normal ones and red 
for abnormal ones in a window map.

A window map was obtained experimentally using the 
mean and standard deviation of bead geometry for 100 sin-
gle-layer single beads. It presents an appropriate range of the 
parameters to choose for a stable weld metal. The window 
map is drawn in the WFR-TS plane, as shown in Fig. 17. 
The figure describes the bead shape conditions according to 
the combination of WFR and TS. The blue circle presents 
the normal (perfect) bead shape (Fig. 18a), which can be 

Fig. 13  PDF of bead geometry 
for (width, height) in different 
experiments: a, b #17, c, d #26, 
e, f #35, g, h #44, and i, j #53
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utilized in the WAAM process. The red rectangle represents 
the lack of fusion (Fig. 18b), which has an unmelt feed wire 
material on the beads since the wire feed rate is excessive 
or the heat input is insufficient. The red triangle denotes 

humping (Fig. 18c), which has an irregular bead width and 
height along the travel direction. It is mainly caused by the 
excessive travel speed compared to the wire feed rate. There 
is a bead shape, balling, as shown in Fig. 18d. It is a severe 

Fig. 13  (continued)

Fig. 14  First-order Sobol index 
of uncertainty sources on a bead 
width and b bead height

Fig. 15  Total effect Sobol index 
of uncertainty sources on a bead 
width and b bead height
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version of humping, in which the beads are generated dis-
continuously, so the beads resemble balls standing in a line. 
The lack of fusion, humping, and balling is all considered 
imperfect (abnormal) beads, which cannot be used for multi-
layer single-bead, single-layer multi-bead, or multi-layer 
multi-bead parts. Instead, only the perfect beads should be 
considered to predict the mechanical properties.

In addition, other window maps can be expressed in 
WFR-TS-BW space and WFR-TS-BH space, plotting bead 
width (BW), or bead height (BH) against the WFR-TS plane 
shown in Fig. 19. It presents how the mean of bead width 
and height for the IN625 single-layer single beads are gen-
erated experimentally in the real world by GTAW-based 
WAAM according to the combination of WFR and TS. The 
bead width seems more sensitive to TS than WFR, while 
bead height is sensitive to both. If the 3D window maps in 
Fig. 19 are viewed normal to BW-WFR or BH-WFR plane 
along the TS axis, an analysis of variance can be conducted.

4.2  Analysis of variance

The analysis of variance (ANOVA) in this case study is to 
figure out the effects of the process parameters, such as WFR 
and TS, on the bead width and height for single-layer single 
beads. Figure 20 shows the effect of WFR and TS on bead 
geometry. The bead width is not significantly affected by 
WFR. It remains relatively constant as the WFR increases, 
as shown in Fig. 20a. It is also noted that a lower TS leads 
to an increase in the bead width. Figure 20b shows that the 
bead height increases as the WFR increases. The increasing 
rate of bead height at TS 10 cm/min (TS 10) is the largest 
among those at other TSs. In other words, the lower the TS, 
the larger the increasing rate of bead height when the WFR 
increases. It is also noted that a higher TS leads to a decrease 
in bead height. The aspect ratio (W/H) is defined as the ratio 
of bead width to bead height in this paper. It significantly 
decreases as the WFR increases, as shown in Fig. 20c.

Fig. 16  Comparison of the confidence intervals (blue) obtained from testing dataset and the predicted bead geometry (black) for normal bead a 
#17, b #26, c #35, d #44, and e #53
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4.3  Advantages of data‑driven UQ using 
experimental data

Data-driven UQ using experimental data has the following 
advantages. First, it can be verified and validated with real 
processes or parts, while it is a challenge in the simulation-
based UQ. In the data-driven UQ, the validation can be 
performed using real process signatures and responses. The 
process parameters such as WFR, TS, current, voltage, heat 
source power, power distribution, layer thickness, overlap-
ping distance, or substrate preheat [81] can be set by the 
operator and can be measured by sensors in a real time. 
Also, after manufacturing, the characteristics of parts, such 
as bead geometry, surface roughness, mechanical properties, 
electrical properties, chemical properties, or thermal proper-
ties, can be considered as responses [18].

