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A B S T R A C T   

An effect of localized thermal strips on hypersonic boundary-layer instability is investigated using linear stability 
theory (LST). The linear evolution of Mack’s second mode is analyzed for a Mach 4.5 flat-plate boundary-layer 
with and without the strips. The validity of the LST analysis is assessed through the comparison of the results 
with implicit large eddy simulations (ILES) for selected cases. Parametric studies on the temperature intensity, 
length, and location of a single strip are performed to examine the influence of the strip on the second-mode 
instability. A reversal in the stabilizing and destabilizing effect according to the local streamwise surface pres
sure gradient induced by the strip is identified. The reversal point of the stabilizing/destabilizing effect is located 
in the vicinity of the location of the maximum growth rate of the second mode. The influence of three strips in a 
series arrangement is also analyzed for several combinations. The proper combination of strips, considering the 
reversal phenomenon, results in more significant stabilizing/destabilizing effects for a disturbance with a specific 
frequency. The overall effects are also evaluated and analyzed in terms of the envelope of the N-factor curves by 
carrying out the LST calculations for disturbances with various frequencies.   

1. Introduction 

The boundary-layer transition possesses a first-order impact on aero- 
thermodynamic performance and flight stability; therefore, under
standing and predicting a transition is essential for the design and 
analysis of hypersonic vehicles because a significant portion of their 
flight time is subject to the transitional boundary-layer regime [1]. The 
presence of a fully turbulent boundary-layer is typically assumed when 
designing a high-speed flight vehicle. However, aerodynamic heating on 
the vehicle’s surface is higher by eight times or more in the turbulent 
boundary-layer. Specifically, it could cause a severe thermal problem in 
the transitional regions at hypersonic Mach numbers [2]. The vehicle’s 
surface may be composed of various elements with materials of different 
thermal conductivities. Diversity in surface materials may cause a 
temperature variation along the streamwise direction during the flight, 
and this eventually affects the hypersonic boundary-layer instability and 
transition. Thus, it is necessary to predict a transition onset concerning 
streamwise variations of surface temperature for the optimal 
aero-thermodynamic design of a hypersonic vehicle. 

Several studies have analyzed the instability of the hypersonic 

boundary-layer with wall-temperature variations. The effect of heat 
transfer on the instability of the two-dimensional hypersonic boundary- 
layer was first studied by Mack [3]. The study showed that first-mode 
instabilities are destabilized by heating over the entire surface, 
whereas Mack’s second-mode instabilities, known as a dominant 
mechanism leading to the hypersonic boundary-layer transition, are 
destabilized by cooling. Subsequently, Masad and Abid [4] demon
strated the transition reversal phenomenon using the opposite effects of 
surface heating/cooling on the first/second-mode instabilities. Souda
kov et al. [5] focused on local surface temperature variations and per
formed a direct numerical simulation (DNS) of a hypersonic 
boundary-layer on a flat plate at Mach 6. They observed compression 
and expansion waves near the regions of positive and negative jumps in 
temperature, respectively. It was confirmed that these features essen
tially change the stability and receptivity process. The research on a 
single local heating/cooling strip on the hypersonic boundary-layer 
instability first began with experiments and numerical simulations 
performed by Soudakov. By carrying out the experiment and numerical 
simulation for a 7-degree half-angle cone at Mach 6, Sidorenko et al. [6] 
identified that the development of the second mode depends on the 
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upstream wall temperature, and observed that variation of the wall 
temperature significantly affects the transition location. Fedorov et al. 
[7] studied the localized surface heating or cooling effects on the sta
bility of the boundary layer for the same geometry but under different 
conditions. They examined two-dimensional disturbances propagating 
in a boundary layer passing over a region of cooling/heating of different 
intensities by conducting a wind-tunnel experiment and DNS, and 
observed that the localized cooling attenuates the second-mode ampli
tude and thus delays transition. Zhao et al. [8] also numerically inves
tigated the effect of a single local heating/cooling strip on a flat plate at 
Mach 6 and confirmed that the relative location of the strip to the syn
chronization point, where the mode F and mode S are synchronized, 
significantly affected the second mode instability. It was the first study 
to observe that the unstable mode is amplified when a heating strip is 
located upstream of the synchronization point, and the effect is reversed 
if the heating strip is placed downstream of it. Batista and Kuehl [9] 
performed a numerical study on a flared cone at Mach 6 for which the 
wall temperature varies along the downstream direction. Their results 
showed that wall heating immediately downstream of the first neutral 
point amplifies the second mode, whereas the heating further down
stream dampens it. Zhao and Dong [10] recently studied the effect of 
local surface thermal strips on Mack’s second mode in a supersonic and 
hypersonic boundary-layer. In his work, a systematic study for different 
control parameters is carried out based on an asymptotic analysis, and it 
is confirmed that a heating strip enhances/suppresses the second mode 
with frequencies below/above a critical value, while a cooling strip 
shows the opposite influences. They also observed that the critical fre
quency, which causes the reversed impacts of the thermal strip, is the 
most unstable frequency of Mack’s second mode, instead of the syn
chronization frequency found in some previous works for both rough
ness and temperature-strip. 

There have been many studies on the effects of heating/cooling strips 
on hypersonic boundary-layer instability. From several previous 
research [8–10], reversed effect depending on the location of the strip 
has been reported, and it is observed that the critical frequency corre
sponds to the most unstable frequency. However, a more detailed 
parametric study on a localized thermal strip is necessary to seek a 
comprehensive explanation of the reverse effect on the second mode 
instability. Furthermore, to the author’s knowledge, the combined 
impact of sequentially arranged multiple strips is rarely studied. In this 
study, the effect of a single local heating/cooling strip and its multiple 
combinations on Mack’s second-mode instability in a hypersonic 
boundary-layer is assessed by using spatial linear stability theory (LST). 
A parametric study on a single strip is carried out, and its influence on 
Mack’s second-mode instability obtained from LST analysis is validated 
using an implicit large eddy simulation (ILES) for a specific frequency. 
Based on the results of parametric studies for a single strip, several ar
rangements of multiple strips are considered, and their effects are 
examined. In addition, the potential capability of using thermal strips to 
control the amplification of boundary-layer instability and the transition 
onset is discussed, by evaluating N-factor envelopes. 

2. Method of analysis 

2.1. Linear stability analysis 

Typically, a spatial LST is employed to interpret the spatial evolution 
of a disturbance wave in the initial stages of the laminar-turbulent 
transition. It is well known that a linearly amplified disturbance wave 
eventually leads to a natural transition of boundary layer; therefore, the 
result obtained from LST can provide essential insights into the predic
tion of the transition locus. This study performs a two-dimensional 
spatial LST analysis for the hypersonic laminar boundary-layer. For 
the LST analysis, instantaneous flow variables ϕ = [ρ, u, v, w, T]T are 
decomposed into the mean and fluctuation components, as follows: 

ϕ = ϕ + ϕ̂(y)ei(αx+βz− ωt). (1) 

Here, ϕ is the steady mean flow, ϕ̂ is the disturbance amplitude, and 
α, β, and ω denote the streamwise and spanwise wavenumbers and the 
angular frequency of disturbance, respectively. LST equation can be 
derived by substituting the expression for flow variables of Eq. (1) into 
the Navier-Stokes equation, neglecting the nonlinear terms of distur
bances based on the small disturbance assumption, and applying a local 
parallel flow approximation for the mean flow. Because the nonlinear 
interactions among disturbances are neglected owing to the small 
disturbance assumption, the LST is valid for predicting the linear growth 
of an individual disturbance which is usually observed in the early stage 
of a natural transition of boundary layer. The LST used in the present 
study was developed by Park and Park [11], in which the analysis 
method was validated for the case of the Mach 4.5 flat-plate boundar
y-layer studied by Fedorov and Tumin [12]. 

Mack’s second mode is known as the dominant instability mecha
nism in two-dimensional and axisymmetric boundary-layers at hyper
sonic Mach numbers, and a two-dimensional disturbance is known to be 
the most unstable [13]. Thus, only two-dimensional disturbance waves, 
where the spanwise wavenumber β is zero are considered in this study. 
For the spatial LST analysis, the streamwise wavenumber α is set as an 
unknown eigenvalue of a complex number: 

α = αr + iαi, (2)  

where αr and αi are related to the phase speed and amplification rate of a 
disturbance wave, respectively. The local instability is determined by 
the spatial amplification-rate, which is defined as – αi. The positive 
amplification rate represents the growth of the amplitude of the wave as 
it propagates downstream, corresponding to the destabilization of the 
boundary layer. 

