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An effect of localized thermal strips on hypersonic boundary-layer instability is investigated using linear stability
theory (LST). The linear evolution of Mack’s second mode is analyzed for a Mach 4.5 flat-plate boundary-layer
with and without the strips. The validity of the LST analysis is assessed through the comparison of the results
with implicit large eddy simulations (ILES) for selected cases. Parametric studies on the temperature intensity,
length, and location of a single strip are performed to examine the influence of the strip on the second-mode
instability. A reversal in the stabilizing and destabilizing effect according to the local streamwise surface pres-
sure gradient induced by the strip is identified. The reversal point of the stabilizing/destabilizing effect is located
in the vicinity of the location of the maximum growth rate of the second mode. The influence of three strips in a
series arrangement is also analyzed for several combinations. The proper combination of strips, considering the
reversal phenomenon, results in more significant stabilizing/destabilizing effects for a disturbance with a specific
frequency. The overall effects are also evaluated and analyzed in terms of the envelope of the N-factor curves by

carrying out the LST calculations for disturbances with various frequencies.

1. Introduction

The boundary-layer transition possesses a first-order impact on aero-
thermodynamic performance and flight stability; therefore, under-
standing and predicting a transition is essential for the design and
analysis of hypersonic vehicles because a significant portion of their
flight time is subject to the transitional boundary-layer regime [1]. The
presence of a fully turbulent boundary-layer is typically assumed when
designing a high-speed flight vehicle. However, aerodynamic heating on
the vehicle’s surface is higher by eight times or more in the turbulent
boundary-layer. Specifically, it could cause a severe thermal problem in
the transitional regions at hypersonic Mach numbers [2]. The vehicle’s
surface may be composed of various elements with materials of different
thermal conductivities. Diversity in surface materials may cause a
temperature variation along the streamwise direction during the flight,
and this eventually affects the hypersonic boundary-layer instability and
transition. Thus, it is necessary to predict a transition onset concerning
streamwise variations of surface temperature for the optimal
aero-thermodynamic design of a hypersonic vehicle.

Several studies have analyzed the instability of the hypersonic
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boundary-layer with wall-temperature variations. The effect of heat
transfer on the instability of the two-dimensional hypersonic boundary-
layer was first studied by Mack [3]. The study showed that first-mode
instabilities are destabilized by heating over the entire surface,
whereas Mack’s second-mode instabilities, known as a dominant
mechanism leading to the hypersonic boundary-layer transition, are
destabilized by cooling. Subsequently, Masad and Abid [4] demon-
strated the transition reversal phenomenon using the opposite effects of
surface heating/cooling on the first/second-mode instabilities. Souda-
kov et al. [5] focused on local surface temperature variations and per-
formed a direct numerical simulation (DNS) of a hypersonic
boundary-layer on a flat plate at Mach 6. They observed compression
and expansion waves near the regions of positive and negative jumps in
temperature, respectively. It was confirmed that these features essen-
tially change the stability and receptivity process. The research on a
single local heating/cooling strip on the hypersonic boundary-layer
instability first began with experiments and numerical simulations
performed by Soudakov. By carrying out the experiment and numerical
simulation for a 7-degree half-angle cone at Mach 6, Sidorenko et al. [6]
identified that the development of the second mode depends on the
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upstream wall temperature, and observed that variation of the wall
temperature significantly affects the transition location. Fedorov et al.
[7] studied the localized surface heating or cooling effects on the sta-
bility of the boundary layer for the same geometry but under different
conditions. They examined two-dimensional disturbances propagating
in a boundary layer passing over a region of cooling/heating of different
intensities by conducting a wind-tunnel experiment and DNS, and
observed that the localized cooling attenuates the second-mode ampli-
tude and thus delays transition. Zhao et al. [8] also numerically inves-
tigated the effect of a single local heating/cooling strip on a flat plate at
Mach 6 and confirmed that the relative location of the strip to the syn-
chronization point, where the mode F and mode S are synchronized,
significantly affected the second mode instability. It was the first study
to observe that the unstable mode is amplified when a heating strip is
located upstream of the synchronization point, and the effect is reversed
if the heating strip is placed downstream of it. Batista and Kuehl [9]
performed a numerical study on a flared cone at Mach 6 for which the
wall temperature varies along the downstream direction. Their results
showed that wall heating immediately downstream of the first neutral
point amplifies the second mode, whereas the heating further down-
stream dampens it. Zhao and Dong [10] recently studied the effect of
local surface thermal strips on Mack’s second mode in a supersonic and
hypersonic boundary-layer. In his work, a systematic study for different
control parameters is carried out based on an asymptotic analysis, and it
is confirmed that a heating strip enhances/suppresses the second mode
with frequencies below/above a critical value, while a cooling strip
shows the opposite influences. They also observed that the critical fre-
quency, which causes the reversed impacts of the thermal strip, is the
most unstable frequency of Mack’s second mode, instead of the syn-
chronization frequency found in some previous works for both rough-
ness and temperature-strip.

There have been many studies on the effects of heating/cooling strips
on hypersonic boundary-layer instability. From several previous
research [8-10], reversed effect depending on the location of the strip
has been reported, and it is observed that the critical frequency corre-
sponds to the most unstable frequency. However, a more detailed
parametric study on a localized thermal strip is necessary to seek a
comprehensive explanation of the reverse effect on the second mode
instability. Furthermore, to the author’s knowledge, the combined
impact of sequentially arranged multiple strips is rarely studied. In this
study, the effect of a single local heating/cooling strip and its multiple
combinations on Mack’s second-mode instability in a hypersonic
boundary-layer is assessed by using spatial linear stability theory (LST).
A parametric study on a single strip is carried out, and its influence on
Mack’s second-mode instability obtained from LST analysis is validated
using an implicit large eddy simulation (ILES) for a specific frequency.
Based on the results of parametric studies for a single strip, several ar-
rangements of multiple strips are considered, and their effects are
examined. In addition, the potential capability of using thermal strips to
control the amplification of boundary-layer instability and the transition
onset is discussed, by evaluating N-factor envelopes.

