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ABSTRACT Feature selection techniques in prediction play a role in manufacturing industries of late.
However, it is very challenging to achieve an optimal subset of features as well as interpretable relationship
among features due to computation complexity and variable diversity. In order to address those difficulties,
this paper presents a novel evolutionary approach for feature selection algorithm to improve the effectiveness
of existing meta-heuristic approaches. In other words, their optimal combinations with minimal difference
between prediction and actual values can be achieved by applying an estimation of distribution algorithms
(i.e., extended compact genetic algorithm) on the collected candidate feature sets. The approach discovers
a less complicated and more closely related probabilistic-model structure on population space in each
generation, thereby encouraging the comprehension power of feature selection results. We tested our method
on six real-world data sets from manufacturing industries (open to the public). It demonstrated that higher
interpretability on features selection results is achieved in comparison with well-known methods.

INDEX TERMS Evolutionary-based approach, feature selection, extended compact genetic algorithm,

manufacturing industries.

I. INTRODUCTION

In the case of real manufacturing problems, it is a very
complex and important task to detect process abnormalities
in advance through real-time processing of large amounts
of data collected from the manufacturing environment [1],
[3], [4], [5], [6]. Those data sets being processed in this way
consist of several properties and features. Typically, a series
of processes to obtain useful information is performed by
utilizing all features defined in the given data set; however,
in some features, the target lacks relevance and the perfor-
mance may be degraded in modeling for obtaining useful
information due to duplication [1]. To apply machine learning
techniques into real-time large-scale data collected in the
manufacturing industry, selecting key features is a significant
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task, though it is one of the most difficult tasks [1], [5] [7].
In the given data, if a total of n features is included, a total
of 2" subsets should be possible, and the best subset must be
selected. Here, if n is a large number, it will become difficult
to do a performance evaluation in this problem. To effectively
resolve these problems, a variety of methodologies has been
proposed [1]. Firstly, conventional searching algorithms (i.e.,
exhaustive search, greedy search, and random search) are
applied into feature selections for finding the best subset.
In the case of this method, it is quite complicated to search
for optimal features due to early convergence, enormous com-
plexity, and high computational cost. To overcome this issue,
other feature selection methods on meta-heuristic algorithms
have been recently proposed since they are the most efficient
and effective technique and allows you to detect the relevant
subset of features and to maintain model accuracy at the same
time [1], [3], [5], [7], [8]. In this study, we describe a novel
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interpretable feature selection method by using a well-known
linkage learning in genetic algorithm (i.e., extended compact
genetic algorithm: ECGA).

Il. LITERATURE SURVEY

A. FEATURE SELECTION

It aims to efficiently remove inappropriate, irrelevant,
or unnecessary features-in other words optimal features are
extracted from a given dataset. However, it is one of the
most important and difficult problems as employing machine
learning techniques to large-scale data collected as real-world
applications such as bioinformatics for finding the best gene
in a candidate gene and text mining for finding the best term
word or phrase [1], [5], [7].

Mathematically, the statement of feature selection can be
specified in following way. Suppose a given dataset consists
of d features such as. Then the process of this selection
problem is to extract the optimal subset of features composed
of n number of features where n < d. To extract the best
features combinations, several feature selection methods have
following way been developing as classifying three categories
(i.e., filter, wrapper, and embedded methods). Firstly, the
filter method independently operates the learning or classifi-
cation algorithm - in other words it is totally dependent on the
given data [1]. Next, the wrapper technique always includes
machine learning algorithms and extracts the optimal subset
of features through interaction [1], [9]. This technique pro-
vides more accurate results than the filter method, though it is
much more computationally expensive than the filter method.
Lastly, the embedded method mixes filter and wrapper meth-
ods. This study proposes a new wrapper method on meta-
heuristic of estimation of distribution algorithms (EDA); that
is, extended compact genetic algorithm (ECGA).

B. META-HEURISTIC ALGORITHMS
The aim of meta-heuristic algorithms working based on prob-
ability is to obtain a close optimal solution in each problem
as avoiding local optima by randomly generating a group
of solution candidates with simplicity, flexibility, and the
ability. For achieving the optimum, they play key roles of
exploration and exploitation [1], [3]. In the exploration, its
algorithm thoroughly investigates the promising search space
and utilizes it for local search of the promising regions
found in the exploitation stage. There are several adjusting
applications such as electrical engineering (e.g., power gen-
eration), industrial engineering (e.g., work scheduling), civil
engineering (e.g., design architecture), and telecommunica-
tions engineering (e.g., radar design, networking) [1], [2].
Especially, in black-box models in meta-heuristics, mining
that human can’t understand how variables are being com-
bined to find optimum because they are directly established
from data by an algorithm with complicated functions of the
variables [3], [10].

There are two major categories of meta-heuristic algo-
rithms. One type is single solution based meta-heuristic
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algorithms initiating the optimization process with one solu-
tion updated during iteration. They may end up stuck in
a local optimal, and you won’t even thoroughly explore
the search space. The other type is multiple solution based
meta-heuristic algorithms initiate the optimization process as
generating a population of solutions updated by iterations.
They are useful for preventing local optimum, as multiple
solutions support each other and navigate the search space
well. They also have qualities that make them a promising
part of the search space, so they are used to solve most real-
world problems (especially, manufacturing industries).

Furthermore, meta-heuristic algorithms are classified with
four categories according to their behaviors: evolution-based,
swarm intelligence-based, physics-based, and human-related
algorithms [1]. The first evolution-based algorithms begin
to randomly generated population of solutions inspired by
Darwin natural evolution. In those algorithms, a new solu-
tion is generated through the two main genetic operators
(i.e., crossover and mutation) for achieving the best solution
through repetition of this process [11], [12]. There are several
state-of-the-art algorithms: genetic algorithm, evolution strat-
egy, genetic programming, tabu search, and differential evo-
lution. The second swarm-intelligence based algorithms were
developed based on social behavior patterns of insects, ani-
mals, and birds as traversing search spaces and best locations.
There are several representative algorithms (i.e., ant colony
optimization that applies pheromone-based commutation of
biological ants, honey bee swarm optimization algorithm that
utilizes bee behavior mechanisms, and monkey optimization
that depicts patterns in a herd of monkeys) [13], [14]. The
third physics-based algorithms such as simulated annealing
and harmony search are affiliated by the principals of physics
in the universe [1]. The last human behavior-based algorithms
are entirely inspired by behavioralism. Everyone has a way of
affecting his or her performance [1].

lll. EVOLUTIONARY APPROACH FOR INTERPRETABLE
FEATURE SELECTION ALGORITHM

In general, the-state-of-art meta-heuristic algorithms could
extract the optimal combination of features by designing the
given problems with respect to each characteristic. Despite
this strength, their algorithms are much tougher to perceive
the importance of each feature and to understand how the
different features interact in predictions or classifications [1],
[5], [7]. To effectively resolve this limitation, this paper repre-
sents a new interpretable feature selection method developed
by a linkage learning based evolutionary algorithm that is
extended compact genetic algorithm proposed by Harik. It is
equivalent to linkage learning as selecting of a good prob-
ability distribution measured by quantification using mini-
mum description length (MDL) model [15], [16], [16], [17].
A key concept of this model is that a simple distribution is
better than a complex distribution when all things are equal.
To give rise to an optimal probability distribution, the MDL
restriction disciplines inaccuracy and complexity of models.
Hence, MDL regulation creates the problem of finding a
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FIGURE 1. Procedure of proposed feature selection algorithm.
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FIGURE 2. Example of a solution vector.

good distribution as an optimization problem that minimizes
the probability model and population representation [15].
The probability model of ECGA is marginal product models
(MPMs) developed as a product of marginal distributions on
a partition of the genes [16]. Those models permit a direct
linkage map with each partition separating tightly linked
genes [15]. The proposed framework has been effectively
solving interpretable relationships among features with evo-
lutionary approach using minimum description length (MDL)
model [17]. Next, Figure 1 the proposed algorithm is depicted
in detail.

