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ABSTRACT

Neural networks (NN) have shown promising performance in point cloud segmentation (PCS). However,
the measured points are too numerous to be used as model input at once. It results in a long inference
time and high computational cost due to iterative sampling and inference. This study proposes Probability
Propagation (PP) as a stochastic upsampling method. PP propagates the predicted probability of a sampled
part of a point cloud into the other unpredicted points by considering proximity. By replacing the iterative
inference of NN with PP, large point clouds can be dealt with quickly and efficiently. We investigated
the effectiveness of PP using the ShapeNet benchmark on various settings: sampling methods (random,
farthest point, and Poisson disk sampling) with sampling ratios (5%, 10%, 20%, 39%, and 78%) for NN
and the stochastic mapping conditions (uniform, linear, cosine, Gaussian, and exponential distributions)
for PP. Using NN with PP achieved higher performance and faster inference speed than when using NN
alone. For the farthest point sampling method of 5% sampling ratio, NN+PP improved the instance mloU
by 2.457%p with 102 times faster speed compared to that when using NN alone. The result indicates that
PP can significantly contribute to the improvement of performance and efficiency in PCS when used in

edge Al systems.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

As the demand for mobile robots and autonomous vehicles
grows, so has the need for LiDAR (light detection and ranging) used
to scan and understand their surroundings [1]. High-resolution 3D
laser scanners are now widely used for various applications on the
ground and in the air, such as drones and unmanned aerial vehi-
cles [2]. In understanding the environment through a point cloud
acquired by the laser scanner, it is crucial to recognize the distance
and shape of the object and to distinguish each part individually
for the intelligent manipulation of autonomous systems and proper
real-time interaction with the surrounding environment [3].

Point cloud segmentation (PCS) is the task of dividing the point
cloud into subsets with the same parts by classifying each point
in the point cloud [4-7]. Compared to 2D segmentation of images,
3D PCS is highly challenging when the point cloud is not struc-
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tured and ordered data in situations where point clouds continue
to accumulate over time [8], such as mobile mapping. It also has
high redundancy and nonuniform point density [2]. Following the
success of deep learning in the image domain, many algorithms
have been proposed for the PCS. For the early approaches, vox-
elized point clouds were segmented using 3D CNN [9,10]. How-
ever, they require substantial computational costs to represent the
volumes. The following research [11] proposed the fully connected
layer to input the point cloud directly into a neural network (NN).
Though these methods have improved the PCS performances using
the simple layers, they failed to capture local patterns within com-
plex scenes. Recent studies found that utilizing feature aggregation
modules, which extract and aggregate features by progressively en-
larging receptive fields, helped preserve geometric details [12-14].

The introduced methods have improved the PCS performance;
however, there are still remaining issues, in terms of field applica-
bility, for edge Al systems with low-cost computing, such as mo-
bile robots, autonomous vehicles, and self-driving drones. As the
resolution of LiDAR increases, the number of scanned points be-
comes too large to be inferred at once by NNs [15]. The amount of
memory available limits the model performance [16]. Inferring a
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large number of points with limited memory requires sampling
some of the point clouds and inferring multiple times up to the
entire point prediction [14], where a trade-off between memory
and inference time exists.

This study proposes Probability Propagation (PP) as a stochas-
tic mapping method. PP replaces expensive NN inferences with
the propagation of the inferred probability distribution to save in-
ference time along with reduced memory usage. We investigated
the effectiveness and efficiency of PP by comparing the PCS per-
formance of NN alone to that of NN with PP for various experi-
ment settings: sampling methods for NN and weight function for
PP, called stochastic mapping conditions. PointNet++ [12] was used
as NN, and ShapeNet part segmentation dataset [17] was used as
the dataset.

This study provides a simple solution for maintaining the su-
perior segmentation performance of NN even with significantly re-
duced inference time and memory usage. Furthermore, in respect
of the maintainability of devices, the more the graphic proces-
sor unit (GPU) is used for the segmentation of all the points in
the point cloud, the less the battery life of the systems lasts [18].
Therefore, it is necessary to develop a method to perform the PCS
for all points successfully while minimizing GPU usage. PP can con-
tribute to reducing the computational cost of PCS required for the
embedded Al systems by minimizing data transfer between edge
devices and a high-performance GPU server and minimizing the
number of inferences via GPUs.