2. Method of analysis
2.1. Linear stability analysis

Typically, a spatial LST is employed to interpret the spatial evolution
of a disturbance wave in the initial stages of the laminar-turbulent
transition. It is well known that a linearly amplified disturbance wave
eventually leads to a natural transition of boundary layer; therefore, the
result obtained from LST can provide essential insights into the predic-
tion of the transition locus. This study performs a two-dimensional
spatial LST analysis for the hypersonic laminar boundary-layer. For
the LST analysis, instantaneous flow variables ¢ = [p, u, v, w, 71T are
decomposed into the mean and fluctuation components, as follows:
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Here, ¢ is the steady mean flow, # is the disturbance amplitude, and
a, B, and w denote the streamwise and spanwise wavenumbers and the
angular frequency of disturbance, respectively. LST equation can be
derived by substituting the expression for flow variables of Eq. (1) into
the Navier-Stokes equation, neglecting the nonlinear terms of distur-
bances based on the small disturbance assumption, and applying a local
parallel flow approximation for the mean flow. Because the nonlinear
interactions among disturbances are neglected owing to the small
disturbance assumption, the LST is valid for predicting the linear growth
of an individual disturbance which is usually observed in the early stage
of a natural transition of boundary layer. The LST used in the present
study was developed by Park and Park [11], in which the analysis
method was validated for the case of the Mach 4.5 flat-plate boundar-
y-layer studied by Fedorov and Tumin [12].

Mack’s second mode is known as the dominant instability mecha-
nism in two-dimensional and axisymmetric boundary-layers at hyper-
sonic Mach numbers, and a two-dimensional disturbance is known to be
the most unstable [13]. Thus, only two-dimensional disturbance waves,
where the spanwise wavenumber f is zero are considered in this study.
For the spatial LST analysis, the streamwise wavenumber « is set as an
unknown eigenvalue of a complex number:

a=a,+iu, 2

where a; and ¢; are related to the phase speed and amplification rate of a
disturbance wave, respectively. The local instability is determined by
the spatial amplification-rate, which is defined as — a;. The positive
amplification rate represents the growth of the amplitude of the wave as
it propagates downstream, corresponding to the destabilization of the
boundary layer.

The overall amplification of a disturbance is characterized by the N-
factor:

N, 0) = — / ", ), 3)

X0

where X is the initial streamwise location, generally chosen as the first
neutral point or determined from the receptivity procedure. In this
study, the initial point is chosen to be the neutral point of the lower
branch of the second mode for each frequency. Note that the N-factor is
computed only for the unstable region of Mack’s second mode. The first
mode that could be identified in the upstream region is not taken into
account in the calculation of the N-factor. The N-factor can be used for
semi-empirical prediction of the transition onset location based on the
eN-method with a known critical N-factor [14]. Although the eN-method
has been proven practically useful and reliable for predicting the tran-
sition location of low-speed boundary-layers with appropriate correla-
tions of the critical N-factor with experimental data, many recent studies
also have shown that this method can be applied to hypersonic flows
[15,16].

The steady mean flow data are required for the LST analysis. The
commercial computational fluid dynamics software, ANSYS Fluent, is
used to compute the mean flow. A density-based solver with a perfect
gas assumption is chosen, and specific heat is assumed to be constant, c,
=1006.43 J/kg-K. The dynamic viscosity () is determined by the three-

Table 1
Reference values for non-dimensionalization.

Variable Reference value
Velocity Urrer = U*
Pressure Prer = P¥
Length L*es = 5.0 m
Temperature T*ref =T*

Amplification rate @ *rof = 1/6% = (p* U o/ ¥ oox*)/?
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coefficient model of the Sutherland law. The mean flow variables are
non-dimensionalized using the reference values summarized in Table 1.
Here, the superscript * denotes dimensional variables, and the subscripts
ref and oo denote the reference value and freestream value, respectively.
The temperature of the localized thermal strip is non-dimensionalized
by the freestream temperature (T*,,). The local boundary-layer length
scale (6%,) is used to normalize the amplification rate at each streamwise
location.

The computational domain and grid used for the mean flow calcu-
lation are depicted in Fig. 1. The streamwise extent and height of the
domain are L = 1.26 and h = 0.4, respectively. The domain is extended
to x = — 0.06 and x = 1.2 from the leading edge to upstream and
downstream, respectively. The inlet boundary is set to be located at x =—
0.06 to prevent any numerical problem possibly occurring at the leading
edge. The grid is constructed with 2201 x 191 nodes clustered at the
wall and leading edge. The grid is clustered so that more than 100 grid
points are distributed within the boundary layer to ensure sufficient
resolution. A pressure far-field boundary condition with freestream
conditions is imposed on the inlet boundary, and a pressure outlet
boundary condition is applied to the top and outlet boundaries. For
bottom boundaries, no-slip and isothermal boundary conditions are
applied to the plate wall (x > 0), and a symmetry condition is imposed
upstream of the leading edge (x < 0).

2.2. Implicit large eddy simulation

Recently, studies that use high-fidelity numerical simulations such as
DNS [5,7,8,17] or large eddy simulation (LES) [18-20], to investigate
the instability and transition of hypersonic flows, are increasing.
Although the LES is cost-effective compared to DNS [20], its result is
dependent on grid resolution and the sub-grid scale (SGS) model
employed. This shortcoming is more pronounced when resolving the
details of the unsteady flow structure near the solid surface is of main
interest (e.g. simulation of propagation of instability waves of small
amplitude inside the boundary layers). Unlike the LES, which is widely
used for a practical analysis of unsteady complex flow, the ILES provides
a no-model approach, assuming that a numerical non-linear truncation
error of a discretization scheme can describe an implicit SGS model [21].
Therefore, the ILES does not require an explicit SGS model. Instead, an
adaptive local deconvolution method based on non-linear truncation
errors simulates complex flow phenomena, such as shock and
fluid-structure interaction. Thus, the governing equation employed in
the ILES is identical to that of the well-resolved DNS, and it corresponds
to an under-resolved DNS or pseudo-direct simulation [22]. Several
previous studies confirmed the validity of the ILES for the prediction of
the hypersonic boundary-layer transition [23,24].