The overall amplification of a disturbance is characterized by the N- 
factor: 

N(x,ω) = −

∫ x1

x0

αi(x,ω)dx, (3)  

where x0 is the initial streamwise location, generally chosen as the first 
neutral point or determined from the receptivity procedure. In this 
study, the initial point is chosen to be the neutral point of the lower 
branch of the second mode for each frequency. Note that the N-factor is 
computed only for the unstable region of Mack’s second mode. The first 
mode that could be identified in the upstream region is not taken into 
account in the calculation of the N-factor. The N-factor can be used for 
semi-empirical prediction of the transition onset location based on the 
eN-method with a known critical N-factor [14]. Although the eN-method 
has been proven practically useful and reliable for predicting the tran
sition location of low-speed boundary-layers with appropriate correla
tions of the critical N-factor with experimental data, many recent studies 
also have shown that this method can be applied to hypersonic flows 
[15,16]. 

The steady mean flow data are required for the LST analysis. The 
commercial computational fluid dynamics software, ANSYS Fluent, is 
used to compute the mean flow. A density-based solver with a perfect 
gas assumption is chosen, and specific heat is assumed to be constant, cp 
= 1006.43 J/kg⋅K. The dynamic viscosity (μ) is determined by the three- 

Table 1 
Reference values for non-dimensionalization.  

Variable Reference value 

Velocity U*ref = U*∞ 

Pressure P*ref = P*∞ 

Length L*ref = 5.0 m 
Temperature T*ref =T*∞ 

Amplification rate α *ref = 1/δ*x = (ρ*∞U*∞/ μ*∞x*)1/2  
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coefficient model of the Sutherland law. The mean flow variables are 
non-dimensionalized using the reference values summarized in Table 1. 
Here, the superscript * denotes dimensional variables, and the subscripts 
ref and ∞ denote the reference value and freestream value, respectively. 
The temperature of the localized thermal strip is non-dimensionalized 
by the freestream temperature (T*∞). The local boundary-layer length 
scale (δ*x) is used to normalize the amplification rate at each streamwise 
location. 

The computational domain and grid used for the mean flow calcu
lation are depicted in Fig. 1. The streamwise extent and height of the 
domain are L = 1.26 and h = 0.4, respectively. The domain is extended 
to x = – 0.06 and x = 1.2 from the leading edge to upstream and 
downstream, respectively. The inlet boundary is set to be located at x = – 
0.06 to prevent any numerical problem possibly occurring at the leading 
edge. The grid is constructed with 2201 × 191 nodes clustered at the 
wall and leading edge. The grid is clustered so that more than 100 grid 
points are distributed within the boundary layer to ensure sufficient 
resolution. A pressure far-field boundary condition with freestream 
conditions is imposed on the inlet boundary, and a pressure outlet 
boundary condition is applied to the top and outlet boundaries. For 
bottom boundaries, no-slip and isothermal boundary conditions are 
applied to the plate wall (x > 0), and a symmetry condition is imposed 
upstream of the leading edge (x < 0). 

2.2. Implicit large eddy simulation 

Recently, studies that use high-fidelity numerical simulations such as 
DNS [5,7,8,17] or large eddy simulation (LES) [18–20], to investigate 
the instability and transition of hypersonic flows, are increasing. 
Although the LES is cost-effective compared to DNS [20], its result is 
dependent on grid resolution and the sub-grid scale (SGS) model 
employed. This shortcoming is more pronounced when resolving the 
details of the unsteady flow structure near the solid surface is of main 
interest (e.g. simulation of propagation of instability waves of small 
amplitude inside the boundary layers). Unlike the LES, which is widely 
used for a practical analysis of unsteady complex flow, the ILES provides 
a no-model approach, assuming that a numerical non-linear truncation 
error of a discretization scheme can describe an implicit SGS model [21]. 
Therefore, the ILES does not require an explicit SGS model. Instead, an 
adaptive local deconvolution method based on non-linear truncation 
errors simulates complex flow phenomena, such as shock and 
fluid-structure interaction. Thus, the governing equation employed in 
the ILES is identical to that of the well-resolved DNS, and it corresponds 
to an under-resolved DNS or pseudo-direct simulation [22]. Several 
previous studies confirmed the validity of the ILES for the prediction of 
the hypersonic boundary-layer transition [23,24]. 

In this study, the ILES is employed to simulate the linear amplifica
tion of the disturbance in the hypersonic boundary-layer. A two- 
dimensional ILES is conducted using the open-source finite-difference 
solver CFDWARP [25], which has been validated against several ca
nonical compressible flow cases. The growth rate computed using the 
LST is validated by comparing it to the results of the two-dimensional 

ILES. A combination of the Roe flux differencing scheme [26] and a 
monotonic upstream-centered scheme for conservation laws (MUSCL) 
approach [27] was used for the convective flux discretization. The 
primitive variables that comprise the intercell flux vector were calcu
lated using adaptive seventh/third order weighted essentially 
non-oscillatory (WENO) interpolation suggested by Balsara et al. [28] 

As shown in Fig. 2, the computational domain for the ILES is con
structed for the x = 0.2 – 0.7 and y = 0 – 0.0073 regions, where the 
streamwise extent is determined so that it includes an unstable region of 
Mack’s second mode of the specific frequency of interest. The domain 
grid has 4400 × 170 nodes clustered at the surface of the flat plate. More 
than 100 grids are distributed within the boundary layer to ensure suf
ficient resolution, and at least 20 grids are included within one wave
length of an instability wave of interest. The grid resolution in transverse 
and streamwise directions used in this study is almost same and 
approximately half of that used in the DNS studies, respectively. An 
unsteady disturbance of a specific frequency is imposed at the inlet (x =
0.2) using eigenvector profiles obtained from the spatial LST calculation. 
The initial amplitude of the disturbance is assumed to be 0.5% of the 
freestream velocity to examine the linear growth of the instability wave. 
Based on the result of the ILES, the amplification rate of the disturbance 
is computed as follows: 

− αi =
δ∗x
|ϕ′

|

d|ϕ
′

|

dx∗
, (4)  

where ϕ′ is the amplitude of a specific component of disturbance wave in 
the boundary layer. In this study, it is determined based on the 
maximum amplitude of the streamwise velocity component, which is 
extracted for the specified frequency via a fast Fourier transform. 

2.3. Problem description 

The same flow conditions studied by Fedorov and Tumin [12] are 
considered. The freestream conditions of the mean flow are M∞ = 4.5, 
T*∞ = 61.11 K, P*∞ = 1008.64 Pa, and Reunit = 1.0 × 107 m− 1. The 
flat-plate boundary-layer with adiabatic wall condition without any 
strip is designated as a baseline case for comparison. To evaluate the 
influence of local heating/cooling strips, the boundary layers over a 
single strip of various streamwise locations, lengths, and heating/cool
ing intensities are considered. Several combinations of strips in the 
sequential arrangement are also investigated for the same freestream 
conditions. Except for the strip section, the plate surface is assumed to be 
an isothermal wall at T*w = 272 K, which corresponds to the adiabatic 
wall temperature (T*ad). 

The evolution of an instability wave of a specific frequency is 
investigated for the various single/series of strip configurations. A 
normal(discrete) mode of two-dimensional disturbance (i.e., Mack sec
ond mode instability) with a non-dimensional frequency of F = 50 is 
chosen for both validation and parametric studies. The non-dimensional 
frequency (F) is defined as follows: 

Fig. 1. Computational grid for mean flow (Fluent).  
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F =
2πf ∗ν∗

∞
(
U∗

∞

)2 × 106, (5)  

where f* and ν∞* denote the dimensional frequency and kinematic 
viscosity of the freestream, respectively. In addition to the basic 
parameter studies for the single frequency, the overall effects of the strip 
are investigated by carrying out analyses for various frequencies in the 
range of F = 30 – 150. The influences of the strips on the amplification of 
second-mode instability are evaluated by comparing the results with the 
baseline case. 