At the first step, the population is initialized as a candidate
pool made up of the subset of features. Each individual of
population utilizes a binary vector representation considered
to obtain the relevant features [14]. Here, the length of its
vector is set to the number of features in the given problem
and each component of this vector is matched with each
feature. And then, each component of this vector indicates
that ‘1’ means a particular feature in selected and ‘0’ means a
feature not selected in the subset. The example of the solution
vector is depicted as Figure 2, where n is the total number of
features in the given problem. The second stage of evalua-
tion is to determine the ability of an individual to compete
against others. It measures a fitness score appropriate to the
combination of features to everyone which will be selected
for reproduction in the next generation. The third phase of
selection is to choose the fittest individuals and let them pass
their genes to the next generation. Next, the creation of a
new population based on MPM modeling using MDL. The
definition of MPM is defined as a constrained optimization
problem [17],
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Minimize Cy, + Cp (1)
Subject 10 21 < N, [1, Ny @

where Cy, is the model complexity representing the cost of a
complex model and is given by

Npp
Cn = log(N, + 1) D (2" — 1) 3)

i=1

and C,, is the compressed population complexity representing
the cost of using a simple as against a complex one and is
evaluated as

Ny 2/bb.i N
Cp=2_ 2 Nij log2<1WPj> “)
i=1 j=1 ;

Npb is the number of BBs, [ ; is the length of BB i €
[1, Npp] and N;j is the number of individuals of the current
population which possesses bit-sequence j € [1,2/i] for
BB i [16]. The next population created by the optimal MPM
in the following manner of population of size N,(1 — P.)
where P, is the crossover probability is filled by the best
individuals in the current population [17]. The rest N,P.
chromosomes are generated by randomly choosing subsets
which are the gene groups identified by the current MPM.
Thanks to the optimal MPM, we can achieve interpretable
feature selection result in the given problem. Algorithm 1
describes an example of the proposed method, where N is the
population size, S; genes is represented the i subset, and Py
is the probability of observing outcome k. In Figure 3, we can
find an optimal subset of features [F1, F3][F>][F4] having
the minimum value of combined complexity. In other words,
we can interpret relationship among features that F| and
F3 are dependent relationship, and F5 and F4 don’t have any
relationship with the others.

Through the upper operation process, the proposed algo-
rithm is able to find the optimal feature set and combination
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TABLE 1. Simulation result of combined cycle power plant data set.

Feature Selection ~ Regression mean std Q0 Q1 Q2 Q3 Q4 CI(Upper)  CI (Lower)
Linear 20.793 0.9536 18.8064  20.2395 20.8234 214099  23.5104 21.5073 20.5287
BR 20.793 0.9535 18.8069  20.2391 20.8235 21.4095 23.5107 21.0573 20.5287
FS DT 20.6401 1.5823 17.1338 19.5804  20.7063 21.555 24.0383 21.0787 20.2015
RF 11.141 0.9889 9.2004 10.4073 11.1237 11.7412 13.4999 11.4151 10.8669
Xgboost 10.0088  0.9265 8.2461 9.4062 9.8891 10.4277 12.3804 10.2656 9.752
GBM 15.1181 0.9455 12.9753 14.4425 14.9968 15.7972 17.9084 15.3802 14.8561
Linear 20.7919  0.9526  18.8064  20.2395  20.8234  21.4099 23.5104 21.0559 20.5278
BR 20.7918  0.9525 18.8069  20.2391  20.8235 21.4095 23.5107 21.0559 20.5278
FSgcga DT 19.7936  1.3679 164735 19.0482 19.6401 20.6667 23.2194 20.1728 19.4145
RF 11.0174  0.9804 9.0467 10.2392  10.9554 11.5514  13.2525 11.2892 10.7456
Xgboost 9.9552 0.9408 8.2316 9.2559 9.8262 10.3677  12.3804 10.216 9.6944
GBM 15.1136  0.9467  12.9532 14.437 14.984 157927  17.9084 15.376 14.8512
LGB 11.315 1.0022 8.9463 10.6442  11.3212 11.8331 13.6089 11.5928 11.0372
Linear 20.7919  0.9526 18.8064  20.2395  20.8234  21.4099 23.5104 21.0559 20.5278
BR 20.7918  0.9525 18.8069  20.2391  20.8235 21.4095 23.5107 21.0559 20.5278
FSga DT 19.3267 1.3063 16.1018 18.6604 19.2771 20.1797  22.8321 196887 18.9649
RF 10.9224  0.9839 8.9185 10.1173 10.8809 11.5021 13.1572 11.1951 10.6496
Xgboost 9.9552 0.9408 8.2316 9.2559 9.8262 10.3677 12.3804 10.216 9.6944
GBM 15.1131 0.9469 12.9493 14.4319 14.9838 15.7912 17.9084 15.3756 14.8506
LGB 11.315 1.0022 8.9463 10.6442 11.3212 11.8331 13.6089 11.5928 11.0372
Linear 20.7919  0.9526  18.8064  20.2395  20.8234  21.4099 23.5104 21.0559 20.5278
BR 20.7918  0.9525 18.8069  20.2391  20.8235 21.4095 23.5107 21.0559 20.5278
FSppso DT 19.6618 1.3444  16.4915 18.8962  19.5601 20.6123  23.1748 20.0344 19.2891
RF 11.0044  0.9734 9.0385 10.1781 10.9749  11.5851 13.2491 11.2742 10.7346
Xgboost 9.9552 0.9408 8.2316 9.2559 9.8262 10.3677  12.3804 10.216 9.6944
GBM 15.1134 0.9469 129498  14.4329 14.984 157912 17.9084 15.3759 14.851
LGB 11.315 1.0022 8.9463 10.6442  11.3212  11.8331 13.6089 11.5928 11.0372
Linear 20.7919  0.9526 18.8064  20.2395  20.8234  21.4099 23.5104 21.0559 20.5278
BR 20.7918  0.9525 18.8069  20.2391 20.8235  21.4095 23.5107 21.0559 20.5278
FSBwoa DT 19.3044  1.3011 16.1928 18.5685 19.1583  20.2636  22.3274 19.6651 18.9438
RF 10.9255 0.976 8.9272 10.1429  10.8697 11.4938  13.1694 11.196 10.655
Xgboost 9.9552 0.9408 8.2316 9.2559 9.8262 10.3677  12.3804 10.216 9.6944
GBM 15.113 0.9469 129489 14.4324 149838 15.7913 17.9084 15.3755 14.8506
LGB 11.315 1.0022 8.9463 10.6442 11.3212 11.8331 13.6089 11.5928 11.0372
Linear 20.7927 0.9535 18.8064 20.2395  20.8234  21.4099 23.5104 21.057 20.5284
BR 20.7918  0.9525 18.8069 20.2391  20.8235 21.4095 23.5107 21.0559 20.5278
FSpewo DT 19.2649  1.3208  16.0897 18.4325 19.1813 20.162 22.0576 19.631 18.8988
RF 109122  0.9764 8.943 10.1277  10.8575 11.4803 13.1606 11.1828 10.6415
Xgboost 9.9622 0.9418 8.2416 9.2559 9.8262 10.3851 12.3804 10.2233 9.7012
GBM 15.113 0.9469 129489 14.4326 149838 15.7912 17.9084 15.3755 14.8506
LGB 11.315 1.0022 8.9463 10.6442  11.3212  11.8331 13.6089 11.5928 11.0372
Current Population Model Population Marginal Probability Model
Feature, Feature, Feature; Feature, uslng Greedy MPM Search
Combined [F), F3] [F>] [F4]
|1‘0|0|1 Model b
Combined omplexity 00:0/5 | 0:3/5 | 0:2/5
Model Complexity F,. EEF, 27.49 01:25 | 1:2/5 | 1:3/5
| 0 ‘ 1 ’ 1 | 0 ’ P [Fy, Fo)[F3][Fy] : s
[FAFAFS]F] 29.76 [Fy, F5[F3][F,] 23.00 || 115
[1]ofo]o [F, FAIFAIF;] | 27.49 L
Combine Complexity Model Combined
. ) [FII[F2, F3][F)] 23.00 Complexity
| 1 ‘ 1 ’ 1 | 1 ’ = Model Complexity + Compressed Complexity
[Fy, F, F5[F] 2471
[F[F2 FF3] 27.49
=log,(N +1) Z(ZSI —-1)+N z —Py(log, Py) [F, Fs, FA[F3] 24.85
| 0 ‘ 0 ’ 1 | 1 I T 3 [FII[F][F3, Fy 27.49 [F), F3)lF2, Fi] 23.46