In this study, the ILES is employed to simulate the linear amplifica-
tion of the disturbance in the hypersonic boundary-layer. A two-
dimensional ILES is conducted using the open-source finite-difference
solver CFDWARP [25], which has been validated against several ca-
nonical compressible flow cases. The growth rate computed using the
LST is validated by comparing it to the results of the two-dimensional
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ILES. A combination of the Roe flux differencing scheme [26] and a
monotonic upstream-centered scheme for conservation laws (MUSCL)
approach [27] was used for the convective flux discretization. The
primitive variables that comprise the intercell flux vector were calcu-
lated using adaptive seventh/third order weighted essentially
non-oscillatory (WENO) interpolation suggested by Balsara et al. [28]

As shown in Fig. 2, the computational domain for the ILES is con-
structed for the x = 0.2 - 0.7 and y = 0 — 0.0073 regions, where the
streamwise extent is determined so that it includes an unstable region of
Mack’s second mode of the specific frequency of interest. The domain
grid has 4400 x 170 nodes clustered at the surface of the flat plate. More
than 100 grids are distributed within the boundary layer to ensure suf-
ficient resolution, and at least 20 grids are included within one wave-
length of an instability wave of interest. The grid resolution in transverse
and streamwise directions used in this study is almost same and
approximately half of that used in the DNS studies, respectively. An
unsteady disturbance of a specific frequency is imposed at the inlet (x =
0.2) using eigenvector profiles obtained from the spatial LST calculation.
The initial amplitude of the disturbance is assumed to be 0.5% of the
freestream velocity to examine the linear growth of the instability wave.
Based on the result of the ILES, the amplification rate of the disturbance
is computed as follows:

g O]
0]

4

where ¢’ is the amplitude of a specific component of disturbance wave in
the boundary layer. In this study, it is determined based on the
maximum amplitude of the streamwise velocity component, which is
extracted for the specified frequency via a fast Fourier transform.

2.3. Problem description

The same flow conditions studied by Fedorov and Tumin [12] are
considered. The freestream conditions of the mean flow are M, = 4.5,
T*, = 61.11 K, P*,, = 1008.64 Pa, and Reyyit = 1.0 x 107 m~'. The
flat-plate boundary-layer with adiabatic wall condition without any
strip is designated as a baseline case for comparison. To evaluate the
influence of local heating/cooling strips, the boundary layers over a
single strip of various streamwise locations, lengths, and heating/cool-
ing intensities are considered. Several combinations of strips in the
sequential arrangement are also investigated for the same freestream
conditions. Except for the strip section, the plate surface is assumed to be
an isothermal wall at T*,, = 272 K, which corresponds to the adiabatic
wall temperature (T*,q).

The evolution of an instability wave of a specific frequency is
investigated for the various single/series of strip configurations. A
normal(discrete) mode of two-dimensional disturbance (i.e., Mack sec-
ond mode instability) with a non-dimensional frequency of F = 50 is
chosen for both validation and parametric studies. The non-dimensional
frequency (F) is defined as follows:

Pressure outlet

0.4

Pressure far-field {03

Pressure outlet

Symmetry

No slip, iso-thermal

Fig. 1. Computational grid for mean flow (Fluent).
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Fig. 2. Computational grid to analyze instability of disturbance (ILES).
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where f* and v.* denote the dimensional frequency and kinematic
viscosity of the freestream, respectively. In addition to the basic
parameter studies for the single frequency, the overall effects of the strip
are investigated by carrying out analyses for various frequencies in the
range of F = 30 — 150. The influences of the strips on the amplification of
second-mode instability are evaluated by comparing the results with the
baseline case.

Temperature distribution on the thermal strip, considered in this
study, is schematically shown in Fig. 3. The temperature varies smoothly
along the streamwise direction with the maximum/minimum tempera-
ture at the midpoint of the strip. The distribution is designed to be
similar in shape to the Walker and Greening symmetric hump geometry
used in previous studies [11,29,30]. The temperature distribution along
the strip is defined using Eq. (6):

T, =T, + (T. - T,)f(t) ©

F= x 108, (5)

where t = (x - xc)/b,

(o) = {1 -3+ 2|t%, iffe) <1,

0, ifjt] > 1

The temperature distribution along the strip (T) is a function of the
temperature at the center of the strip (T.), the half-width of the strip (b),
and the distance from the strip center (x — x.). The continuity of the
temperature along the streamwise direction is ensured because the wall
temperature (Ty) is assumed along the wall other than the strip regions.

The configurations of the local thermal strips considered in the
present study are summarized in Table 2. The baseline case without a
strip is used as a reference for evaluating the effects of local temperature
variations. Three strip lengths, represented as L1, L2, and L3, are

L, :distance from leading edge to center of strip
b : half-width of strip

T. :temperature at the center of strip

T\, : wall temperature other than the strip region
T

T A s : temperature along the strip

Lc ' b !

T=T, f-----m--=-g--mm-mm-m-mm-emoos Eo--oe- |

? !

E o Ts

T.—T, E

' i

1 i
T=T, ; » >
~ x=0 x =1L H X

(Leading edge) (Center of strip) !

i
i Heating/cooling strip
H 3

N7z )

¥

Fig. 3. Schematic of temperature distribution along surface.

Table 2
Cases of local heating/cooling strip.
Case Location Length Te /Tw Info.
(o) (L)
baseline - - 1.0 Isothermal wall
x1-H1-L1 0.28 514 1.4 Single
x1-H1-L2 0.28 104 1.4 strip
x1-H1-L3 0.28 204 1.4
x2-H1-L3 0.33 204 1.4
x3-H1-L3 0.38 204 1.4
x1-H2-L2 0.28 104 1.6
x1-C1-L2 0.28 104 0.6
x1-C1-L3 0.28 204 0.6
x1-C2-L2 0.28 104 0.4
combinationA  0.28, 0.33, 204 0.6, 0.6, Combination of
0.38 1.4 strips
combination B 0.28, 0.33, 204 1.4, 1.4,
0.38 0.6

examined. The strip length is determined based on a wavelength (1) of a
disturbance wave of frequency F = 50 propagating at freestream speed.
The wavelength is computed as follows:
Us