Temperature distribution on the thermal strip, considered in this 
study, is schematically shown in Fig. 3. The temperature varies smoothly 
along the streamwise direction with the maximum/minimum tempera
ture at the midpoint of the strip. The distribution is designed to be 
similar in shape to the Walker and Greening symmetric hump geometry 
used in previous studies [11,29,30]. The temperature distribution along 
the strip is defined using Eq. (6): 

Ts = Tw + (Tc − Tw)⋅f (t) (6)  

where t = (x – xc)/b, 

f(t) =

{
1 − 3t2 + 2|t|3, if|t| ≤ 1

0, if|t| > 1
. 

The temperature distribution along the strip (Ts) is a function of the 
temperature at the center of the strip (Tc), the half-width of the strip (b), 
and the distance from the strip center (x – xc). The continuity of the 
temperature along the streamwise direction is ensured because the wall 
temperature (Tw) is assumed along the wall other than the strip regions. 

The configurations of the local thermal strips considered in the 
present study are summarized in Table 2. The baseline case without a 
strip is used as a reference for evaluating the effects of local temperature 
variations. Three strip lengths, represented as L1, L2, and L3, are 

examined. The strip length is determined based on a wavelength (λ) of a 
disturbance wave of frequency F = 50 propagating at freestream speed. 
The wavelength is computed as follows: 

λ =
U∗

∞

f ∗L∗
ref
. (7) 

It has to be noted that the actual phase speed of the instability wave 
is different from the freestream speed. The actual phase speed would be 
the phase speed of mode S in the region of interest and it is approxi
mately the speed corresponding to the range, where the relative Mach 
number is subsonic. It is not significantly different from the freestream 
speed, and the difference is smaller than the speed of sound compared to 
the freestream speed. Moreover, the actual phase speed of mode S varies 
with the streamwise location; not desirable for use as a fixed reference 
length scale. Therefore, for convenience, the wavelength of the artificial 
wave at a phase speed of freestream speed is chosen as the base length 
scale and is λ = 0.002 for F = 50. The strip length for the cases of L1, L2, 
and L3 is set as 5λ, 10λ, and 20λ, respectively. The locations of the strip 
center, which are denoted as x1, x2, and x3, are chosen based on the 
gradient of the amplification rate (–dαi/dx) of F = 50 for the baseline 
case. The x1, x2, and x3 are determined as xc = 0.28, 0.33, and 0.38, and 
they are corresponding to the location of positive, nearly zero, and 
negative values of the gradient of the amplification rate, respectively. 
According to a previous study [11], the synchronization point, where 
mode F and mode S for F = 50 are synchronized, is located at x = 0.2906. 
Therefore, x1 is the location relatively upstream from the synchroniza
tion point, and x2 and x3 are downstream locations from it. The influ
ence of the heating/cooling strength (Tc/Tw) is also investigated for 
several cases of heating (H1, H2) and cooling (C1, C2). The hea
ting/cooling intensities of H1, H2, C1, and C2 are set to be Tc/Tw = 1.4, 
1.6, 0.6, and 0.4, respectively. 

Fig. 2. Computational grid to analyze instability of disturbance (ILES).  

Fig. 3. Schematic of temperature distribution along surface.  

Table 2 
Cases of local heating/cooling strip.  

Case Location 
(xc) 

Length 
(Ls) 

Tc /Tw Info. 

baseline - - 1.0 Isothermal wall 
x1-H1-L1 0.28 5λ 1.4 Single 

strip x1-H1-L2 0.28 10λ 1.4 
x1-H1-L3 0.28 20λ 1.4 
x2-H1-L3 0.33 20λ 1.4 
x3-H1-L3 0.38 20λ 1.4 
x1-H2-L2 0.28 10λ 1.6 
x1-C1-L2 0.28 10λ 0.6 
x1-C1-L3 0.28 20λ 0.6 
x1-C2-L2 0.28 10λ 0.4 
combination A 0.28, 0.33, 

0.38 
20λ 0.6, 0.6, 

1.4 
Combination of 
strips 

combination B 0.28, 0.33, 
0.38 

20λ 1.4, 1.4, 
0.6  
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3. Results and discussion 

3.1. Validation 

The methods of mean flow calculation and stability analysis were 
validated for the baseline case. The mean flow data computed by using 
Fluent are compared with a similarity solution of the compressible 
boundary-layer equation obtained by using the method described in 
Ref. [31]. As shown in Fig. 4a, at x = 0.3, the velocity and temperature 
profiles are in good agreement with each other. The boundary-layer 
thickness δ, defined as u(δ) = 0.95, is depicted in Fig. 4b. There is no 
notable difference between the results from the two different methods. 

The analyses were carried out by using both the spatial LST and ILES 
for a disturbance of F = 50, and the resulting local amplification rates 
are compared in Fig. 5a. By keeping in mind that the stability results are 
very sensitive to the mean flow and analysis method employed, the 
amplification rates can be judged to be in reasonable agreement, 
although there are discernible discrepancies. One of the possible reasons 
for the difference, which is more pronounced in the upstream region, 
can be attributed to the non-parallel effect, which is not taken into ac
count in the LST analysis. In general, the non-parallel effect isknown to 
make the boundary layer more unstable in the upstream region. It has 
been observed from previous studies that the amplification rate obtained 
from DNS is greater than that of LST near the upstream regions [32–36]. 
However, in this study, the amplification rate of LST is found to be 
greater than that obtained from ILES. Further investigations of the re
sults confirm that there is a region of transient behavior in ILES, for 
which the imposed profiles of mean flow (similarity solution) and 
instability wave (eigensolution of LST) at the inflow boundary are 
gradually settled down and eventually adjusted to the solution of the 
Navier-Stokes equations. The adjustment of solution is expected to be 
the main origin of the discrepancies in the amplification rate observed in 
the upstream region. Considering these aspects of ILES, it can be 
concluded that the LST analysis provides fairly good results reflecting 
essential physics and are sufficient for the parametric study of qualita
tive changes. A comparison of N-factor curves is shown in Fig. 5b. The 
overall tendencies of the LST results are in good agreement with those 
from ILES for the linear amplification of the second mode instability, and 
the validity of the method of analysis is confirmed. 

3.2. Parametric study on a single strip 

A parametric study on a single strip is conducted for a discrete 
instability wave of F = 50. The effect of the three parameters described 
above (temperature intensity, location, and length) are investigated. The 
mean flow data is obtained by using Fluent, and the amplification rate at 
each streamwise location is computed via LST analysis. 

3.2.1. Temperature intensity 
The influence of the strip intensities is examined for fixed location 

and length of xc = 0.28 (= x1) and Ls = 10λ (= L2), respectively. Fig. 6 
shows the pressure contours around the heating/cooling strip. Two 
types of pressure waves are identified around the strip; one is a 
compression wave, and the other is an expansion wave. For the heating 
strip, a compression wave is formed in the vicinity of the leading edge, 
and an expansion wave is formed around its end. On the contrary, the 
order of the pressure waves is reversed in the cooling-strip case. The 
compression wave is induced when the wall temperature changes from 
relatively low- to high temperature (positive gradient), whereas an 
expansion wave is formed when the wall temperature changes from 
relatively high- to low temperature (negative gradient). This charac
teristic is identical to the result observed in the previous studies on a 
local single heating/cooling strip [5,7,8]. 

This phenomenon can also be observed from the resulting surface 
pressure distribution, as depicted in Fig. 7a. The strength of the pressure 
wave is proportional to the temperature intensity(|Tc – Tw|), and the 
preceding pressure wave exhibits a pressure variation greater than the 
following one. It is easily seen from Fig. 7a that the compression wave 
and the expansion wave are induced near the region of the positive and 
negative temperature gradient, respectively. The streamwise variation 
of boundary-layer thickness (δ) is plotted in Fig. 7b. The boundary-layer 
thickness around the heating strip is found to be greater than that of the 
baseline case, and the behavior is opposite for the cooling strip. From the 
viewpoint of the pressure wave, the boundary-layer thickness increases 
through the compression wave and decreases through the expansion 
wave. It is noteworthy that these characteristics of the mean flow are 
similar to those around a smooth hump [11,17,37–39]. According to the 
comparison of the mean flow, the heating strip is expected to have an 
impact on the boundary-layer instability, which is analogous to a 
smooth hump. 