2. Related works
2.1. Deep learning based point cloud segmentation

Segmentation of voxelized point clouds was an early approach
for PCS based on deep learning. Maturana et al. proposed the
VoxNet [9] which applied 3D CNN to detect target objects from
voxelized point clouds. The irregularity and unstructured problems
of a point cloud can be solved by voxelization. Tchapmi et al. pre-
sented the end-to-end PCS framework called SEGCloud [10]. Coarse
segmentation results were estimated by using the voxelized point
clouds. After the coarse segmentation, detailed parts were seg-
mented via trilinear interpolation and refined via fully connected
random fields. However, they have the disadvantage of containing
a lot of unnecessary information because voxel structures store oc-
cupied spaces as well as free spaces, which requires huge memory
usage [11].

Qi et al. presented the pioneering work, PointNet [11], which
consists of max pooling and fully connected layers that consume a
point cloud as input. Before the fully connected layers, they applied
the simple symmetry function to the point sets to make a model
invariant to permutation. Compared with the previous approaches
[9,10], PointNet has advantages in its simplicity along with superior
performance. However, it failed to capture local patterns within
the complex scenes. Its follow-up study [12] applied hierarchical
grouping and sampling approaches to progressively extract features
of larger regions along the hierarchy. Similarly, Zhao et al. utilized
self-attention maps to preserve the relationship among the points
[13].

To expand the applicability of PCS algorithms even in limited
resource environments, Hu et al. proposed RandLANet that merged
the random sampling with local feature aggregation module [14] in
an efficient manner. In order to minimize the possibility of miss-
ing key points during random sampling and preserve the geometric
details, a local feature accumulation module was used to extract
the relations among the sampled points. This model contributes
to reducing the inference time and memory consumption required
for the inferences using NN. However, the proposed approach has
a limited attentive field, which may not be effective for capturing
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contextual information for points that are far away from each other
or are collected in detail and densely. Additionally, while Rand-
LANet is focused on fast inference for down-sampled points, it still
requires an upsampling method to segment the entire point cloud.
As a result, we aim to develop a fast and accurate upsampling
method that considers contextual information for all points.

3. Proposed methodology

This study investigates the performance and efficiency of PCS
based on the proposed methodology using NN with PP (NN+PP).
The overall procedure of NN+PP is depicted in Fig. 1. Instance mloU
are evaluated in terms of performance. Relative inference time and
average iteration count are compared in terms of efficiency. We
first state the problem definition that segments all the points in
a point cloud using NN with a sampling method of a specific
number of points. Next, we introduce our proposed approach with
NN+PP, which significantly reduces the inference time required for
all the points in the point cloud and even improves PCS perfor-
mance. Multiple inferences via NN are replaced by PP in the pro-
posed method, in which the prediction probability distributions of
the points inferred by NN with the initial sampling are stochasti-
cally spread to the other unlabeled points to reduce computational
costs.

3.1. Problem statement

For PCS using NN alone, points in a point cloud must be divided
into the sampled points whose number fits the model input size.
The points in the point cloud can be defined as

X=XuXxY, (1)

where X € RN3 are all the points in the point cloud; X5 € R*3 and
XV € RIN-mx3 3re the sampled and unsampled points, respectively.
N is the total number of points in the point cloud and n is the
number of sampled points.

For the sampled points, NN predicts their labels as a form of

probability p(y; = C|x;; X; € X), where y; is the predicted label of
the ith point, C is the ground truth label, and x; is the x,y,z co-
ordinates of the ith point. The probability distributions (pyy) from
NN represent the probability that a subset of sampled points X5
corresponds to their classes as follows:
P (Y IX%) = H(X®), (2)
where #:X5—y° is the model for the PCS and y°=
395, ... y5} are the predicted labels for the sampled points. If
n is smaller than N, the model is required to be used as many
times as the quotient of N divided by n for the segmentation of
all points in the point cloud until XU has no element; the PCS by
iterative inference using NN is described in Algorithm 1.