FLy @

It has to be noted that the actual phase speed of the instability wave
is different from the freestream speed. The actual phase speed would be
the phase speed of mode S in the region of interest and it is approxi-
mately the speed corresponding to the range, where the relative Mach
number is subsonic. It is not significantly different from the freestream
speed, and the difference is smaller than the speed of sound compared to
the freestream speed. Moreover, the actual phase speed of mode S varies
with the streamwise location; not desirable for use as a fixed reference
length scale. Therefore, for convenience, the wavelength of the artificial
wave at a phase speed of freestream speed is chosen as the base length
scale and is 4 = 0.002 for F = 50. The strip length for the cases of L1, L2,
and L3 is set as 54, 104, and 204, respectively. The locations of the strip
center, which are denoted as x1, x2, and x3, are chosen based on the
gradient of the amplification rate (—da;/dx) of F = 50 for the baseline
case. The x1, x2, and x3 are determined as x. = 0.28, 0.33, and 0.38, and
they are corresponding to the location of positive, nearly zero, and
negative values of the gradient of the amplification rate, respectively.
According to a previous study [11], the synchronization point, where
mode F and mode S for F = 50 are synchronized, is located at x = 0.2906.
Therefore, x1 is the location relatively upstream from the synchroniza-
tion point, and x2 and x3 are downstream locations from it. The influ-
ence of the heating/cooling strength (T./Ty) is also investigated for
several cases of heating (H1, H2) and cooling (Cl, C2). The hea-
ting/cooling intensities of H1, H2, C1, and C2 are set to be T./Ty, = 1.4,
1.6, 0.6, and 0.4, respectively.

A=
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3. Results and discussion
3.1. Validation

The methods of mean flow calculation and stability analysis were
validated for the baseline case. The mean flow data computed by using
Fluent are compared with a similarity solution of the compressible
boundary-layer equation obtained by using the method described in
Ref. [31]. As shown in Fig. 4a, at x = 0.3, the velocity and temperature
profiles are in good agreement with each other. The boundary-layer
thickness 8, defined as u(8) = 0.95, is depicted in Fig. 4b. There is no
notable difference between the results from the two different methods.

The analyses were carried out by using both the spatial LST and ILES
for a disturbance of F = 50, and the resulting local amplification rates
are compared in Fig. 5a. By keeping in mind that the stability results are
very sensitive to the mean flow and analysis method employed, the
amplification rates can be judged to be in reasonable agreement,
although there are discernible discrepancies. One of the possible reasons
for the difference, which is more pronounced in the upstream region,
can be attributed to the non-parallel effect, which is not taken into ac-
count in the LST analysis. In general, the non-parallel effect isknown to
make the boundary layer more unstable in the upstream region. It has
been observed from previous studies that the amplification rate obtained
from DNS is greater than that of LST near the upstream regions [32-36].
However, in this study, the amplification rate of LST is found to be
greater than that obtained from ILES. Further investigations of the re-
sults confirm that there is a region of transient behavior in ILES, for
which the imposed profiles of mean flow (similarity solution) and
instability wave (eigensolution of LST) at the inflow boundary are
gradually settled down and eventually adjusted to the solution of the
Navier-Stokes equations. The adjustment of solution is expected to be
the main origin of the discrepancies in the amplification rate observed in
the upstream region. Considering these aspects of ILES, it can be
concluded that the LST analysis provides fairly good results reflecting
essential physics and are sufficient for the parametric study of qualita-
tive changes. A comparison of N-factor curves is shown in Fig. 5b. The
overall tendencies of the LST results are in good agreement with those
from ILES for the linear amplification of the second mode instability, and
the validity of the method of analysis is confirmed.

3.2. Parametric study on a single strip

A parametric study on a single strip is conducted for a discrete
instability wave of F = 50. The effect of the three parameters described
above (temperature intensity, location, and length) are investigated. The
mean flow data is obtained by using Fluent, and the amplification rate at
each streamwise location is computed via LST analysis.

S5 u 1
-0.8
4F ]
similarity 0 ¢
o Fluent 1
N3k B
-10.4
2 -
0.2
1 1 1 1 0
0 0.0005 0.001 0.0015 0.002
y

(a) Streamwise velocity/temperature profile
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3.2.1. Temperature intensity

The influence of the strip intensities is examined for fixed location
and length of x. = 0.28 (= x1) and Ls = 104 (= L2), respectively. Fig. 6
shows the pressure contours around the heating/cooling strip. Two
types of pressure waves are identified around the strip; one is a
compression wave, and the other is an expansion wave. For the heating
strip, a compression wave is formed in the vicinity of the leading edge,
and an expansion wave is formed around its end. On the contrary, the
order of the pressure waves is reversed in the cooling-strip case. The
compression wave is induced when the wall temperature changes from
relatively low- to high temperature (positive gradient), whereas an
expansion wave is formed when the wall temperature changes from
relatively high- to low temperature (negative gradient). This charac-
teristic is identical to the result observed in the previous studies on a
local single heating/cooling strip [5,7,8].

This phenomenon can also be observed from the resulting surface
pressure distribution, as depicted in Fig. 7a. The strength of the pressure
wave is proportional to the temperature intensity(|T. — Tw|), and the
preceding pressure wave exhibits a pressure variation greater than the
following one. It is easily seen from Fig. 7a that the compression wave
and the expansion wave are induced near the region of the positive and
negative temperature gradient, respectively. The streamwise variation
of boundary-layer thickness (8) is plotted in Fig. 7b. The boundary-layer
thickness around the heating strip is found to be greater than that of the
baseline case, and the behavior is opposite for the cooling strip. From the
viewpoint of the pressure wave, the boundary-layer thickness increases
through the compression wave and decreases through the expansion
wave. It is noteworthy that these characteristics of the mean flow are
similar to those around a smooth hump [11,17,37-39]. According to the
comparison of the mean flow, the heating strip is expected to have an
impact on the boundary-layer instability, which is analogous to a
smooth hump.

The LST results of the amplification rate (- ;) and N-factor for
various temperature intensities are compared in Fig. 8, together with
those of the baseline. As depicted in Fig. 8a, the strip leads to both un-
stable and stable effects on Mack’s second-mode instability. Compared
to the baseline case, the instability wave undergoes an abrupt increase in
the amplification rate (i.e., makes the boundary layer unstable) in the
vicinity of the compression-wave region. Contrarily, a sharp decrease in
the amplification rate is observed through the region of the expansion
wave. Although the strip possesses both stable and unstable regions
around it, the destabilization is more significant than that of the stabi-
lization for the cases of the heating strips, whereas the cooling strips
exhibit the opposite tendency. This is consistent with the observation
that the strength of the preceding pressure wave is stronger than the
following pressure wave.