FIGURE 3. Example of MDL modeling.

which is the significant advantage of analyzing the relation-
ship among all features.

IV. EXPERIMENTAL RESULTS

In this section, we compare and analyze the performance of
the proposed evolutionary approach for interpretable feature
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selection method with four state-of-the-art metaheuristic-
based feature selection methods in six types of real
manufacturing data sets. For performance evaluation, the
difference between the predicted value and the measured
value is estimated using the root mean squared error (RMSE).
Also, 80% of the total data is used as training data and the
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TABLE 2. Simulation result of CPU data set.

Feature Selection ~ Regression mean std Q0 Ql Q2 Q3 Q4 CI(Upper)  CI (Lower)
Linear 3300.2975 2360.982  929.3425 1613.9734  2463.2092  3478.1262 10444.6959  3954.7163  2645.8787
BR 3202.5994  2225.8431 907.06 1504.5676  2538.9236  3502.3179 9688.0964  3819.5603  2585.6385
FS DT 3694.9201  6383.8962  29.6667 527.1969 1236.4977  2699.2024  23116.4286  5464.4133  1925.4269
RF 2598.6359  3611.0516  40.1542 395.8362 860.2705 1844.8109 14215.1816 3599.55 1597.7219
XGBoost 1547.1167  1880.8893 39.3048 225.4697 973.9778 1534.7135 7735.6578 2068.43 1025.7704
GBM 1876.4384  3226.4853 13.9602 99.7747 356.7714 1585.4508 15679.9601 2770.758 982.1187
LGB 7356.0498 62052013  566.1045  2709.717  5649.0926 8655.214 28598.3917  9076.0122  5636.0873
Linear 2936.1442 19429215  784.858 1583.6207  2453.619 3429.6999 9639.6914  3474.6847  2397.6037
BR 2875.3843  1907.0218  781.171 1498.0594  2288.3464  3395.5795 9684.1111 3403.9741  2346.7946
FSgcga DT 1151.6045  1057.7147  30.6429 352.1012 866.881 1720.4168 4650.7366 1444.7826 858.4263
RF 1512.6249  2084.4842  36.8926 205.3209 572.4026 1445.8043 8176.5891 2090.4038 934.8459
Xgboost 1106.2721  1325.7127  31.3828 137.3788 582.3327 1340.2565 5763.8137 1473.7341 738.81
GBM 1250.8317  1748.2867 13.2882 60.4373 316.4216 1055.4372 6460.0342 1735.4231 766.2402
LGB 7019.6749  6491.0882  292.9326  2242.4207 8621.1771  28625.1783  8818.87797  8818.8797  5220.4701
Linear 2514.008 1708.0489  676.3265  1348.6842 19524319  2967.3796 9636.3894  2987.4463  2040.5697
BR 2713.4656  1872.9331  783.8125 1504.664  2048.5512 3140.818 9688.0964  3250.6066  2212.3246
FSca DT 1063.8126  1062.0699 13.0488 194.9802 756.2871 1603.0001 4664.6429 1358.1979 769.4272
RF 1102.6728  1458.2061 27.5519 121.418 310.9734 1249.2488 5654.0944 1506.8595 698.4862
Xgboost 871.9423 1052.5757 15.2531 107.8564 392.6294 1294.0659 4392.3563 1163.6961 580.1886
GBM 718.2848 960.1977 11.1944 34.6672 238.534 798.129 3849.8669 984.4332 452.1365
LGB 6762.2965  6549.7986  243.8169  1544.8292  5069.0225 8652.9639  28598.3917  8577.7747  4946.8183
Linear 2489.4365 1678.0226  747.9661  1360.0144  1950.1098  2931.5069 9639.6914 2954.552 2024.3209
BR 2250.5511  1700.6772  666.797 1413.8204 19654594  3041.7771 9684.1111 3021.9461  2079.1561
FSppso DT 946.3714 985.9802 30.0357 214.8675 501.7037 1293.6504 4549.4535 1219.6662 673.0767
RF 1101.3957 1515.3769 28.766 134.7346 377.5921 1212.9358 7121.4542 1521.429 681.3624
Xgboost 772.1282 922.0408 15.2531 96.1011 296.1754 957.6889 4077.5705 1027.7002 516.5563
GBM 673.537 870.8013 12.0249 48.7198 218.8864 805.2182 3016.1698 914.9064 432.1676
LGB 6650.6916  6593.0712  243.8169  1411.0345 4860.8647  8621.1771 28598.3917  8478.1641  4823.2191
Linear 2482.8057 1704.8166 676.3265 1348.6842  1924.0707  2931.5069 9636.3894  2955.3481  2010.2633
BR 2544.6725 17229859  666.797 1415.961 1984.0909  3028.2939 9684.1111 3022.2511 2067.094
FSpwoa DT 1013.5077  1023.7522  21.4695 171.7619 689.6353 1456.2649 4533.3333 1297.2721 729.7433
RF 979.4969 1368.42 25.0149 110.9146 309.5575 1115.7322 6226.266 1358.7966 600.1972
Xgboost 772.148 910.1911 15.2531 119.3069 382.2572 933.1891 4077.5705 1024.4355 519.8606
GBM 670.2604 891.6103 11.3705 44.0339 206.4365 806.5223 3016.1698 917.3976 423.1232
LGB 6724.8527  6605.5013  321.2631  1436.1385  4879.9901 8621.1771 28598.3917  8555.7706  4893.9348
Linear 2750.5234  1892.4037 676.3265 1378.1069  2017.3055 3504.6472 9636.3894  3275.0613  2225.9855
BR 2720.6256  1840.8403  666.797 1460.745 2168.0731 3169.348 9684.1111 3230.8711 2210.38
FSpawo DT 1125.5646  1122.3833  26.8333 333.5995 746.1613 1804.7455 4689.9762 1436.6676 814.4615
RF 1194.4604  1705.5125  23.7878 125.2744 366.4665 1102.8619 7196.0772 1672.1957 726.7252
Xgboost 848.6559 1026.9995  26.2928 103.3777 321.0841 1159.411 4315.2159 1133.3205 563.9914
GBM 762.0509 918.2088 10.9873 47.0511 333.0932 1156.2189 3016.1698 1016.5607 507.541
LGB 6869.8863  6713.2755  250.7922  1710.4801  4865.9187 8655.214 31686.836  8730.6771  5009.0955