However, the multiple inferences of the model are computa-
tionally expensive and time-consuming, especially when N > n. In-
stead of repetitive inferences, we propose a novel method to prop-
agate the probability distributions of the initial sampled points to
the neighboring unsampled points. The objective of our proposed
approach is the estimation of a probability distribution that the ith
unsampled point xIU is classified into their classes when the prob-
ability distributions for sampled points are given as follows:

PO X X! € XV, pan (¥ 1X5)). 3)

3.2. Probability propagation (PP)

We propose the PP algorithm to propagate the probabilistic dis-
tributions of the sampled points to the unsampled points, stochas-
tically weighted by the normalized distance between them. PP ap-
proaches involve segmentation, accumulation, and normalization.
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Fig. 1. The overall pipeline of probability propagation. The segmentation of all the points is conducted by single inference via a NN for its initial sampled points and then

iterative probability propagation for the remaining points.

Algorithm 1 PCS by iterative inference using NN with sampling
for all the points (NN).
1: Input: the coordinates (X, y, z) of a point x, all the points of a
point cloud X, the unlabeled points XY, the number of points
for the model input N5, and the probabilitydistributions pyy

2: Output: the predicted results y for all the points X
3: NV « length(XY)

4: while NV > 0 do

5:  X° « the sampled NS points from XY
6: XU« {x¢X5)

7. ¥® < pyn(¥°|X®) as in Eq. (2)

8 y<«yuy

9:  NU < length(XY)

10:  if NY < NS then

11: XA « (NS — NY) points from {x € X5}
12: XU XU uxA

13: NU NS

14:  end if

15: end while

First, the segmentation model is utilized for the prediction of the
initial sampled points. Then, the probability distribution of each
unsampled point is estimated by accumulating the probability dis-
tributions of neighboring sampled points and normalizing the ac-
cumulated probability distribution.

For the segmentation, the probability distribution of the ith un-
labeled point from the jth labeled point is obtained by the follow-
ing equation:

PO X/ X! € XV, p(y3Ix3: x5 € X°))

— S(d(Y, X5)dg) + PSS, %

where S(-) is the stochastic weight function. d(x;,x;) = %

is the normalized L, distance measure between the input points
where Dy is the maximum distance obtained as twice the largest
radius that is the distance between the centroid of the point cloud
and its furthest point. Using Dy, the distance between the points
was normalized to lie between 0 to 1. It may be unreasonable to
use the maximum reference distance (D);) as defined in this study
when outliers exist very far away. Therefore, it is necessary to pre-
process for handling outliers. It is also possible to normalize using
a criterion other than necessarily the greatest distance consider-
ing the density and maximum distance of points. S(d(x%’,x?)ldg)
is the stochastic weight function that inputs the normalized dis-
tance between two points and then outputs the weight factor for
the accumulation. di is the effective distance ratio for reflecting
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neighboring sampled points only; if a normalized distance between
the sampled and unsampled points is larger than the effective dis-
tance, the weight is set to 0 to exclude the influence of distant
points. If PP does not occur due to insufficient dg, dg is temporar-
ily increased by 1.5 at the next PP until PP occurs.

The probability distributions for an unsampled point obtained
from sampled points are summed as follows:

NS
AR, pOFIX5)) = Y (S x)dr) * p(ySIxS)).

Jj=1

(3)

where N° is the number of labeled points.

Finally, the accumulated results are normalized for each itera-
tion of PP by applying the softmax function to the accumulated
probability distribution as follows:

prr (Y XV xV € XU, p(y°IX%))
_Jo if |AY, p(¥*1X*))[l1 =0
~ o AGY, p(¥¥IX5))) otherwise

where o (-) is the softmax function to normalize the probabil-
ity distribution. If ppp(yY[xV;: XY € XU, p(y|X®)) = 0, the probabil-
ity distributions for a unsampled point x}’ is not determined for
this time. The propagation process is repeated until all points are
segmented, as described in Algorithm 2. This is denoted as NN+PP
in the following sections.