The corresponding N-factor curves are depicted in Fig. 8b, and the
total influence of the strip is evaluated. There are noticeable differences
between the presence of strips and baseline cases. As expected from the

0.0025
similarity
o Fluent
0.002
0.0015
w0
0.001F
0.0005 -
0 1 1 1 1 ' 1

0 0.2 0.4 0.6 0.8 1 12
X

(b) Boundary-layer thickness (x(J) = 0.95)

Fig. 4. Comparisons of mean flow profiles at x = 0.3 and distribution of boundary-layer thickness.
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Fig. 5. Comparisons of stability analysis results for baseline case (F = 50).
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Fig. 6. Pressure contours around a single local strip (x. = 0.28, Ly = 104).
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Fig. 7. Comparisons of mean flow for different temperature intensities.

amplification rate results, the heating strips cause a destabilization ef-
fect, and the cooling strips lead to a stabilization effect. Quantitatively,
the amount of the overall stabilization effect of the cooling strip is
greater than that of the destabilization effect of heating strips. As seen in
Fig. 7a, the deviations of surface pressure induced by the cooling strips
are greater than that by the heating strips, and this difference in pressure
deviation is expected to be the reason for the difference in the overall
stabilization/destabilization of Mack’s second-mode instability. The
deviation of N-factor from the baseline case, which corresponds to AN
(=N(x) — Npaseline(X)), is compared in Fig. 8c. The local peak value of AN

in the vicinity of the thermal strip for the cases of x1-C1-L2 and x1-H1-
L2 are ANpeax = — 0.66 and 0.38, respectively. Thus, in terms of ANpeax,
the stabilizing effect of the cooling strip is almost double the destabi-
lizing effect of the heating strip for the same deviation of temperature.
As the thermal intensity increases, the pressure waves around the strip
intensify, and thus the corresponding overall stabilization/destabiliza-
tion impact on the second-mode instability is strengthened. However,
the changes in the N-factor with respect to heating/cooling intensity are
found to be relatively small. The difference of AN,k is only approxi-
mately 0.11 between the two heating strip cases (i.e., x1-H1-L2 and x1-
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Fig. 8. Comparisons of stability analysis results for temperature intensity (F = 50).

H2-L2). The corresponding value for the cooling strip cases is approxi-
mately 0.16. Thus, it can be deduced from the results that the pressure
wave induced by the streamwise temperature gradient is the major
factor by which the thermal strip affects the hypersonic boundary-layer
instability.

It is easy to expect that the deviation of N-factor must remain con-
stant where the presence of the thermal strip no longer affects the mean
flow, i.e., the mean flow completely recovers to that of the baseline case.
Naturally, the same mean flow yields the same growth rate, so the N-
factor will change by the same amount, keeping the N-factor deviation at
the same value. However, the results in Fig. 8c show that the N-factor
deviation does not converge to a constant value downstream and still
changes even in the vicinity of x ~ 0.45. This result confirms that the
mean flow around x = 0.45 is still different from the baseline case and is
discernible enough to result in a different growth rate in LST analysis.

We note that Fig. 8 presents the results of calculations carried out
only up to the second neutral point (i.e., only unstable region) for all
cases. While keeping in mind that the streamwise extent of the compu-
tational domain is up to x = 1.2 (see Fig. 1), the mean flow and resulting
growth rates were evaluated further in detail beyond the second neutral
point. Although not shown here, in terms of resulting growth rates, it is
identified that the influence of the thermal strip on mean flow remains
even further downstream and that the mean flow does not completely
recover to the baseline case up to the end of the computational domain.
Beyond the second neutral point, however, the discrete mode of our
interest enters a stable region so that the growth rate becomes a negative
value and the N-factor starts to decrease (see Fig. 8a and 8b). By
analyzing the data downstream of the second neutral point, it is revealed
that the instability becomes less stable and more stable in the heating
and cooling strip cases, respectively compared to the baseline case
(Fig. 8a and 8c). Although the effect of the thermal strip on both mean

flow and stability results appears along a very long streamwise extent,
we hereafter mainly focus on analyzing the results for the unstable re-
gion because a stable region is expected not to contribute to the occur-
rence of the transition. From the viewpoint of amplification of instability
wave and transition, the further increase in the N-factor deviation
beyond the second neutral point can be regarded as a less-meaningful
feature because the N-factor itself will decrease (Fig. 8b).

3.2.2. Length

The impact of the heating strip length is examined for several
lengths: 54 (= L1), 104 (= L2), and 204 (= L3). The wall pressure and the
boundary-layer thickness along the streamwise direction are plotted in
Fig. 9. The streamwise extents for the cases of L1, L2, and L3 are marked
with a solid, dotted, and dashed line, respectively. The results of Fig. 9a
show that the longer heating strip causes milder temperature and
pressure gradients, and the distance between the strip center and the
location of maximum pressure deviation also increases. As the distance
between the strip center and the pressure-peak location increases, the
pressure gradient at the strip center is reduced. Since Eq. (6) is used, a
longer strip induces a smaller temperature gradient along the stream-
wise direction, and this feature results in gradual pressure changes in
longer streamwise extents for the mean flow. The pressure gradient near
the leading edge of the strip is greater than that at the end, regardless of
the strip length. Fig. 9b shows the distribution of boundary-layer
thickness for three strip lengths. As the strip length increases, the
maximum boundary-layer thickness increases. While the temperature
distribution is symmetric with respect to the strip center, the location of
the maximum deviation of boundary-layer thickness is formed slightly
downstream from the strip center. As the strip length increases, the
adverse pressure gradient and subsequent favorable pressure gradients
weaken, and the pressure wave develops along the longer streamwise
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Fig. 9. Comparison of mean flow for different strip lengths.

extent. These weak pressure gradients over a longer distance make the
location of the peak deviation of boundary-layer thickness move further
downstream.