Algorithm 1 Minimum Description Length (MDL) Compute
Model and Population Complexity
1: N, = Size of population
2: L = List of building block lengths
3: Cj, = List of building block lengths
LOOP Process

4: for i in number of building blocks do
5. I; = length of building block i
6: forjin 2l do
7: N;j = chromosomes in current population where j €
[1,2"]
5 Gp=X Ny xlogy(xE)
9: end for '
10: end for

11: MDL = Cy, + C,

remaining 20% of the total data is used as test data to verify
the performance of the proposal and referred feature selection
methods. In addition, by repeating the experiment 50 times
under the same conditions, we intend to secure statistical
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confidence in the results by utilizing the mean value, standard
deviation, and quartile of the repeated experiment. At first,
in two types of evolution-based algorithms named FSgcga
and FSgy, the size of a population and the generation are
set to pop_size = 20 x log(Dim) and gen = 1.5 x
«/pop_size, respectively. In case of FSga, the crossover and
mutation are fixed by 0.9 and 0.01. Next, in the binary par-
ticle swarm optimization-based feature selection of FSppso,
the number of particles is set to 10 x pop_size. Lastly, the
number of particles of binary whale optimization-based fea-
ture selection of FSpowa and binary gray wolf optimization-
based feature selection of FSpgwo are set to pop_size,
equally. Moreover, to inspect the performance comparisons,
we employ Random Forest (RF), Extreme Gradient Boosting
(XGBoost), Gradient Boosting Machine (GBM) and Light-
GBM that used default values of four supervised algorithms
from the Scikit-learn library. We used PC equipped with
an Intel(R) Core (TM) i7 6700, 340 Hz CPU and 32 GB
RAM. All methods were experimented with codes written in
Python.
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TABLE 3. Simulation result of steel plates faults data set.

Feature Selection ~ Regression mean std Q0 Q1 Q2 Q3 Q4 CI(Upper)  CI (Lower)
Linear 9.7298  13.4029 3.0202 3.4268 3.6093 3.8976 51.3156 13.4448 6.0148
BR 8.0587 10.0277 3.0111 3.4349 3.6138 3.8742 42.0031 10.8382 5.2793
FS DT 4.2741 0.4952 33686 3.8918 4.1959 4.5758  5.5979 4.4113 4.1368
RF 2.1217  0.1832 1.6661  1.9966 2.1374 22477  2.4579 2.1725 2.071
Xgboost 2.2515 0.228 1.6383  2.074  2.2404 2.4473 2.6236 2.3147 2.1883
GBM 2.3487  0.1853 1.9304 2.1972 23632 2.5008  2.7446 2.4001 2.2974
LGB 2.1054  0.1928 1.6561  1.9705 2.0992 22579  2.5245 2.1588 2.0519
Linear 3.4829  0.1913 3.035 3.335 3.5034  3.6507  3.9342 3.5359 3.4299
BR 3.509 0.1958 3.0054 3.3804 3.5117  3.6643 3.9631 3.5633 3.4548
FSgcaa DT 3.5249 03113  2.6478 33368  3.567  3.7745  4.0902 3.611 3.4386
RF 2.0029  0.1807 1.5595 1.8593 2.0092 2.1262  2.4036 2.053 1.9528
Xgboost 2.1468 0.183 1.5317 2.0387  2.144  2.2691 2.4946 2.1975 2.096
GBM 22575  0.1919 1.805  2.1343 22438 2.3977  2.7418 2.3107 2.2043
LGB 2.0371 0.1979 1.516 1.8997 2.0303 22074  2.4206 2.0919 1.9822
Linear 3.4661 0.2033  2.9635 33191 34734 3.6033 3.8941 3.5225 3.4098
BR 35045  0.2054 29882 3.3482 3.4954 3.6586  3.9012 3.5615 3.4476
FSga DT 3.1061 0.3665 23779 2.8312 3.0657 33145  4.0103 3.2077 3.0045
RF 1.9049  0.1756 1.5767 1.7858 1.8966  2.033 2.3611 1.9536 1.8562
Xgboost 1.9885  0.1958 1.4598 1.8432  1.9642  2.1365 2.4524 2.0428 1.9342
GBM 2.1931 0.1815 1.7923  2.068  2.1893 2.3506  2.5898 2.2435 2.1428
LGB 1.8934  0.1857 1.3498 1.7651 1.8667 2.0171 2.2601 1.9449 1.8419
Linear 34713 0.1957 3.0155 33125 3.4911 3.614 3.8945 3.5256 3.4171
BR 34919  0.1968 29961 3.3606 3.4935 3.6494  3.8976 3.5464 3.4373
FSppso DT 3.2414  0.3058 2455  3.0354 3.2513 3.4871 4.0308 3.3262 3.1566
RF 1.933 0.1802 1.5073  1.7838 1.9566 2.0536  2.2914 1.9829 1.883
Xgboost 1.9846  0.1914 14757 1.8456 2.0115  2.119 2.3264 2.0377 1.9316
GBM 22035  0.1855 1.7895  2.0557 2.2051 2.3525 2.5929 2.2549 2.152
LGB 1.9211 0.1779 1.4748 17989 1.9099 2.0724  2.2388 1.9704 1.8718
Linear 34015  0.1946 29518 3.2392 34334 35572  3.8383 3.4555 3.3476
BR 34303  0.1983 29608 3.2843  3.451 35974  3.8724 3.4852 3.3753
FSpwoa DT 2.8631 0.367 1.9897  2.6798 29124  3.1269 35 2.9648 2.7614
RF 1.794 0.1673 1.4004 1.6736  1.8287 1.9282  2.1481 1.8404 1.7477
Xgboost 1.8544  0.2002 1.2903 1.697 1.8552 1.992 2.2898 1.9099 1.7989
GBM 2.1269  0.1665 1.771 2.0087  2.1335 2.265 2.4927 2.1731 2.0808
LGB 1.8015  0.1773 1.356 1.6686  1.8112 19432  2.1225 1.8506 1.7523
Linear 34162  0.1912 29764 32538 3.4563  3.564 3.8421 3.4692 3.3632
BR 34562  0.1918 29681 33139 34755 3.5725 3.8825 3.5095 3.4032
FSpawo DT 2.9009  0.3829 2.09 2.6398 2.8893  3.1733 3.6632 3.0071 2.7948
RF 1.8592  0.1818 1.4263  1.7311  1.8791 1.9683 2.3027 1.9096 1.8088
Xgboost 1.9157  0.1982 14282 1.8145 19082 2.0586  2.3979 1.9706 1.8607
GBM 2.161 0.184 1.7475 2.0396 2.1496 2.2919  2.5923 2.212 2.11
LGB 1.8686  0.1697 1.3773 17501 1.8671 2.0141 2.2056 1.9156 1.8215