The LST results of the amplification rate (– αi) and N-factor for 
various temperature intensities are compared in Fig. 8, together with 
those of the baseline. As depicted in Fig. 8a, the strip leads to both un
stable and stable effects on Mack’s second-mode instability. Compared 
to the baseline case, the instability wave undergoes an abrupt increase in 
the amplification rate (i.e., makes the boundary layer unstable) in the 
vicinity of the compression-wave region. Contrarily, a sharp decrease in 
the amplification rate is observed through the region of the expansion 
wave. Although the strip possesses both stable and unstable regions 
around it, the destabilization is more significant than that of the stabi
lization for the cases of the heating strips, whereas the cooling strips 
exhibit the opposite tendency. This is consistent with the observation 
that the strength of the preceding pressure wave is stronger than the 
following pressure wave. 

The corresponding N-factor curves are depicted in Fig. 8b, and the 
total influence of the strip is evaluated. There are noticeable differences 
between the presence of strips and baseline cases. As expected from the 

Fig. 4. Comparisons of mean flow profiles at x = 0.3 and distribution of boundary-layer thickness.  
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amplification rate results, the heating strips cause a destabilization ef
fect, and the cooling strips lead to a stabilization effect. Quantitatively, 
the amount of the overall stabilization effect of the cooling strip is 
greater than that of the destabilization effect of heating strips. As seen in 
Fig. 7a, the deviations of surface pressure induced by the cooling strips 
are greater than that by the heating strips, and this difference in pressure 
deviation is expected to be the reason for the difference in the overall 
stabilization/destabilization of Mack’s second-mode instability. The 
deviation of N-factor from the baseline case, which corresponds to ΔN 
(=N(x) − Nbaseline(x)), is compared in Fig. 8c. The local peak value of ΔN 

in the vicinity of the thermal strip for the cases of x1-C1-L2 and x1-H1- 
L2 are ΔNpeak = − 0.66 and 0.38, respectively. Thus, in terms of ΔNpeak, 
the stabilizing effect of the cooling strip is almost double the destabi
lizing effect of the heating strip for the same deviation of temperature. 
As the thermal intensity increases, the pressure waves around the strip 
intensify, and thus the corresponding overall stabilization/destabiliza
tion impact on the second-mode instability is strengthened. However, 
the changes in the N-factor with respect to heating/cooling intensity are 
found to be relatively small. The difference of ΔNpeak is only approxi
mately 0.11 between the two heating strip cases (i.e., x1-H1-L2 and x1- 

Fig. 5. Comparisons of stability analysis results for baseline case (F = 50).  

Fig. 6. Pressure contours around a single local strip (xc = 0.28, Ls = 10λ).  

Fig. 7. Comparisons of mean flow for different temperature intensities.  
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H2-L2). The corresponding value for the cooling strip cases is approxi
mately 0.16. Thus, it can be deduced from the results that the pressure 
wave induced by the streamwise temperature gradient is the major 
factor by which the thermal strip affects the hypersonic boundary-layer 
instability. 

It is easy to expect that the deviation of N-factor must remain con
stant where the presence of the thermal strip no longer affects the mean 
flow, i.e., the mean flow completely recovers to that of the baseline case. 
Naturally, the same mean flow yields the same growth rate, so the N- 
factor will change by the same amount, keeping the N-factor deviation at 
the same value. However, the results in Fig. 8c show that the N-factor 
deviation does not converge to a constant value downstream and still 
changes even in the vicinity of x ≈ 0.45. This result confirms that the 
mean flow around x = 0.45 is still different from the baseline case and is 
discernible enough to result in a different growth rate in LST analysis. 

We note that Fig. 8 presents the results of calculations carried out 
only up to the second neutral point (i.e., only unstable region) for all 
cases. While keeping in mind that the streamwise extent of the compu
tational domain is up to x = 1.2 (see Fig. 1), the mean flow and resulting 
growth rates were evaluated further in detail beyond the second neutral 
point. Although not shown here, in terms of resulting growth rates, it is 
identified that the influence of the thermal strip on mean flow remains 
even further downstream and that the mean flow does not completely 
recover to the baseline case up to the end of the computational domain. 
Beyond the second neutral point, however, the discrete mode of our 
interest enters a stable region so that the growth rate becomes a negative 
value and the N-factor starts to decrease (see Fig. 8a and 8b). By 
analyzing the data downstream of the second neutral point, it is revealed 
that the instability becomes less stable and more stable in the heating 
and cooling strip cases, respectively compared to the baseline case 
(Fig. 8a and 8c). Although the effect of the thermal strip on both mean 

flow and stability results appears along a very long streamwise extent, 
we hereafter mainly focus on analyzing the results for the unstable re
gion because a stable region is expected not to contribute to the occur
rence of the transition. From the viewpoint of amplification of instability 
wave and transition, the further increase in the N-factor deviation 
beyond the second neutral point can be regarded as a less-meaningful 
feature because the N-factor itself will decrease (Fig. 8b). 

3.2.2. Length 
The impact of the heating strip length is examined for several 

lengths: 5λ (= L1), 10λ (= L2), and 20λ (= L3). The wall pressure and the 
boundary-layer thickness along the streamwise direction are plotted in 
Fig. 9. The streamwise extents for the cases of L1, L2, and L3 are marked 
with a solid, dotted, and dashed line, respectively. The results of Fig. 9a 
show that the longer heating strip causes milder temperature and 
pressure gradients, and the distance between the strip center and the 
location of maximum pressure deviation also increases. As the distance 
between the strip center and the pressure-peak location increases, the 
pressure gradient at the strip center is reduced. Since Eq. (6) is used, a 
longer strip induces a smaller temperature gradient along the stream
wise direction, and this feature results in gradual pressure changes in 
longer streamwise extents for the mean flow. The pressure gradient near 
the leading edge of the strip is greater than that at the end, regardless of 
the strip length. Fig. 9b shows the distribution of boundary-layer 
thickness for three strip lengths. As the strip length increases, the 
maximum boundary-layer thickness increases. While the temperature 
distribution is symmetric with respect to the strip center, the location of 
the maximum deviation of boundary-layer thickness is formed slightly 
downstream from the strip center. As the strip length increases, the 
adverse pressure gradient and subsequent favorable pressure gradients 
weaken, and the pressure wave develops along the longer streamwise 

Fig. 8. Comparisons of stability analysis results for temperature intensity (F = 50).  

J. Park et al.                                                                                                                                                                                                                                     



Computers and Fluids 257 (2023) 105868

8

extent. These weak pressure gradients over a longer distance make the 
location of the peak deviation of boundary-layer thickness move further 
downstream. 

Fig. 10 shows the corresponding results of the stability analysis for 
three strip cases. As shown in Fig. 10a, as the heating strip’s length in
creases, a deviation of the amplification rate from the baseline case is 
observed in a broader region, and the local peak around the strip de
creases. The deviation of the amplification rate has a trend similar to the 
pressure distribution along the streamwise direction (see Fig. 9a). The 
changes in the amplification rate with respect to the strip length are 
more considerable in the region around the leading edge than the aft 
region of the strip. The overall destabilization effect of the heating strip 

is found to be more significant for the long strip as can be seen from 
Fig. 10b and 10c. In Fig. 10c, the deviation of N-factor (ΔN) is compared 
for different strip lengths. The longer strip exhibits a larger N-factor 
increment, and the case of the longest strip (x1-H1-L3) has the greatest 
local peak value (ΔNpeak) of 0.6. Thus, a long thermal strip has a more 
significant influence on the second mode instability. As discussed in the 
previous section, the deviation of the N-factor is still increasing even in 
the vicinity of the second neutral point (x ≈ 0.45). The longer the strip 
length, the greater the changes in the N-factor deviation. It seems nat
ural because as strip length increases, the influence of the strip on the 
change in the mean flow downstream would become stronger. As 
mentioned before, however, the continuous changes in the N-factor 

Fig. 9. Comparison of mean flow for different strip lengths.  

Fig. 10. Comparison of stability analysis results for different strip length (F = 50).  
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deviation within the stable region (i.e., beyond the second neutral point) 
is not a main concern of the present study. 