Fig. 10 shows the corresponding results of the stability analysis for
three strip cases. As shown in Fig. 10a, as the heating strip’s length in-
creases, a deviation of the amplification rate from the baseline case is
observed in a broader region, and the local peak around the strip de-
creases. The deviation of the amplification rate has a trend similar to the
pressure distribution along the streamwise direction (see Fig. 9a). The
changes in the amplification rate with respect to the strip length are
more considerable in the region around the leading edge than the aft
region of the strip. The overall destabilization effect of the heating strip

is found to be more significant for the long strip as can be seen from
Fig. 10b and 10c. In Fig. 10c, the deviation of N-factor (AN) is compared
for different strip lengths. The longer strip exhibits a larger N-factor
increment, and the case of the longest strip (x1-H1-L3) has the greatest
local peak value (ANpeax) of 0.6. Thus, a long thermal strip has a more
significant influence on the second mode instability. As discussed in the
previous section, the deviation of the N-factor is still increasing even in
the vicinity of the second neutral point (x ~ 0.45). The longer the strip
length, the greater the changes in the N-factor deviation. It seems nat-
ural because as strip length increases, the influence of the strip on the
change in the mean flow downstream would become stronger. As
mentioned before, however, the continuous changes in the N-factor
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Fig. 10. Comparison of stability analysis results for different strip length (F = 50).
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deviation within the stable region (i.e., beyond the second neutral point)
is not a main concern of the present study.

3.2.3. Location

For a fixed intensity and length (H1-L3), a strip at three different
locations (i.e., x1, x2, and x3) is examined, and the corresponding re-
sults of mean flow are shown in Fig. 11. As discussed earlier, wall
temperature variation induces compression waves in the vicinity of the
leading edge, which makes the wall pressure and boundary-layer
thickness increase around the upstream of the strip center. Similarly,
the negative temperature gradient beyond the strip center results in a
generation of expansion waves and a decrease in the deviation of
boundary-layer thickness. As can be seen in Fig. 11a and 11b, no notable
difference in the mean flow is identified depending on the location; the
variations in the wall pressure and boundary-layer thickness possess
similar trends to those mentioned in the previous sections.

The results of the stability analysis for three locations are depicted in
Fig. 12. There are noticeable differences in the amplification rate
depending on the strip location (Fig. 12a). As consistent with the
observation made in the preceding sections, in the case of location x1,
the relatively strong upstream compression destabilizes the hypersonic
boundary-layer, and the subsequent weak expansion yields stabilizing
effects. On the other hand, in the case of the strip at x2, the influences of
the streamwise compression and expansion on change in the growth rate
are rather reduced. Moreover, in the case of the strip at x3, reversed
effects appear for the same sequential pressure variation. In the vicinity
of x3, the compression upstream of the strip stabilizes the instability
wave, and the following expansion makes it unstable.

To validate this reversed effect and ensure whether the LST analysis
captures the essential physics properly, the ILES computation is carried
out for the two extreme cases (x1-H1-L3 and x3-H1-L3). As plotted
together in Fig. 12a and 12c, the amplification rate computed by the
ILES exhibits similar qualitative trends compared to that of LST. This
allows us to conjecture that the effect of the streamwise pressure
gradient is reversed in the region where the streamwise gradient of the
amplification rate is negative for the baseline case (i.e., the case of no
strip). This implies that the heating strips can provide different in-
fluences on the second-mode instability depending on its location, even
though the changes in mean flow owing to the strip are subject to similar
characteristics. The N-factor and its deviation obtained from the LST and
ILES calculation are shown in Fig. 12d and 12e. From these results, it is
confirmed again that the opposite influence emerges depending on the
strip location. In the case of x1-H1-L3, the boundary-layer is locally
destabilized by ANpst, peak = 0.59 and AN[igs, peak = 0.53, whereas the
x3-H1-L3 case produces the stabilization corresponding to ANysT, peak =
—0.28 and AN[igs, peak = — 0.38. In Fig. 12e, the case of x2-H1-L3 shows
both stabilization and destabilization of the second mode instability.
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From these results, it is expected that the critical point where the effect
of the thermal strip is reversed is located between x2 and x3. Although
not shown here, through the results of additional calculations, the same
reversal phenomenon was also confirmed for the cooling strip. Further
downstream around and beyond the second neutral point, all the heating
strip cases exhibit a less stable tendency than the baseline case, as
observed before.

The contour of pressure perturbation from the ILES results is shown
in Fig. 13 for the baseline. The amplified pressure fluctuation exceeding
a certain amplitude is discernible in the region of 0.35 < x < 0.5. The
result shows the entire evolution, i.e., growth and decay, of the distur-
bance of a specific frequency governed by the instability mechanism. In
Fig. 14 and 15, the contours for pressure and temperature disturbances
are compared for the cases of baseline, x1-H1-L3, and x3-H1-L3. The
pressure disturbance along the wall-normal direction has a two peaks
structure with a larger magnitude for the peak close to the wall and a
nearly opposite phase between the two peaks (see Fig. 14). In addition,
as can be seen in Fig. 15, the rope-like structure in the vicinity of the
boundary-layer edge appears in the temperature disturbances. These
features of the perturbation structure are typical characteristics of the
second-mode instability and have been reported by many previous
studies [7,40]. A comparison represents that the amplitude of pressure
perturbation for the case of x1-H1-L3 becomes greater than that for the
baseline case (see Fig. 14a and 14b), while it has been suppressed for the
case of x3-H1-L3 (see Fig. 14c). The same tendency is also observed for
the temperature perturbation in Fig. 15, which indicates that the effect
of the strip is reversed depending on its location relative to a specific
threshold point.

The instantaneous pressure perturbation signals along the wall are
compared in Fig. 16. The case of x1-H1-L3 attains the largest amplitude,
whereas the case of x3-H1-L3 reaches the smallest amplitude (see
Fig. 16a). In the case of x3-H1-L3, most of the delay or suppression in the
disturbance amplitude is found to occur in the region over the strip;
thus, the amplitude is smaller than that of the baseline case. This
observation indicates that the compression in the streamwise direction
(adverse pressure gradient), owing to the presence of the strip yields a
stabilization effect for this case. After this stabilization region, a slight
destabilization effect related to the streamwise expansion follows and it
stimulates the growth of perturbation, which makes the amplitude tends
to recover to that of the baseline case. Therefore, the ILES results
confirm again that a thermal strip can lead to either a stabilization or
destabilization effect, and its effect depends on the strip’s location. The
results also indicate that the effect of the strip can be reversed as its
location moves downstream beyond a certain critical point.