A. PREDICTIONS BY REGRESSION

In general, for predicting potential problems in manufactur-
ing industries, seven well-known regressions are utilized as
follows. Firstly, the stepwise linear regression is a method of
linearly modeling the relationship among variables when the
dependent variable is numerical. Secondly, Bayesian linear
regression is an approach to statistical within the context
of Bayesian inference. Particularly, the prior distribution is
assumed then explicit results should be available for the pos-
terior probability distributions of its parameters [4]. Thirdly,
Decision tree builds regression models using a tree structure.
It splits a dataset into groups of subsets while an associated
decision tree is incrementally developed [8]. Fourthly, Ran-
dom Forest (RF) is an algorithm that predicts or classifies
based on the mode after making two or more decision trees.
If only one decision tree is used, the probability of overfit-
ting is high. Efficiently to solve this problem, one randomly
constructs several trees, sees what results each have, and
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collects the results of each tree to predict the results. This
technique has high consistency in analysis [4]. Lastly, Gra-
dient boosted machines (GBM) refer to a class of ensemble
machine learning algorithms constructed from decision tree
models for classification or regression problems. GBM is
suitable using a differentiable loss function and a gradient
descent optimization algorithm in the direction of which trees
are added one at a time and correct for the prediction error of
the previous model [8].

B. EXPERIMENTAL RESULTS OF MANUFACTURING DATA
SETS

Big data analysis, especially in the manufacturing industry,
extracts meaningful values from large amounts of structured
or unstructured data sets. For all data sets used in this study,
performance was verified by converting unstructured data
into structured data through various data preprocessing pro-
cesses [18].
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TABLE 4. Simulation result of steel industry energy consumption data set.

Feature Selection ~ Regression mean std Q0 Q1 Q2 Q3 Q4 CI(Upper)  CI (Lower)
Linear 02715 0.0036  0.2632  0.2691 0.2715 0274  0.27% 0.2725 0.2705
BR 0.2717  0.0035 0.2633  0.2693  0.2713 0.2743  0.2796 0.2727 0.2707
FS DT 0.1912  0.0053 0.1153  0.1215  0.1255 0.1286  0.141 0.1269 0.1239
RF 0.0705 0.0024 0.0658  0.0687  0.0706 0.0724  0.0754 0.0711 0.0698
Xgboost 0.077  0.0021 0.072 0.0757  0.0771  0.0787  0.082 0.0776 0.0764
GBM 0.0911  0.0022 0.0871 0.0893  0.0912  0.0927 0.0954 0.0917 0.0904
LGB 0.0749  0.0023 0.0704  0.0731 0.075  0.0766  0.0796 0.0755 0.0742
Linear 0.2837 0.0034 0.2749  0.2815  0.2837  0.2855  0.2908 0.2846 0.2827
BR 0.2837  0.0034  0.275 0.2815  0.2837  0.2855  0.2908 0.2846 0.2828
FSgcca DT 0.1152  0.0038 0.1061 0.01123 0.1152 0.1182  0.1225 0.1163 0.1141
RF 0.0724  0.0025 0.0678  0.0707  0.0721 0.0748  0.0772 0.0731 0.0717
Xgboost 0.0787 0.0023 0.0742  0.0768  0.0785 0.0807 0.0836 0.0793 0.078
GBM 0.0917 0.0023 0.0877  0.0899  0.0916 0.0936  0.0957 0.0923 0.091
LGB 0.076  0.0023 0.0718 0.0742  0.0763 0.0777 0.0808 0.7067 0.0754
Linear 0.2718 0.0035 0.2634  0.2695  0.2715 0.2734  0.2797 0.2728 0.2708
BR 0.2726  0.0043  0.2653  0.2694  0.2718 0.2748  0.2887 0.2737 0.2714
FSga DT 0.1236  0.0062 0.1076  0.1198  0.1234  0.1281 0.1354 0.1253 0.1219
RF 0.0701  0.0024 0.0652  0.0681 0.0703  0.0722  0.0747 0.0707 0.0694
Xgboost 0.0766  0.0023  0.0721 0.0752  0.0767 0.0786  0.082 0.0773 0.076
GBM 0.0908  0.0023  0.0866 0.089 0.0907  0.0925 0.0954 0.0914 0.0901
LGB 0.0742  0.0021 0.0699  0.0724  0.0743 0.0756  0.079 0.0747 0.0736
Linear 0.2715 0.0036  0.2632  0.2691 0.2714  0.2741  0.2795 0.2725 0.2705
BR 0.2717  0.0035 0.2635 0.2693  0.2713  0.2743  0.2797 0.2727 0.2707
FSppso DT 0.1173  0.0053 0.1066  0.1141 0.1171  0.1211  0.1307 0.1187 0.1158
RF 0.0702  0.0024 0.0659  0.0682  0.0707 0.0723  0.075 0.0709 0.0696
Xgboost 0.0763  0.0022 0.0717  0.0748  0.0763 0.0782  0.081 0.0769 0.0757
GBM 0.0906  0.0024 0.0866  0.0886  0.0905 0.0923  0.0951 0.0913 0.09
LGB 0.0745  0.0022 0.0701 0.0728  0.0748  0.076  0.0795 0.0751 0.0739
Linear 0.2714  0.0036  0.2632  0.2691 0.2712 0274  0.2794 0.2724 0.2705
BR 0.2718 0.0043 0.2633  0.2693  0.2713  0.2742 0.29 0.273 0.2706
FSpwoa DT 0.115  0.0053 0.1062  0.1104 0.1148 0.1184 0.1282 0.1165 0.1135
RF 0.0697  0.0024  0.0651 0.0678  0.0698 0.0719  0.0747 0.0704 0.0691
Xgboost 0.076  0.0022 0.0711 0.0747  0.0762  0.0777  0.081 0.0766 0.0754
GBM 0.0906 0.0023 0.0866  0.0866  0.0906 0.0922  0.095 0.0912 0.0899
LGB 0.0742  0.0021 0.0701 0.0724  0.0743  0.0756  0.079 0.0747 0.0736
Linear 0.2718 0.0039 0.2633  0.2692  0.2716 0.2742  0.2832 0.2729 0.2707
BR 0.2721  0.0045 0.2633  0.2693  0.2715 0.2743  0.2919 0.2733 0.2708
FSpawo DT 0.1175  0.0056 0.1028 0.1129  0.1179  0.1215  0.1262 0.119 0.116
RF 0.0697 0.0025 0.0649  0.0678  0.0697 0.0718  0.0755 0.0704 0.069
Xgboost 0.0763  0.0023  0.0721 0.0748  0.0764 0.0778 0.8016 0.077 0.0757
GBM 0.0907  0.0023  0.0866  0.0891 0.0906 0.0924  0.0951 0.0913 0.0901
LGB 0.0743  0.0022 0.0704  0.0725  0.0744 0.0758 0.0794 0.0749 0.0737