Second, this method is more practical. Physics-based or 
physics-informed UQ has a lot of assumptions, so it is possi-
ble to ignore extreme cases. For example, the physics-based 
UQ assumes that all wire material in WAAM undergo the 
same melting and solidification process with constant den-
sity [8]. In the physics-informed UQ, the order of the model 
in a large-scale system is reduced to decrease the compu-
tational cost [9]. But, the order reduction of an original 
system and the assumptions for the reduced-order physics 
can lead to inaccuracies and uncertainties [9]. However, the 
data-driven UQ using the experimental data provides more 
reliable data [55]. Furthermore, it can provide remarkable 
insights by being applied to the in situ monitoring and the 
in situ process optimization [55].

Third, even though the PSPP relations have been estab-
lished in AM process in different researches [15, 20–22, 
55, 72, 82], the process-signature-structure–property-per-
formance  (PS2P2) relation in WAAM can be considered 
by the data-driven UQ using experimental data. The pro-
cess parameters significantly affect the microstructure and 
product qualities, and the microstructure features influence 
the mechanical properties [15, 55]. Also, the performances 
such as the distortion, internal stress, and failure of parts 

Fig. 17  Window map on WFR-TS plane for Inconel 625 GTAW-
based WAAM process. Normal beads are marked as blue circles, 
abnormal ones for lack of fusion as red rectangles, and abnormal ones 
for humping as red triangles

Fig. 18  Bead shape conditions in single-layer single-bead deposition. 
a Normal (or perfect), b lack of fusion, c humping, and d balling

Fig. 19  Window map in WFR-
TS-BW space and WFR-TS-BH 
for Inconel 625 GTAW-based 
WAAM process: a the mean of 
bead width and b bead height is 
fitted with a surface in terms of 
WFR and TS (see in color)
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are directly affected by the part properties [15]. During the 
WAAM processes, the signatures from process parameters 
have a high probability of not indicating the deterministic 
value that users set as a fixed value and can cause uncertain-
ties. Therefore, the  PS2P2 relation should be considered in 
experiment-based data-driven UQ.

4.4  Future research direction

The bead-on-plate study in this paper is based on the sin-
gle-layer single bead. It can be a preliminary investiga-
tion of the mechanical properties of multi-layer deposited 
parts. The process parameters to make the near-optimal 
shape of the bead width and height on the single-layer 
single bead can be used in manufacturing multi-layer 
single or multi-beads. In these cases, the process is more 
complicated, leading to causing more uncertainties. The 
uncertainties generated from the single-layer single-bead 
case can be propagated and accumulated as the layers 
are stacked [83]. Accordingly, there are several issues 
in defect formation, microstructures, residual stress, and 
mechanical properties. In this subsection, we will discuss 
the mechanical property and residual stress in terms of 
uncertainty quantification and propagation. In addition, 
the digital twin-driven qualification for WAAM will be 
briefly discussed.

Process parameters can significantly affect the bead 
shape, defects, and microstructures. The bead shape affects 
the surface roughness in the WAAM part, while the defects 
(e.g., pore and crack) and microstructures affect the mechan-
ical properties (e.g., hardness and tensile strength). Espe-
cially, for industrial applications, stringent requirements of 
mechanical properties in an additively manufactured part 
should be tested and satisfied. For this, the non-destruc-
tive evaluation (NDE) is highly demanding [84], since 
the destructive one is cost-intensive and time-consuming. 
However, the NDE knowledge for WAAM is significantly 
lacking, which is the main hindrance to its wide adoption 
in industry. Zhang et al. proposed a LSTM deep learning 
model for tensile strength prediction [85]. But, this model 
was developed for thermoplastic materials by destructive 
evaluation and did not investigate the uncertainties and its 
propagation. For the future work, the deep learning algo-
rithms (e.g., a recurrent neural network focusing on LSTM) 
will be integrated with the proposed data-driven UQ frame-
work for the process repeatability and part reproducibility 
in WAAM. By this, the data-driven UQ framework can 
expands its range from the bead geometry to the microstruc-
ture and mechanical properties of deposited parts with the 
NDE method.