It has been reported that the location of a smooth hump (roughness
element) [17,37-39] or porous coating [41,42] relative to the syn-
chronization point is a critical factor that determines the influence on
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Fig. 11. Comparison of mean flow for a strip at different locations.
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Fig. 13. Contour of pressure perturbation for the baseline case (F = 50).

Mack’s second-mode instability in hypersonic boundary-layers. Zhao
etal. [8] also discussed the importance of the relative location of a single
local heating/cooling strip to the synchronization point. According to a

10

study of Park and Park [11], the synchronization point for the baseline
case of present consideration is Xsync =~ 0.29. From the parametric study
of the strip’s location, the threshold or critical point, where the reversal
effect emerges, is found to be located between x2 and x3, i.e., 0.33 < x
< 0.38. To identify the reversal location of the thermal strip more in
detail, several strip locations in the range of 0.28 < x. < 0.38 are
additionally computed using the LST. The values of the deviation of
N-factor at the second neutral point of the baseline case (xup, 2nd ~
0.435) are collected and plotted in Fig. 17. The reversal point is found to
be Xrey ~ 0.336, and this point is obviously different from the syn-
chronization point. The reversal point (x.ey) appears to be almost located
at the midpoint of two neutral points and located further downstream
than the synchronization point. Further investigation reveals that the
reversal point is very close to the point where the growth rate of the
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_ - second mode becomes maximum (xgr, max ~ 0.3254) in the baseline case.

p't -5.0E-05 -2.5E-05 0.0E+00 2.5E-05 5.0E-05

From the results of the present study which are based on the spatial
analysis, the reversal point is identified as in the vicinity of the location
(a) of the maximum growth rate, not the synchronization point. This result

is somewhat consistent with the observation from the asymptotic anal-
0.003 ysis with a temporal viewpoint carried out by Zhao and Dong [10]. Thus,

r4p rlp /p /10 r‘p /p /p /‘D ° the reversal point (xry,), where the opposite influence of the thermal
0 strip on the second-mode instability occurs, is located near the

(b) maximum growth rate point rather than the synchronization point.
0.003 As observed and discussed so far, the reversal point can be charac-
a terized by being slightly downstream of the location of the maximum
/p /p /O D ¢ ﬂ ¢ D ) D ( D ( d growth rate. Based on the results of the parametric study, the relative
0 location of the wall-temperature induced streamwise compression/
(© expansion to the reversal point is an important factor that determines
>(\).003 the strip effect on Mack’s second-mode instability.

- . h. m. m‘ r1p r‘P /4p r*p 3.3. Applications

8.38 0.385 0.39 0.395 0.4
X 3.3.1. Combination of thermal strips

Based on the results from the parametric study in the previous sec-

tion, combinations of the strips, in which three strips are arranged in

series, are examined. The same instability wave of F = 50 is considered.

Fig. 14. Contours of pressure perturbation (0.38 < x < 0.4).
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of two cooling strips of C1 and one heating strip of H1, in order, while
combination B corresponds to the opposite composition.

Comparisons of the resulting mean flow for the two combinations are
presented in Fig. 18. The wall pressure distributions appear to be
opposite each other while showing the same dependency on the tem-
perature discussed in the previous sections (see Fig. 18a). The stream-
wise variation of the boundary-layer thickness for each combination
(Fig. 18b) shows a considerably different trend on the deviation with
respect to the baseline case along streamwise direction. Because the first
two strips located at x1 and x2 are the same thermal type and the sub-
sequent strip is a different type, the streamwise compression or expan-
sion is continued and extended in the region between x2 and x3. From
the previous section, the effect of the pressure change is found to be
reversed just before x3; therefore, these thermal strip arrangements are
expected to maximize the influence on the growth of the instability
wave.

The stability analyses for the cases of two combinations are carried
out, and the resulting amplification rates and N-factor curves are shown
in Fig. 19. The ILES computation is also conducted to check the reli-
ability of the LST, and the resulting amplification rates are compared
together. As can be seen in Fig. 19a, combination A results in stabili-
zation effects over most of the streamwise extent, as intended. However,
a significant deviation between the two analysis methods is identified
around the first cooling strip. The adjustment of the solution in the
upstream region, discussed before, is considered the underlying reason
for the discrepancy between LST and ILES results, and its impact seems
to be much more pronounced in this case. Except for this region, the LST
prediction still exhibits a similar trend to that of the ILES. Similarly, the
overall destabilizing effect of combination B is observed in Fig. 19b, and
the LST results exhibit fairly good agreements with the ILES. The results
of Fig. 19 indicate that LST can properly predict the overall trends even
for the cases of strip combinations.

In the previous section, both LST and ILES predicted well the reversal
phenomenon occurring between the locations of the second and third
strips. Based on the LST results, the reversal point is x;ey = 0.336, located
relatively downstream of the synchronization point. Although the
streamwise compression is present near the fore region of the third strip,
because of the reversal phenomenon, the second mode becomes stable in
the region of the third strip for combination A. Similarly, the reversal
phenomenon is also observed in the corresponding region for combi-
nation B. Thus, the critical point of reversal can be regarded as
approximately Xy = 0.336 for the flow conditions and instability wave
frequency studied. This observation confirms again that the reversal
point is different from the synchronization point. We note that this
phenomenon has been explored and investigated only for the unstable
region of the second-mode instability with F = 50.

The N-factor and its deviation from the baseline case (AN),
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calculated using the amplification rate from LST analysis, are compared
in Fig. 19c and 19d. The results reveal that combinations A and B result
in stabilization and destabilization effects compared to the baseline case.
In terms of boundary-layer transition, it is expected that combination A
can lead to a delay of the transition, whereas combination B can lead to
early transition onset. This indicates that a designed array of thermal
strips might be used as an active control methodology to control the
transition location. From the other point of view, a non-uniformity of the
wall-temperature distribution possibly causes a change in transition
location in an undesirable direction, which eventually can result in the
failure or loss of a hypersonic vehicle.

3.3.2. Overall effects

The N-factor curves of various frequencies for the cases with and
without the heating/cooling strips are calculated and analyzed to eval-
uate the overall effects of the strips. Two cases of the single strip and two
cases of strip combination are considered for the investigation. The
calculations are conducted for frequencies in the range of F =30 -150. It
should be noted that the N-factor is calculated only for the unstable
region of the second mode for each frequency.