1) COMBINED CYCLE POWER PLANT DATA SET

The first data consists of the hourly electrical energy output
(PE) of the combined cycle power plant over the period
2006 - 2011, and the average ambient temperature (AT),
ambient pressure (AP), relative humidity (RH), and evac-
uation vacuum (V) [19]. Table 1, the proposed evolution-
ary approach feature selection with XGBoost showed the
best performance compared to meta-heuristic algorithms;
that is, average is 9.9552 and 95% confidential interval
is (9.6944,10.216). On the other hand, the original fea-
ture selections without meta-heuristics showed lower per-
formance than others. Here, each result of feature selection
in meta-heuristic approaches is FSgcga = [AT,AP,RH,V],
FScqa = [AT,APRH,V], FSgwos = [AT,AP,RH], and
FSpeowo = [AT,APRH], respectively. Especially, the pro-
posed interpretable feature selection algorithm provided opti-
mal feature combination of [AT,AP][RH,V]. Thanks to those
relationships, it could be possible to explain relations between
features in the given problem.
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2) CPU PERFORMANCE DATA SET

The data set of CPU performance is composed of total 6 inte-
ger input variables including machine cycle time (MYCT),
minimum main memory (MMIN), maximum main mem-
ory (MMAX), cache memory (CACH), minimum channels
in units (CHMIN), maximum channels in units (CHMAX)
to predict the dependent variable, estimated relative per-
formance (ERP) [20]. In Table 2, four metaheuristics
based warping methods showed the best performance com-
pared to the proposed evolutionary-based approach, while
original methods showed low consistency. For an exam-
ple, all of algorithms selected four features (i.e., MMIN,
MMAX, CACH, CHMAX). Here, it could merely recog-
nize whether features selected or not. To overcome its issue,
the proposed feature selection algorithm found the opti-
mal subset of features based on feature relationship model
like [MYCT][MMAX][CACH][CHMIN][MMIN,CHMAX].
Here, while MMIN and CHMAX are dependent, the others
are independent.
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TABLE 5. Simulation result of productivity prediction of garment employees data set.

Feature Selection ~ Regression mean std Qo0 Q1 Q2 Q3 Q4 CI(Upper)  CI (Lower)
Linear 0.0025  0.0027 0.0172 0.0208 0.0226  0.0241  0.0291 0.0232 0.0218
BR 0.0025  0.0026 0.0173  0.0209 0.0227  0.024  0.0287 0.0232 0.0218
FS DT 0.0279  0.0042 0.0192 0.0252 0.0279 0.0309 0.0385 0.0291 0.0268
RF 0.0157  0.0027 0.0114 0.0134 0.0152 0.0182 0.0219 0.0164 0.0149
Xgboost 0.017 0.0027 0.0119  0.0151 0.017  0.0192  0.0224 0.0178 0.0163
GBM 0.0153  0.0023 1.0114 0.0135 0.0152 0.0168  0.0215 0.0159 0.0147
LGB 0.0162  0.0026 0.0116 0.0142 0.016 0.0183 0.0221 0.017 0.0155
Linear 0.00229  0.0027  0.017  0.0207 0.0231 0.0247  0.0291 0.0236 0.0221
BR 0.00229  0.0027 0.0171 0.0207 0.023  0.0247  0.0289 0.0236 0.0221
FSgcca DT 0.0197  0.0026 0.0152 0.0183 0.0192 0.0206 0.0263 0.0204 0.0189
RF 0.0157  0.0022  0.0121 0.014  0.0154 0.0168 0.0214 0.0163 0.0151
Xgboost 0.0164  0.0023 0.0115 0.0149 0.0164 0.0174 0.0214 0.0171 0.0158
GBM 0.015 0.002  0.0117 0.0137 0.0149 0.0162 0.0199 0.0156 0.0144
LGB 0.0155  0.0022 0.0121 0.0139 0.0149 0.0172  0.021 0.0161 0.0149
Linear 0.0225  0.0028 0.0167 0.0203 0.0226  0.0242  0.0294 0.0233 0.0218
BR 0.0223  0.0025 0.0171 0.0205 0.0224  0.024  0.0278 0.023 0.0216
FSga DT 0.0182  0.0023 0.0146 0.0164 0.0178 0.0197 0.0229 0.0188 0.0176
RF 0.0148  0.0022 0.0112 0.0132 0.0145 0.0163  0.019 0.0155 0.0142
Xgboost 0.0158  0.0026 0.0107 0.0144 0.0161 0.0175 0.0205 0.0165 0.0151
GBM 0.0147  0.0021 0.0114 0.0132 0.0147 0.0159 0.0201 0.0153 0.0142
LGB 0.0151 0.0023  0.0107 0.0132 0.0149 0.0165  0.021 0.0157 0.0144
Linear 0.022 0.0026  0.0167 0.0202 0.0222  0.0241  0.0283 0.023 0.0215
BR 0.0223  0.0026 0.0168 0.0203 0.0224  0.024  0.0282 0.023 0.0215
FSppso DT 0.0178  0.0024  0.013 0.0162 0.0179 0.0193 0.0235 0.0185 0.0172
RF 0.0148  0.0023 0.0107 0.0132 0.0149 0.0161 0.0198 0.0155 0.0142
Xgboost 0.0156  0.0025 0.0109 0.0138 0.0158 0.0173  0.0209 0.0163 0.015
GBM 0.0147 0.002  0.0116 0.0133 0.0146 0.0159 0.0201 0.0153 0.0142
LGB 0.0149  0.0022 0.0108 0.0131 0.0148 0.0163 0.0198 0.0155 0.0143
Linear 0.0221 0.0026  0.0166  0.0202 0.0222 0.0239  0.028 0.0228 0.0214
BR 0.0221 0.0026  0.0167 0.0203  0.0223  0.0238  0.0278 0.0228 0.0214
FSpwoa DT 0.0171 0.0023  0.0126  0.0151 0.0173 0.0188 0.0216 0.0177 0.0165
RF 0.0143  0.0023 0.0101 0.0128 0.0142 0.0157 0.0185 0.0149 0.0136
Xgboost 0.015 0.0024 0.01 0.0136  0.015 0.0166 0.0191 0.0157 0.0143
GBM 0.0143 0.002 0.0112 0.0128 0.0142 0.0156 0.0195 0.0149 0.0138
LGB 0.0146  0.0021 0.0107 0.0131 0.0144 0.016  0.0198 0.0152 0.014
Linear 0.0222  0.0027 0.0167 0.0202 0.0224  0.0239  0.0289 0.0229 0.0214
BR 0.0222  0.0026 0.0169 0.0204 0.0224 0.0239  0.0281 0.0229 0.0215
FSpawo DT 0.0177  0.0025 0.0125 0.0155 0.0175 0.0196 0.0232 0.0184 0.017
RF 0.0144  0.0024 0.0104 0.0128 0.0141 0.016  0.0194 0.015 0.0137
Xgboost 0.0155  0.0025 0.0105 0.0138 0.0153 0.0171 0.02 0.0161 0.0148
GBM 0.0145  0.0021 0.0112 0.0132 0.0143  0.0157 0.0199 0.0151 0.0139
LGB 0.0151 0.0024  0.0107 0.0135 0.0146 0.0166 0.0218 0.0157 0.0144