3.2.3. Location 
For a fixed intensity and length (H1-L3), a strip at three different 

locations (i.e., x1, x2, and x3) is examined, and the corresponding re
sults of mean flow are shown in Fig. 11. As discussed earlier, wall 
temperature variation induces compression waves in the vicinity of the 
leading edge, which makes the wall pressure and boundary-layer 
thickness increase around the upstream of the strip center. Similarly, 
the negative temperature gradient beyond the strip center results in a 
generation of expansion waves and a decrease in the deviation of 
boundary-layer thickness. As can be seen in Fig. 11a and 11b, no notable 
difference in the mean flow is identified depending on the location; the 
variations in the wall pressure and boundary-layer thickness possess 
similar trends to those mentioned in the previous sections. 

The results of the stability analysis for three locations are depicted in 
Fig. 12. There are noticeable differences in the amplification rate 
depending on the strip location (Fig. 12a). As consistent with the 
observation made in the preceding sections, in the case of location x1, 
the relatively strong upstream compression destabilizes the hypersonic 
boundary-layer, and the subsequent weak expansion yields stabilizing 
effects. On the other hand, in the case of the strip at x2, the influences of 
the streamwise compression and expansion on change in the growth rate 
are rather reduced. Moreover, in the case of the strip at x3, reversed 
effects appear for the same sequential pressure variation. In the vicinity 
of x3, the compression upstream of the strip stabilizes the instability 
wave, and the following expansion makes it unstable. 

To validate this reversed effect and ensure whether the LST analysis 
captures the essential physics properly, the ILES computation is carried 
out for the two extreme cases (x1-H1-L3 and x3-H1-L3). As plotted 
together in Fig. 12a and 12c, the amplification rate computed by the 
ILES exhibits similar qualitative trends compared to that of LST. This 
allows us to conjecture that the effect of the streamwise pressure 
gradient is reversed in the region where the streamwise gradient of the 
amplification rate is negative for the baseline case (i.e., the case of no 
strip). This implies that the heating strips can provide different in
fluences on the second-mode instability depending on its location, even 
though the changes in mean flow owing to the strip are subject to similar 
characteristics. The N-factor and its deviation obtained from the LST and 
ILES calculation are shown in Fig. 12d and 12e. From these results, it is 
confirmed again that the opposite influence emerges depending on the 
strip location. In the case of x1-H1-L3, the boundary-layer is locally 
destabilized by ΔNLST, peak = 0.59 and ΔNILES, peak = 0.53, whereas the 
x3-H1-L3 case produces the stabilization corresponding to ΔNLST, peak =

– 0.28 and ΔNILES, peak = – 0.38. In Fig. 12e, the case of x2-H1-L3 shows 
both stabilization and destabilization of the second mode instability. 

From these results, it is expected that the critical point where the effect 
of the thermal strip is reversed is located between x2 and x3. Although 
not shown here, through the results of additional calculations, the same 
reversal phenomenon was also confirmed for the cooling strip. Further 
downstream around and beyond the second neutral point, all the heating 
strip cases exhibit a less stable tendency than the baseline case, as 
observed before. 

The contour of pressure perturbation from the ILES results is shown 
in Fig. 13 for the baseline. The amplified pressure fluctuation exceeding 
a certain amplitude is discernible in the region of 0.35 < x < 0.5. The 
result shows the entire evolution, i.e., growth and decay, of the distur
bance of a specific frequency governed by the instability mechanism. In 
Fig. 14 and 15, the contours for pressure and temperature disturbances 
are compared for the cases of baseline, x1-H1-L3, and x3-H1-L3. The 
pressure disturbance along the wall-normal direction has a two peaks 
structure with a larger magnitude for the peak close to the wall and a 
nearly opposite phase between the two peaks (see Fig. 14). In addition, 
as can be seen in Fig. 15, the rope-like structure in the vicinity of the 
boundary-layer edge appears in the temperature disturbances. These 
features of the perturbation structure are typical characteristics of the 
second-mode instability and have been reported by many previous 
studies [7,40]. A comparison represents that the amplitude of pressure 
perturbation for the case of x1-H1-L3 becomes greater than that for the 
baseline case (see Fig. 14a and 14b), while it has been suppressed for the 
case of x3-H1-L3 (see Fig. 14c). The same tendency is also observed for 
the temperature perturbation in Fig. 15, which indicates that the effect 
of the strip is reversed depending on its location relative to a specific 
threshold point. 

The instantaneous pressure perturbation signals along the wall are 
compared in Fig. 16. The case of x1-H1-L3 attains the largest amplitude, 
whereas the case of x3-H1-L3 reaches the smallest amplitude (see 
Fig. 16a). In the case of x3-H1-L3, most of the delay or suppression in the 
disturbance amplitude is found to occur in the region over the strip; 
thus, the amplitude is smaller than that of the baseline case. This 
observation indicates that the compression in the streamwise direction 
(adverse pressure gradient), owing to the presence of the strip yields a 
stabilization effect for this case. After this stabilization region, a slight 
destabilization effect related to the streamwise expansion follows and it 
stimulates the growth of perturbation, which makes the amplitude tends 
to recover to that of the baseline case. Therefore, the ILES results 
confirm again that a thermal strip can lead to either a stabilization or 
destabilization effect, and its effect depends on the strip’s location. The 
results also indicate that the effect of the strip can be reversed as its 
location moves downstream beyond a certain critical point. 

It has been reported that the location of a smooth hump (roughness 
element) [17,37–39] or porous coating [41,42] relative to the syn
chronization point is a critical factor that determines the influence on 

Fig. 11. Comparison of mean flow for a strip at different locations.  
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Mack’s second-mode instability in hypersonic boundary-layers. Zhao 
et al. [8] also discussed the importance of the relative location of a single 
local heating/cooling strip to the synchronization point. According to a 

study of Park and Park [11], the synchronization point for the baseline 
case of present consideration is xsync ≈ 0.29. From the parametric study 
of the strip’s location, the threshold or critical point, where the reversal 
effect emerges, is found to be located between x2 and x3, i.e., 0.33 < xc 
< 0.38. To identify the reversal location of the thermal strip more in 
detail, several strip locations in the range of 0.28 < xc < 0.38 are 
additionally computed using the LST. The values of the deviation of 
N-factor at the second neutral point of the baseline case (xnp, 2nd ≈

0.435) are collected and plotted in Fig. 17. The reversal point is found to 
be xrev ~ 0.336, and this point is obviously different from the syn
chronization point. The reversal point (xrev) appears to be almost located 
at the midpoint of two neutral points and located further downstream 
than the synchronization point. Further investigation reveals that the 
reversal point is very close to the point where the growth rate of the 

Fig. 12. Comparison of stability analysis results for different locations (F = 50).  

Fig. 13. Contour of pressure perturbation for the baseline case (F = 50).  
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second mode becomes maximum (xgr, max ~ 0.3254) in the baseline case. 
From the results of the present study which are based on the spatial 
analysis, the reversal point is identified as in the vicinity of the location 
of the maximum growth rate, not the synchronization point. This result 
is somewhat consistent with the observation from the asymptotic anal
ysis with a temporal viewpoint carried out by Zhao and Dong [10]. Thus, 
the reversal point (xrev), where the opposite influence of the thermal 
strip on the second-mode instability occurs, is located near the 
maximum growth rate point rather than the synchronization point. 

As observed and discussed so far, the reversal point can be charac
terized by being slightly downstream of the location of the maximum 
growth rate. Based on the results of the parametric study, the relative 
location of the wall-temperature induced streamwise compression/ 
expansion to the reversal point is an important factor that determines 
the strip effect on Mack’s second-mode instability. 

3.3. Applications 

3.3.1. Combination of thermal strips 
Based on the results from the parametric study in the previous sec

tion, combinations of the strips, in which three strips are arranged in 
series, are examined. The same instability wave of F = 50 is considered. 
Two types of combinations, A and B, are designed to maximize the 
stabilizing and destabilizing effects on the instability wave, respectively. 
Both combinations comprise three strips with a length of 20λ (= L3) and 
thermal conditions are summarized in Table 2. Combination A consists 

Fig. 14. Contours of pressure perturbation (0.38 < x < 0.4).  

Fig. 15. Contours of temperature perturbation (0.38 < x < 0.4).  

Fig. 16. Comparison of pressure perturbation at wall (y = 0)  

Fig. 17. Deviation of N-factor at second neutral point of baseline case.  
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of two cooling strips of C1 and one heating strip of H1, in order, while 
combination B corresponds to the opposite composition. 