The residual stress is developed by the non-equilibrium 
thermal cycles with the layer-by-layer stacking mechanism, 

Fig. 20  Analysis of variance to 
display the effect of WFR on 
a bead width, b height, and c 
aspect ratio, in different TSs
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resulting in distortion of the deposited part [34, 46]. The 
distortion is considered a defect that makes the parts achieve 
undesirable dimensional accuracy and mechanical properties 
[86]. To minimize the residual stress, several studies have 
been performed considering the different process param-
eters (e.g., heat inputs, interpass temperatures, and paths) 
[86–88]. However, the investigation of uncertainty quan-
tification, propagation, and management of residual stress 
in WAAM is rare. Nath et al. proposed physics-informed 
computational models of residual stress and deformation 
with uncertainty consideration, but the models are based on 
fused filament fabrication [89]. For future work in WAAM, 
the proposed data-driven UQ framework will be extended for 
measuring, modeling, and validating the residual stress. For 
this, the uncertainties in residual stress need to be identified 
and quantified from the real process signatures in WAAM. 
For example, the residual stress and its uncertainty can be 
estimated and quantified with respect to various process 
parameters (e.g., wire feed rate, travel speed, and layer 
thickness). Process signatures (e.g., arc power and thermal 
data) can be used for relating the process parameters to the 
uncertainties.

WAAM also aims to manufacture parts ready to be 
employed as end-user products; therefore, producing defect-
free parts is important. A digital twin (DT) technique can 
be developed using one or a combination of a mechanistic 
model, a sensing and control model, a statistical model, big 
data, or machine learning constructed virtually [90, 91]. The 
DTs of WAAM can provide process supervision, autono-
mous diagnostic process control, and process prediction 
[92]. They can extend the application of WAAM by achiev-
ing more repeatability in the processes, reproducibility in 
the deposited parts, and interoperability in the models [93]. 
Furthermore, the DT-driven qualification can save time 
and cost by minimizing trial and error, decreasing product 
defects, and reducing the product qualification path [82]. 
However, a generalized architecture of DT-driven qualifica-
tion for WAAM has not been established yet. Future work 
will be the DT-driven qualification for WAAM by extending 
the proposed data-driven UQ framework.

5  Conclusion

The UQ of the WAAM process has been a notable research 
subject. Especially, the data-driven approach in UQ is still in 
its infancy because it is cost- and time-intensive. This paper 
discussed a data-driven UQ framework for the WAAM pro-
cess, focusing on the experiment-based approach. The process 
parameters and real-time signatures during experiments of the 
WAAM are the uncertainty sources in the proposed frame-
work. This work demonstrates that this approach can be suc-
cessfully applied to the UQ study of the WAAM process using 

the IN625 wire and LCS substrate to reveal the variability of 
bead geometry caused by various uncertainty sources. GSA 
was carried out to show the sensitivity of the bead width and 
height to uncertainty sources, including WFR, TS, current, 
and voltage-related features. ANOVA was also performed in 
the case study, indicating that the bead width is negatively 
correlated with TS and that the bead height has a positive and 
negative correlation with WFR and TS, respectively. Since 
experiment-based process signatures were obtained during 
the WAAM process in real experiments, a  PS2P2 relation was 
established. Moreover, the V&V was also performed using 
experiment-based data. The proposed framework can be 
extended to the UQ study of other WAAM processes, and it 
can be a basis for DT-driven qualification.
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