3) STEEL PLATES FAULTS DATA SET

The data set divides stainless steel sheet surface defects
into 7 types such as Pastry, Z_Scratch, K_Scatch, Stains,
Dirtiness, Bumps, and Other_Faults [21]. It consists of
27 features describing their geometric shapes and con-
tours such as Min_X (1), Max_X (2), Min_Y (3),
Max_Y (4), Pixels_Areas (5), Perimeter_X (6), Perime-
ter_Y (7), Sum_Luminosity (8), Minimum_Luminosity
(9), Maximum_Luminosity (10), Length_Conveyer (11),
Steel _A300 (12), Steel_A400 (13), Steel_Plate_Thickness
(14), Edges_Index (15), Empty_Index (16), Square_Index
(17), Outside_X_Index (18), Edges_X_Index (19), Edges_
Y_Index (20), Outside_Global_Index (21), LogOfAreas (22),
Log_X_Index (23), Log_Y_Index (24), Orientation_Index
(25), and Luminosity_Index (26). Type. In Table 3, two meta
heuristic based warping methods (i.e., FSpwoa, FSpGwo)
showed little better performances compared to the pro-
posed feature selection algorithm. For one example, all
meta-heuristic approaches could find each subset of features.
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Firstly, FSgcga selected 14 features such as [3, 5, 8, 10,
11, 12, 13, 14, 15, 16, 19, 20, 21, 25]. Secondly, FSga
selected 11 features such as [1, 4, 9, 13, 14, 16, 21, 22,
24, 25, 26]. Thirdly, FSpspo selected 14 features such as
[2, 3,4, 5,6, 8,10, 11, 12, 15, 17, 18, 19, 23]. Fourthly,
FSpwoa selected 17 features such as [1, 2, 4, 5, 8, 9, 11,
13, 14, 15, 16, 19, 21, 22, 24, 25]. Finally, FSpgwo selected
18 features such as [1, 3, 9, 11, 12, 13, 14, 15, 16, 20,
21, 22, 23, 24, 25, 26]. Here, the proposed algorithm could
achieve the optimal solution based on four kinds of fea-
ture relationship such as [Y_Maximum(4), SteelA300(12)],
[X_Maximum(2), Outside_X_Index(18)], [Steel Plate Thick-
ness(14), Log X index(23)], [Minimum Luminosity(9), Ori-
entation Index(25)]. From those relations, it effectively
described the relationship among features.

4) STEEL INDUSTRY ENERGY CONSUMPTION DATA SET

This data provided by Daewoo Steel in Gwangyang of
South Korea produces several types of coils, steel plates
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TABLE 6. Simulation result of real manufacturing process data set.

Feature Selection ~ Regression mean std Q0 Ql Q2 Q3 Q4 CI(Upper)  CI (Lower)

Linear 1.4579  0.2006  0.9953 13052 1.4802 1.6334 1.9071 1.5135 1.4023

BR 1.435 0.197 09829 1.2745 14618 1.6112 1.7602 1.4896 1.3804

FS DT 2.1522  0.3668 1.5434 19031 2.0806 23569 3.6226 2.2539 2.0505
RF 1.1294  0.2241  0.7775 09555 1.0972 1.286 1.7284 1.1915 1.0672

Xgboost 1.3042  0.257  0.8709 1.1201  1.2719 14504 1.9494 1.3754 1.233

GBM 1.2378 0.2516 0.7813  1.0701  1.1925 1.3929  1.8921 1.3076 1.1681

LGB 0.0162  0.0026  0.886 1.0917 1.224 1.3295  1.8068 1.2716 1.1695

Linear 1.3777  0.1835 09637 1.2329 1.4034 1.5266 1.6982 1.4285 1.3268

BR 1.3747  0.1831 09632 1.2296 1.4025 1.5284 1.6849 1.4254 1.3239

FSgcca DT 1.6139 0.1811  1.2258 1.4893 1.6447 1.7303  2.012 1.6641 1.5637
RF 1.0172  0.1688 0.7156  0.8924  1.0083  1.1375 1.3751 1.064 0.9704

Xgboost 1.1101  0.1735 0.7494 09812 1.0784 1.2556 1.4244 1.1582 1.062

GBM 1.0569 0.1632 0.7785 0.9242 1.0617 1.1923 1.419 1.1021 1.0116

LGB 1.1046  0.1679 0.7305 0.9724 1.111 1.2278  1.4648 1.1511 1.0581

Linear 1.341 0.1799 09492 1.1975 1.3728 14713 1.643 1.3909 1.2911

BR 1.3747  0.1831 0.9632 1.2296 1.4025 1.5284  1.6849 1.4254 1.3239

FSca DT 1.6139  0.1811 1.2258 1.4893 1.6447 1.7303  2.012 1.6641 1.5637
RF 09731 0.1628  0.678  0.8568 0.9739 1.1139 1.3134 1.0185 0.9277

Xgboost 1.0199 0.1455 0.7043 09152 1.0084 1.1136  1.3485 1.0602 0.9796

GBM 1.0086 0.1656 0.7185 0.8714 1.0039 1.1317 1.3834 1.0545 0.9627
LGB 1.0503 0.1573 0.7674 09266 1.0632 1.1764  1.3209 1.0939 1.0067

Linear 13412 0.1755 0.9562 1.1954 1.3742 14729 1.6607 1.3898 1.2925
BR 1.3376  0.1764 09436  1.2056 1.3816  1.4731 1.6435 1.3865 1.2887

FSppso DT 1.4937 0.1819 1.1529 13505 14796 1.5936  1.9939 1.5441 1.4433
RF 09785 0.1623  0.7307 0.8521  0.9534 1.108 1.2992 1.0235 0.9335

Xgboost 1.0502 0.1628  0.761 0.9934  1.0435 1.1781 1.3736 1.0953 1.005

GBM 1.0109 0.1639 0.7047 0.8774 1.0098  1.1328 1.3157 1.0563 0.9655
LGB 1.0443  0.144  0.7659  0.922 1.0672  1.1673  1.2854 1.0843 1.0044

Linear 1.2906  0.1788  0.9039 1.1596 1.3216 1.4206 1.6112 1.3401 1.241
BR 1.2958  0.1799  0.909 1.1606  1.3257 14349 1.6111 1.3457 1.2459
FSpwoa DT 1.2871 0.2015 0.8684 1.1613 1.253 1.3904  1.7508 1.343 1.2312
RF 0935  0.1691 0.6497 0.7975  0.932 1.0663  1.3078 0.9819 0.8881