Comparisons of the resulting mean flow for the two combinations are 
presented in Fig. 18. The wall pressure distributions appear to be 
opposite each other while showing the same dependency on the tem
perature discussed in the previous sections (see Fig. 18a). The stream
wise variation of the boundary-layer thickness for each combination 
(Fig. 18b) shows a considerably different trend on the deviation with 
respect to the baseline case along streamwise direction. Because the first 
two strips located at x1 and x2 are the same thermal type and the sub
sequent strip is a different type, the streamwise compression or expan
sion is continued and extended in the region between x2 and x3. From 
the previous section, the effect of the pressure change is found to be 
reversed just before x3; therefore, these thermal strip arrangements are 
expected to maximize the influence on the growth of the instability 
wave. 

The stability analyses for the cases of two combinations are carried 
out, and the resulting amplification rates and N-factor curves are shown 
in Fig. 19. The ILES computation is also conducted to check the reli
ability of the LST, and the resulting amplification rates are compared 
together. As can be seen in Fig. 19a, combination A results in stabili
zation effects over most of the streamwise extent, as intended. However, 
a significant deviation between the two analysis methods is identified 
around the first cooling strip. The adjustment of the solution in the 
upstream region, discussed before, is considered the underlying reason 
for the discrepancy between LST and ILES results, and its impact seems 
to be much more pronounced in this case. Except for this region, the LST 
prediction still exhibits a similar trend to that of the ILES. Similarly, the 
overall destabilizing effect of combination B is observed in Fig. 19b, and 
the LST results exhibit fairly good agreements with the ILES. The results 
of Fig. 19 indicate that LST can properly predict the overall trends even 
for the cases of strip combinations. 

In the previous section, both LST and ILES predicted well the reversal 
phenomenon occurring between the locations of the second and third 
strips. Based on the LST results, the reversal point is xrev = 0.336, located 
relatively downstream of the synchronization point. Although the 
streamwise compression is present near the fore region of the third strip, 
because of the reversal phenomenon, the second mode becomes stable in 
the region of the third strip for combination A. Similarly, the reversal 
phenomenon is also observed in the corresponding region for combi
nation B. Thus, the critical point of reversal can be regarded as 
approximately xrev = 0.336 for the flow conditions and instability wave 
frequency studied. This observation confirms again that the reversal 
point is different from the synchronization point. We note that this 
phenomenon has been explored and investigated only for the unstable 
region of the second-mode instability with F = 50. 

The N-factor and its deviation from the baseline case (ΔN), 

calculated using the amplification rate from LST analysis, are compared 
in Fig. 19c and 19d. The results reveal that combinations A and B result 
in stabilization and destabilization effects compared to the baseline case. 
In terms of boundary-layer transition, it is expected that combination A 
can lead to a delay of the transition, whereas combination B can lead to 
early transition onset. This indicates that a designed array of thermal 
strips might be used as an active control methodology to control the 
transition location. From the other point of view, a non-uniformity of the 
wall-temperature distribution possibly causes a change in transition 
location in an undesirable direction, which eventually can result in the 
failure or loss of a hypersonic vehicle. 

3.3.2. Overall effects 
The N-factor curves of various frequencies for the cases with and 

without the heating/cooling strips are calculated and analyzed to eval
uate the overall effects of the strips. Two cases of the single strip and two 
cases of strip combination are considered for the investigation. The 
calculations are conducted for frequencies in the range of F = 30 – 150. It 
should be noted that the N-factor is calculated only for the unstable 
region of the second mode for each frequency. 

The cases of x1-C1-L3 and x1-H1-L3 are selected as representative 
cases for single-strip analyses, and the resulting N-factor curves are 
shown in Fig. 20. As shown in Fig. 20a, the N-factor envelope is identical 
to that of the baseline case in the far upstream. However, the envelope 
undergoes abrupt deviations in the vicinity of the strip and it increases 
rapidly in the region of the strip. This sudden destabilization region is 
caused by N-factor curves corresponding to frequencies suffering the 
reversal phenomenon. It has to be noted that the location of the critical 
point of the reversal phenomenon would vary with frequency, while the 
strip location is fixed. Thus, there are frequencies subjected to the 
reversal phenomenon for the specified strip location which results in the 
destabilization region in the N-factor envelope. However, the cooling 
strip also produces a region of stabilization downstream of the strip. An 
opposite behavior is observed in the case of the heating strip in Fig. 20b. 
The stabilizing effect, induced by the reversal phenomenon, occurs over 
the strip region, followed by a subsequent region of destabilizing effect 
downstream of the strip. In the region far downstream, it is seen from the 
Fig. 20 that the cooling and heating strips result in slightly higher and 
lower values of N-factor for the same frequency, respectively. It has been 
known from previous studies that entire-wall cooling and heating 
destabilize and stabilize the second mode in hypersonic boundary-layers 
[4,12,43], and it seems that the thermal strip causes similar influences 
on far downstream region. The analyses carried out in this study reveal 
that, regardless of the heating/cooling type, a localized temperature 
variation can cause both locally greater and smaller N-factor envelopes 
around the strip. Thus, the results imply that an appropriate arrange
ment of them can be considered to control the onset of transition. 

Fig. 18. Comparison of mean flow for strip combinations.  
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The overall influence of strip combinations is also examined. The N- 
factor envelopes are compared in Fig. 21 together with the baseline case. 
It can be seen from Fig. 21a that combination A, which was intended to 
stabilize the instability wave of F = 50, makes the boundary layer more 
unstable in the region of the first two cooling strips. The stabilization 
effect is attainable downstream of the two cooling strips. Subsequently, 
the envelope experiences an abrupt increase at approximately x = 0.5, 
representing the destabilization with an overshoot at around x = 0.6. 
This variation is attributed to the reversal phenomenon and the different 
thermal type assigned for the third strip. For combination A, where the 

cooling area is larger than the heating region, the envelope exhibits 
slightly greater(unstable) values compared to the baseline case in the far 
downstream region. (see Fig. 21a) Similar but opposite features are 
observed for combination B, as shown in Fig. 21b. The intended stabi
lizing/destabilizing effects on the N-factor envelope emerge only after 
the first two cooling/heating strips. The boundary layer is slightly 
destabilized/stabilized further downstream of the unstable region for 
combinations A and B, respectively. 

Regardless of the number of strips and their type, the hypersonic 
boundary-layer would experience both stabilizing and destabilizing 

Fig. 19. Comparison of stability analysis results for strip combinations (F = 50).  

Fig. 20. N-factor curves for a single heating/cooling strip (F = 30 – 150).  
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influences throughout the entire region. Therefore, selecting the loca
tions, thermal types, and intensities of thermal strips is crucial for 
achieving the desired control effectiveness on the boundary-layer tran
sition for a specific flow condition and configuration. 

4. Conclusion 

The effectiveness of heating/cooling strips on the evolution of 
second-mode instability was investigated for the hypersonic boundary- 
layer over a flat plate at M = 4.5. The influences of a single strip and 
combinations of them were investigated in detail. The LST results were 
compared with the ILES results for several selected cases to validate the 
analysis method. Fairly good agreements were confirmed in the general 
tendency and qualitative behavior of the amplification rates. The 
reversal of stabilization/destabilization effect according to wall 
temperature-induced streamwise compression and expansion was 
identified and discussed in terms of the location of the strip’s center 
relative to the reversal point. The following three conclusions are 
derived: 

(1) The compression and expansion in the streamwise direction are 
induced, owing to the wall-temperature variation. The flow experiences 
a series of compression and expansion sequentially around the thermal 
strip as passing over it. The compression and expansion are formed near 
the region of a positive and negative temperature gradient, respectively. 
Thus, the thermal type of strip (heating or cooling) determines the order 
of the compression or expansion. The compression or expansion formed 
near the leading edge of the strip is stronger than the one that follows. 
The change in the boundary-layer thickness around the heating strip 
possesses very similar characteristics to that formed around a smooth 
hump reported in previous studies. 

(2) The effect of the streamwise pressure gradient induced by a wall- 
temperature variation on the second-mode instability is reversed when 
the location of the strip is moved downstream beyond a certain 
threshold location. The streamwise compression formed upstream from 
the reversal point makes the instability wave unstable, whereas that 
formed downstream from this point causes the opposite effect. The 
reversal point is located downstream of the synchronization point and 
very close to the location of the maximum growth rate of the second- 
mode instability. This observation represents a consistent feature with 
that made in literature [10]. Thus, the reversal phenomenon can result 
in a different effect on the overall amplification even for the same strip, 
depending on the relative location between the strip’s center and the 
reversal point. 