The cases of x1-C1-L3 and x1-H1-L3 are selected as representative
cases for single-strip analyses, and the resulting N-factor curves are
shown in Fig. 20. As shown in Fig. 20a, the N-factor envelope is identical
to that of the baseline case in the far upstream. However, the envelope
undergoes abrupt deviations in the vicinity of the strip and it increases
rapidly in the region of the strip. This sudden destabilization region is
caused by N-factor curves corresponding to frequencies suffering the
reversal phenomenon. It has to be noted that the location of the critical
point of the reversal phenomenon would vary with frequency, while the
strip location is fixed. Thus, there are frequencies subjected to the
reversal phenomenon for the specified strip location which results in the
destabilization region in the N-factor envelope. However, the cooling
strip also produces a region of stabilization downstream of the strip. An
opposite behavior is observed in the case of the heating strip in Fig. 20b.
The stabilizing effect, induced by the reversal phenomenon, occurs over
the strip region, followed by a subsequent region of destabilizing effect
downstream of the strip. In the region far downstream, it is seen from the
Fig. 20 that the cooling and heating strips result in slightly higher and
lower values of N-factor for the same frequency, respectively. It has been
known from previous studies that entire-wall cooling and heating
destabilize and stabilize the second mode in hypersonic boundary-layers
[4,12,43], and it seems that the thermal strip causes similar influences
on far downstream region. The analyses carried out in this study reveal
that, regardless of the heating/cooling type, a localized temperature
variation can cause both locally greater and smaller N-factor envelopes
around the strip. Thus, the results imply that an appropriate arrange-
ment of them can be considered to control the onset of transition.

0.0013 o baseline
combination A

= = = = = - combination B

0.0011

o | ¥
0.0009 :\ :
| |
| ‘\ !
| ‘\ I
R
|
0.0007 | :: :
| ! P |
Lo in ) — ——
015 02 025 03 035 04 045 05
x

(b) Boundary-layer thickness (x(d) = 0.95)

Fig. 18. Comparison of mean flow for strip combinations.
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The overall influence of strip combinations is also examined. The N-
factor envelopes are compared in Fig. 21 together with the baseline case.
It can be seen from Fig. 21a that combination A, which was intended to
stabilize the instability wave of F = 50, makes the boundary layer more
unstable in the region of the first two cooling strips. The stabilization
effect is attainable downstream of the two cooling strips. Subsequently,
the envelope experiences an abrupt increase at approximately x = 0.5,
representing the destabilization with an overshoot at around x = 0.6.
This variation is attributed to the reversal phenomenon and the different
thermal type assigned for the third strip. For combination A, where the
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cooling area is larger than the heating region, the envelope exhibits
slightly greater(unstable) values compared to the baseline case in the far
downstream region. (see Fig. 21a) Similar but opposite features are
observed for combination B, as shown in Fig. 21b. The intended stabi-
lizing/destabilizing effects on the N-factor envelope emerge only after
the first two cooling/heating strips. The boundary layer is slightly
destabilized/stabilized further downstream of the unstable region for
combinations A and B, respectively.

Regardless of the number of strips and their type, the hypersonic
boundary-layer would experience both stabilizing and destabilizing
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Fig. 21. N-factor curves for combinations of heating/cooling strips.

influences throughout the entire region. Therefore, selecting the loca-
tions, thermal types, and intensities of thermal strips is crucial for
achieving the desired control effectiveness on the boundary-layer tran-
sition for a specific flow condition and configuration.

4. Conclusion

The effectiveness of heating/cooling strips on the evolution of
second-mode instability was investigated for the hypersonic boundary-
layer over a flat plate at M = 4.5. The influences of a single strip and
combinations of them were investigated in detail. The LST results were
compared with the ILES results for several selected cases to validate the
analysis method. Fairly good agreements were confirmed in the general
tendency and qualitative behavior of the amplification rates. The
reversal of stabilization/destabilization effect according to wall
temperature-induced streamwise compression and expansion was
identified and discussed in terms of the location of the strip’s center
relative to the reversal point. The following three conclusions are
derived:

(1) The compression and expansion in the streamwise direction are
induced, owing to the wall-temperature variation. The flow experiences
a series of compression and expansion sequentially around the thermal
strip as passing over it. The compression and expansion are formed near
the region of a positive and negative temperature gradient, respectively.
Thus, the thermal type of strip (heating or cooling) determines the order
of the compression or expansion. The compression or expansion formed
near the leading edge of the strip is stronger than the one that follows.
The change in the boundary-layer thickness around the heating strip
possesses very similar characteristics to that formed around a smooth
hump reported in previous studies.

(2) The effect of the streamwise pressure gradient induced by a wall-
temperature variation on the second-mode instability is reversed when
the location of the strip is moved downstream beyond a certain
threshold location. The streamwise compression formed upstream from
the reversal point makes the instability wave unstable, whereas that
formed downstream from this point causes the opposite effect. The
reversal point is located downstream of the synchronization point and
very close to the location of the maximum growth rate of the second-
mode instability. This observation represents a consistent feature with
that made in literature [10]. Thus, the reversal phenomenon can result
in a different effect on the overall amplification even for the same strip,
depending on the relative location between the strip’s center and the
reversal point.

(3) Analyses for a combination of three strips confirmed that
applying a properly designed series of strips could achieve a more
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significant stabilizing or destabilizing effect on an instability wave with
a specific frequency. The arrangement must be designed by keeping in
mind the reversal phenomenon to achieve the desired effect on the
second-mode instability. The analyses for various frequencies revealed
that the thermal strips have both overall stabilizing and destabilizing
effects depending on the relative location of the strip to the reversal
point of disturbance with various frequencies, regardless of their type or
the number of strips. The results imply that the selection of types and
arrangements could play an important role in controlling the hypersonic
boundary-layer instability and transition. The thermal strips can be
considered as one of the candidates for active control strategies to
control the transition onset for a specific design flow condition and
configuration.

The present study only sheds light on the physical relations of the
thermal strips and the second-mode instability. Thus, for further un-
derstanding of underlying physics and applying them to predict and
control the transition, more realistic wall-temperature variations which
can be encountered on the surface of the hypersonic flight vehicles,
other instability modes, including the first mode or crossflow in-
stabilities, and non-linear evolutions need to be studied in the future.
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