Xgboost 0.9557 0.1428 0.6831 0.8562 0.9318 1.0627 1.2452 0.9953 0.9161

GBM 09199 0.1506  0.635 0.8267 0.9162 1.0085 1.2495 0.9616 0.8781
LGB 0.9448  0.1384  0.681 0.856  0.9348 1.0385 1.2407 0.9831 0.9064
Linear 1.1395 0.1813 09322 1.1866 1.3513 1.4612 1.6392 1.3697 1.2692
BR 1.3293  0.1826  0.9139 1.19 1.3538  1.4648 1.6439 1.3799 1.2787

FSpawo DT 1.2844  0.1828 0.9647 1.1366 1.2862 1.4029  1.8226 1.3351 1.2338
RF 0.9467 0.1531 0.6897 0.8229 0.9417 1.0526  1.2305 0.9892 0.9043
Xgboost 1.003  0.1607 0.696  0.8722 0.9744 1.1126  1.4079 1.0475 0.9584
GBM 0.9842 0.1581 0.7043 0.8875 0.9571 1.1044 1.303 1.0281 0.9404
LGB 1.0036  0.1517 0.6926  0.8938 1.017 1.1142  1.2876 1.0457 0.9616

and steel plates [22]. Energy usage information by industry
was obtained by collecting daily, monthly, and yearly data.
There are each data feature as follows : Industry Energy
Consumption Continuous(kWh), Lagging Current reactive
power Continuous(kVarh), Leading Current reactive power
Continuous (kVarh), tCO2(CO2) Continuous(ppm), Lagging
Current power factor Continuous(%), Leading Current Power
factor Continuous(%), Number of Seconds from midnight
Continuous(S), Week status Categorical(Weekend or Week-
day), Day of week Categorical(Sunday to Saturday), Load
Type Categorical Light Load, Medium Load, Maximum
Load [21]. Table 4, the proposed evolutionary approach fea-
ture selection with RF showed the best performance com-
pared to meta-heuristic algorithms. For one example, all of
algorithms selected most of features excluding one feature
(i.e., Lagging Current reactive power Continuous). Here, the
proposed approach found one dependent relation of Lead-
ing Current reactive power Continuous and Week status
Categorical.
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5) PRODUCTIVITY PREDICTION OF GARMENT EMPLOYEES
DATA SET

The data relates to the apparel industry, a very labor-intensive
industry. For this industry, the production and delivery per-
formance of garment manufacturing company employees is
critical to meeting global demand [23]. The data used in this
study for regression purposes to predict the productivity range
(0-1). The factors of this data are as follows: Date (1), Day of
the Week (2), Quarter (3), Associated department with the
instance (4), Associated team number with the instance (5),
Number of workers in each team (6), Number of changes
in the style of a particular product (7), Targeted produc-
tivity set by the Authority for each team for each day (8),
Standard Minute Value (9), Work in progress (10) including
the number of unfinished items for products, Represents the
amount of overtime by each team in minutes (11), Represents
the amount of financial incentive (in BDT) that enables or
motivates a particular course of action (12), The amount
of time when the production was interrupted due to several
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reasons (13), The number of workers who were idle due to
production interruption 1(14). The actual % of productivity
that was delivered by the workers. It ranges from 0-1 [23].
Table 5, the proposed evolutionary approach feature selec-
tion with machine learning based regressions (RF, XBGoost,
GBM, LGB) showed the best performance compared to meta-
heuristic algorithms. For one example, all meta-heuristic
approaches could find each subset of features. Firstly, FSga,
FSppso, FSpwoa, and FSpgwo selected 8 features whose
position number was [1, 4, 5, 6, 7, 10, 11, 12]. However,
the proposed algorithm of F'Sgcga selected 8 features whose
position number was [2, 5, 6, 7, 8, 9, 10, 11]. Here, the
proposed algorithm could achieve the optimal solution based
on three dependent feature relationships such as [2, 5][6][]
[8, 9][10, 11]. Based on those relations, it effectively
describes the relationship among optimal features.

6) REAL MANUFACTURING PROCESS DATA SET

In general, data collected and utilized in the manufacturing
process consists of various inputs. Thus, it is difficult to intu-
itively analyze the relationship between variables. Effectively
to solve this problem, a preliminary analysis is performed
on collected data based on the domain knowledge of the
manufacturing process, but it is still almost impossible to
analyze the relationship between factors. Also, classification
and prediction analysis were not so different that the results
were barely available for interpretation on the relationship
between factors. The main difficulty is that it is implau-
sible to derive an accurate result through classification or
prediction based on the performed analysis. This section
attempts to verify the performance of the algorithm by using
20 process factors and quality result data collected from a
specific manufacturing company. Detailed explanations on
the data, however, are excluded due to security issues in
the manufacturing process of the company that provided
the data. Table 6, the proposed evolutionary approach fea-
ture selection with machine learning based regressions (RF,
XGBoost, GBM, LGB) showed the best performance com-
pared to meta-heuristic algorithms. Firstly, FSecGa, FSga,
FSppso, and FSpewo selected 9 features whose position
number was [4,5,7,8,9, 10, 15, 16, 17, 18, 19]. The other
of FSpwoa selected 11 features whose position number was
[1,2,4,7,8,9,12, 14, 16, 19, 20]. Here, the proposed algo-
rithm could achieve the optimal solution based on three
kinds of feature relationship such as [3, 16][11, 12][18, 19].
From those relations, it effectively described the relationship
among features.

V. CONCLUSION

In this paper, we propose a novel feature selection framework
employing evolutionary approaches, especially estimation
of distribution algorithm (EDA). Most of data analy-
sis techniques affiliated with artificial intelligence domain
includes characteristics of deriving features and patterns
among numerous amounts of data. Meanwhile, reasoning out
causal substance from astronomical number of variables and
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parameters in artificial intelligence models is significantly
challenging. Accordingly, recent trend in artificial intelli-
gence stresses about the importance of explainability regard-
ing data training results. With the combined use of feature
selection as well as evolutionary algorithm, we deliver logical
outcome from the data analysis results through employing
extended compact genetic algorithm (ECGA). By expanding
the set of features candidate pool, we search for the most
optimal subset of features combination using evolutionary
algorithms. Particularly, ECGA is specialized in providing
how such solution is derived based on probabilistic mod-
els during generation cycle. In other words, model blocks
enable tracing back the cluster combination outcomes and
interpreting the data analysis results as well. Our proposed
approach shows meaningful performance compared to state-
of-the-art metaheuristic based feature selection algorithms.
We reckon that our proposed research has advantages of not
only prominent performance in predictions but also logical
background for data analysis result. In real manufacturing
industries, the data set contains numerous features. In the
feature selection problems, the scalability of the proposed
algorithm for processing large data is important. Another
important point is stability for solving feature selection prob-
lems because the proposed algorithm finds the same subset of
features for different dataset samples. However, most feature
selection algorithms become unstable due to the iterative
process to find the optimal classification. Therefore, stability
is just as important as classification accuracy.
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