(3) Analyses for a combination of three strips confirmed that 
applying a properly designed series of strips could achieve a more 

significant stabilizing or destabilizing effect on an instability wave with 
a specific frequency. The arrangement must be designed by keeping in 
mind the reversal phenomenon to achieve the desired effect on the 
second-mode instability. The analyses for various frequencies revealed 
that the thermal strips have both overall stabilizing and destabilizing 
effects depending on the relative location of the strip to the reversal 
point of disturbance with various frequencies, regardless of their type or 
the number of strips. The results imply that the selection of types and 
arrangements could play an important role in controlling the hypersonic 
boundary-layer instability and transition. The thermal strips can be 
considered as one of the candidates for active control strategies to 
control the transition onset for a specific design flow condition and 
configuration. 

The present study only sheds light on the physical relations of the 
thermal strips and the second-mode instability. Thus, for further un
derstanding of underlying physics and applying them to predict and 
control the transition, more realistic wall-temperature variations which 
can be encountered on the surface of the hypersonic flight vehicles, 
other instability modes, including the first mode or crossflow in
stabilities, and non-linear evolutions need to be studied in the future. 

CRediT authorship contribution statement 

Jaeyoung Park: Writing – original draft, Methodology, Formal 
analysis, Data curation, Investigation, Visualization. Prasanna Thogu
luva Rajendran: Formal analysis, Software, Methodology. Minwoo 
Kim: Methodology, Validation. Jiseop Lim: Methodology. Solkeun 
Jee: Supervision, Funding acquisition. Donghun Park: Conceptualiza
tion, Software, Writing – review & editing, Supervision, Funding 
acquisition. 

Declaration of Competing Interest 

The authors declare that there are no competing interests that have 
influenced this work. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This work was supported by the National Research Foundation of 
Korea (NRF) grant funded by the Korean government 

Fig. 21. N-factor curves for combinations of heating/cooling strips.  

J. Park et al.                                                                                                                                                                                                                                     



Computers and Fluids 257 (2023) 105868

15

(2020R1C1C101318512). This work was also supported by the National 
Research Foundation of Korea (NRF) grant funded by the Ministry of 
Science and ICT (MIST) of the Korean government (NRF- 
2017M1A3A3A02016810). 

References 

[1] Johnson H, Candler G. Hypersonic boundary layer stability analysis using PSE- 
Chem. In: 35th AIAA Fluid Dynamics Conference and Exhibit; 2005. https://doi. 
org/10.2514/6.2005-5023. 

[2] Van Driest E. Investigation of laminar boundary layer in compressible fluids using 
the Crocco method. NACA Tech 1952. https://digital.library.unt.edu/ark: 
/67531/metadc56237/. 

[3] Mack L. Boundary-layer linear stability theory. AGARD Rep. 709. 1984, https:// 
apps.dtic.mil/sti/citations/ADP004046. 

[4] Masad J, Abid R. On transition in supersonic and hypersonic boundary layers. 
International journal of engineering science 1995;33(13):1893–919. https://doi. 
org/10.1016/0020-7225(95)00046-Z. 

[5] Soudakov V, Egorov I, Fedorov A. Numerical simulation of receptivity of a 
hypersonic boundary layer over a surface with temperature jump. In: 6th European 
Symposium on Aerothermodynamics for Space Vehicles; 2009. https://ui.adsabs. 
harvard.edu/abs/2009ESASP.659E..66S/abstract. 

[6] Sidorenko A, Gromyko Y, Bountin D, Polivanov P, Maslov A. Effect of the local wall 
cooling/heating on the hypersonic boundary-layer stability and transition. Progress 
in Flight Physics 2015;7:549–68. https://doi.org/10.1051/eucass/201507549. 

[7] Fedorov A, Soudakov V, Egorov I, Sidorenko A. High-speed boundary-layer 
stability on a cone with localized wall heating or cooling. AIAA J 2015;53(9): 
2512–24. https://doi.org/10.2514/1.J053666. 

[8] Zhao R, Wen C, Tian X, Long T, Yuan W. Numerical simulation of local wall heating 
and cooling effect on the stability of a hypersonic boundary layer. International 
Journal of Heat and Mass Transfer 2018;121:986–98. https://doi.org/10.1016/j. 
ijheatmasstransfer.2018.01.054. 

[9] Batista A, Kuehl J. Local wall temperature effects on the second-mode instability. 
Journal of Spacecraft and Rockets 2020;57(3):580–95. https://doi.org/10.2514/1. 
A34620. 

[10] Zhao L, Dong M. Effect of surface temperature strips on the evolution of supersonic 
and hypersonic Mack modes: Asymptotic theory and numerical results. Physical 
Review Fluids 2022;7(5):053901. https://doi.org/10.1103/ 
PhysRevFluids.7.053901. 

[11] Park D, Park S. Study of effect of a smooth hump on hypersonic boundary layer 
instability. Theoretical and Computational Fluid Dynamics 2016;30(6):543–63. 
https://doi.org/10.1007/s00162-016-0396-7. 

[12] Fedorov A, Tumin A. High-speed boundary-layer instability: old terminology and a 
new framework. AIAA J 2011;49(8):1647–57. https://doi.org/10.2514/1. 
J050835. 

[13] Kendall J. Wind tunnel experiments relating to supersonic and hypersonic 
boundary-layer transition. AIAA J 1975;13(3):290–9. https://doi.org/10.2514/ 
3.49694. 

[14] Jaffe N, Okamura T, Smith A. Determination of spatial amplification factors and 
their application to predicting transition. AIAA J 1970;8(2):301–8. https://doi. 
org/10.2514/3.5660. 

[15] Johnson H, Seipp T, Candler G. Numerical study of hypersonic reacting boundary 
layer transition on cones. Physics of Fluids 1998;10(10):2676–85. https://doi.org/ 
10.1063/1.869781. 

[16] Johnson H, Candler G. Analysis of Laminar-Turbulent Transition in Hypersonic 
Flight Using PSE-Chem. In: 36th AIAA Fluid Dynamics Conference and Exhibit; 
2006. https://doi.org/10.2514/6.2006-3057. 

[17] Fong K, Wang X, Zhong X. Numerical simulation of roughness effect on the stability 
of a hypersonic boundary layer. Computers & Fluids 2014;96:350–67. https://doi. 
org/10.1016/j.compfluid.2014.01.009. 

[18] Kim M, Lim J, Kim S, Jee S, Park J, Park D. Large-eddy simulation with parabolized 
stability equations for turbulent transition using OpenFOAM. Computers & Fluids 
2019;189:108–17. https://doi.org/10.1016/j.compfluid.2019.04.010. 

[19] Lim J, Kim M, Park J, Kim T, Jee S, Park D. Simulation of hypersonic boundary 
layer on porous surfaces using OpenFOAM. Computers & Fluids 2022;240:105437. 
https://doi.org/10.1016/j.compfluid.2022.105437. 

[20] Lim J, Kim M, Kim S, Jee S, and Park D. PSE-Coupled LES Method for Turbulent 
Transition in Compressible Boundary Layer. In: AIAA SCITECH 2022 Forum 2022, 
10.2514/6.2022-0476. 

[21] Boris J. On large eddy simulation using subgrid turbulence models Comment 1. In: 
Whither turbulence? Turbulence at the crossroads; 1990. https://doi.org/10.1007/ 
3-540-52535-1_53. 

[22] Lesieur M, Metais O. New trends in large-eddy simulations of turbulence. Annual 
review of fluid mechanics 1996;28(1):45–82. https://www.annualreviews.org/ 
doi/pdf/10.1146/annurev.fl.28.010196.000401. 

[23] Tufts M, Bisek N, Kimmel R. Implicit Large-Eddy Simulation of Discrete Roughness 
Boundary-Layer Transition with Added Perturbations. In: AIAA Aviation 2019 
Forum; 2019. https://doi.org/10.2514/6.2019-2967. 

[24] Li C. A compressible solver for the laminar-turbulent transition in natural 
convection with high temperature differences using implicit large eddy simulation. 
International Communications in Heat and Mass Transfer 2020;117:104721. 
https://doi.org/10.1016/j.icheatmasstransfer.2020.104721. 

[25] Parent B. Positivity-preserving dual time stepping schemes for gas dynamics. 
Journal of Computational Physics 2018;361:391–411. https://doi.org/10.1016/j. 
jcp.2018.01.046. 

[26] Roe P. Approximate Riemann solvers, parameter vectors, and difference schemes. 
Journal of computational physics 1981;43(2):357–72. https://doi.org/10.1016/ 
0021-9991(81)90128-5. 

[27] Anderson W, Thomas J, Van Leer B. Comparison of finite volume flux vector 
splittings for the Euler equations. AIAA J 1986;24(9):1453–60. https://doi.org/ 
10.2514/3.9465. 

[28] Balsara D, Garain S, Shu C. An efficient class of WENO schemes with adaptive 
order. Journal of Computational Physics 2016;326:780–804. https://doi.org/ 
10.1016/j.jcp.2016.09.009. 

[29] Nayfeh A, Ragab S, Al-Maaitah A. Effect of bulges on the stability of boundary 
layers. The Physics of fluids 1988;31(4):796–806. https://doi.org/10.1063/ 
1.866815. 

[30] Masad J, Iyer V. Transition prediction and control in subsonic flow over a hump. 
Physics of Fluids 1994;6(1):313–27. https://doi.org/10.1063/1.868086. 

[31] Iyer V, Harris J. Computation of three-dimensional compressible boundary layers 
to fourth-order accuracy on wings and fuselages. In: 27th Aerospace Sciences 
Meeting; 1989. https://doi.org/10.2514/6.1989-130. 

[32] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 1. 
Wave structures and interactions. Journal of Fluid Mechanics 2003;488:31–78. 
https://doi.org/10.1017/S0022112003004786. 

[33] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 2. 
Receptivity to free-stream sound. Journal of Fluid Mechanics 2003;488:79–121. 
https://doi.org/10.1017/S0022112003004798. 

[34] Tumin A, Zhong X, Zhong X. Numerical simulation and theoretical analysis of 
perturbations in hypersonic boundary layers. AIAA J 2011;49(3):463–71. https:// 
doi.org/10.2514/1.J050431. 

[35] Wang X, Zhong X. Effect of wall perturbations on the receptivity of a hypersonic 
boundary layer. Physics of fluids 2009;21(4):044101. https://doi.org/10.1063/ 
1.3103880. 

[36] Wang X, Zhong X, Ma Y. Response of a hypersonic boundary layer to wall blowing- 
suction. AIAA J 2011;49(7):1336–53. https://doi.org/10.2514/1.J050173. 

[37] Park D, Park S. Influence of two-dimensional smooth humps on linear and non- 
linear instability of a supersonic boundary layer. Computers & Fluids 2013;79: 
140–9. https://doi.org/10.1016/j.compfluid.2013.03.018. 

[38] Park D, Park S. Linear and non-linear stability analysis of incompressible boundary 
layer over a two-dimensional hump. Computers & Fluids 2013;73:80–96. https:// 
doi.org/10.1016/j.compfluid.2012.12.007. 

[39] Fong K, Wang X, Zhong X. Parametric study on stabilization of hypersonic 
boundary layer waves using 2-D surface roughness. In: 53rd AIAA Aerospace 
Sciences Meeting; 2015. https://doi.org/10.2514/6.2015-0837. 

[40] Egorov I, Fedorov A, Soudakov V. Direct numerical simulation of disturbances 
generated by periodic suction-blowing in a hypersonic boundary layer. Theoretical 
and Computational Fluid Dynamics 2006;20(1):41–54. https://doi.org/10.1007/ 
s00162-005-0001-y. 

[41] Wang X, Zhong X. The stabilization of a hypersonic boundary layer using local 
sections of porous coating. Physics of fluids 2012;24(3):034105. https://doi.org/ 
10.1063/1.3694808. 

[42] Wang X, Zhong X. Role of the synchronization point on boundary layer 
stabilization using porous coating. In: 38th Fluid Dynamics Conference and 
Exhibit; 2008. https://doi.org/10.2514/6.2008-4382. 

[43] Chang C, Kline H, Li F. Wall Cooling Effect on High-Enthalpy Supersonic Modes 
over a Cone. AIAA J 2021;59(10):3831–44. https://doi.org/10.2514/1.J060161. 

J. Park et al.                                                                                                                                                                                                                                     

https://doi.org/10.2514/6.2005-5023
https://doi.org/10.2514/6.2005-5023
https://digital.library.unt.edu/ark:/67531/metadc56237/
https://digital.library.unt.edu/ark:/67531/metadc56237/
https://apps.dtic.mil/sti/citations/ADP004046
https://apps.dtic.mil/sti/citations/ADP004046
https://doi.org/10.1016/0020-7225(95)00046-Z
https://doi.org/10.1016/0020-7225(95)00046-Z
https://ui.adsabs.harvard.edu/abs/2009ESASP.659E..66S/abstract
https://ui.adsabs.harvard.edu/abs/2009ESASP.659E..66S/abstract
https://doi.org/10.1051/eucass/201507549
https://doi.org/10.2514/1.J053666
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.054
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.054
https://doi.org/10.2514/1.A34620
https://doi.org/10.2514/1.A34620
https://doi.org/10.1103/PhysRevFluids.7.053901
https://doi.org/10.1103/PhysRevFluids.7.053901
https://doi.org/10.1007/s00162-016-0396-7
https://doi.org/10.2514/1.J050835
https://doi.org/10.2514/1.J050835
https://doi.org/10.2514/3.49694
https://doi.org/10.2514/3.49694
https://doi.org/10.2514/3.5660
https://doi.org/10.2514/3.5660
https://doi.org/10.1063/1.869781
https://doi.org/10.1063/1.869781
https://doi.org/10.2514/6.2006-3057
https://doi.org/10.1016/j.compfluid.2014.01.009
https://doi.org/10.1016/j.compfluid.2014.01.009
https://doi.org/10.1016/j.compfluid.2019.04.010
https://doi.org/10.1016/j.compfluid.2022.105437
https://doi.org/10.2514/6.2022-0476
https://doi.org/10.1007/3-540-52535-1_53
https://doi.org/10.1007/3-540-52535-1_53
https://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.28.010196.000401
https://www.annualreviews.org/doi/pdf/10.1146/annurev.fl.28.010196.000401
https://doi.org/10.2514/6.2019-2967
https://doi.org/10.1016/j.icheatmasstransfer.2020.104721
https://doi.org/10.1016/j.jcp.2018.01.046
https://doi.org/10.1016/j.jcp.2018.01.046
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.2514/3.9465
https://doi.org/10.2514/3.9465
https://doi.org/10.1016/j.jcp.2016.09.009
https://doi.org/10.1016/j.jcp.2016.09.009
https://doi.org/10.1063/1.866815
https://doi.org/10.1063/1.866815
https://doi.org/10.1063/1.868086
https://doi.org/10.2514/6.1989-130
https://doi.org/10.1017/S0022112003004786
https://doi.org/10.1017/S0022112003004798
https://doi.org/10.2514/1.J050431
https://doi.org/10.2514/1.J050431
https://doi.org/10.1063/1.3103880
https://doi.org/10.1063/1.3103880
https://doi.org/10.2514/1.J050173
https://doi.org/10.1016/j.compfluid.2013.03.018
https://doi.org/10.1016/j.compfluid.2012.12.007
https://doi.org/10.1016/j.compfluid.2012.12.007
https://doi.org/10.2514/6.2015-0837
https://doi.org/10.1007/s00162-005-0001-y
https://doi.org/10.1007/s00162-005-0001-y
https://doi.org/10.1063/1.3694808
https://doi.org/10.1063/1.3694808
https://doi.org/10.2514/6.2008-4382
https://doi.org/10.2514/1.J060161

	Effect of Local Thermal Strips on Hypersonic Boundary-Layer Instability
	1 Introduction
	2 Method of analysis
	2.1 Linear stability analysis
	2.2 Implicit large eddy simulation
	2.3 Problem description

	3 Results and discussion
	3.1 Validation
	3.2 Parametric study on a single strip
	3.2.1 Temperature intensity
	3.2.2 Length
	3.2.3 Location

	3.3 Applications
	3.3.1 Combination of thermal strips
	3.3.2 Overall effects


	4 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