(6)

4. Experiments
4.1. Dataset: Shapenet

ShapeNet [17] is a richly-annotated, large-scale dataset of 3D
shapes that covers 55 common object categories. It provides 3D
models that can be utilized for various tasks (e.g., 3D shape clas-
sification, part segmentation, and semantic segmentation). The
ShapeNet part segmentation dataset is a subset of the ShapeNet
designed for part segmentation of 3D objects. It consists of 16,881
3D objects obtained from 16 categories of common things, anno-
tated with 50 parts in total. Each object has 2 to 5 distinct parts.
For the PCS experiments, point clouds are sampled from the 3D
objects according to the settings in [19]; point clouds are com-
posed of 2620 points on average. The train test split follows [17].

4.2. Neural network: PointNet++
PCS Model. The ultimate PCS performance was highly depen-

dent on the performance of NN. We utilized PointNet++ [12], an
end-to-end deep learning framework specialized for point clouds.
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Algorithm 2 PCS via single inference using NN with sampling for
the initial sampled points and then via iterative probability propa-
gation for the other points (Ours, NN+PP).

1: Input: the coordinates (x, y, z) of a point x all the points of a
point cloud X, the unlabeled points XU, the number of points
for the model input N5, the probabilitydistributions pyy, theac-
cumulated probability distribution ppp, and the effective dis-
tance ratio dg

2: Output: the predicted results y for all the points X

3: XS « the initial sampled N5 points from XV

4: XU « [x ¢ X5}

5: ¥° < pyn(Y¥IX®) as in Eq. (2)

6: dE,default < dg

7

8

9

. while length(XY) > 0 do
XA {}
for xV in XU do

W ppp (WY XV xV e XU, p(y¥|X5))

as in Eq. (6)
11: if yV # 0 then
12 XA XA u {xV}
13: v <—y5U{J/f~’}
14: end if
15:  end for
16: XS < XuxA
17: XU XU _xA
18: y<yuy
19:  if length(X#) > 0 then
20: dp < dE,default
21:  else
22: dE <« dE x 1.5
23:  end if

24: end while

It consists of a sampling and grouping layer for building a hier-
archical grouping of points and PointNet [11] layer, which includes
max-pooling and fully-connected layers to extract features of larger
regions along the hierarchy progressively. The extracted features
are subsequently aggregated to extract global features with multi-
resolution grouping methods. In this study, the model was trained
with a batch size of 16 and an epoch of 300. Early stopping was
set with the patience of 50. Adam optimizer was utilized with a
learning rate of 0.001, betas ranging from 0.9 to 0.999, and a decay
rate of 0.0001. It should be noted that the training, verification,
and testing were conducted on the sampled points according to
each sampling condition. The best performance models were used
for the performance comparison between using NN alone and us-
ing NN+PP.

Sampling Methods. We sampled the input point cloud into
subsets of 128, 256, 512, 1024, and 2048 points using three differ-
ent sampling methods: random sampling, Poisson disk sampling
[20], and farthest point sampling [12]. The number of sampled
points, 128, 256, 512, 1024, and 2048, corresponded approximately
5%, 10%, 20%, 39%, and 78% of the averaged total number of points,
respectively. The random sampling method selects subsets of
points from all the sets with the same probability of selection for
each point. While random sampling provides a uniform probability
of sample placement, it does not ensure that the sampled points
are distributed uniformly. The Poisson disk sampling selects points
with the constraint that no two selected samples are closer than
the Poisson disk radius. When compared to random sampling,
the Poisson disk sampling produces more uniformly distributed
samples across the sampling domain due to the constraints of
distance among the selected points, as illustrated in Fig. 2. The
farthest point sampling is the most widely utilized method that
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« Airplane (2582 points in total)
« 5% Random Sampling

« Airplane (2582 points in total)
« 5% Farthest Point Sampling

e Airplane (2582 points in total)
« 5% Poisson Disk Sampling

Fig. 2. The visualization of the sampled points for the sampling method with a
sampling ratio of 5%.
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Fig. 3. Uniform, cosine, linear, Gaussian, and exponential distributions for probabil-
ity propagation with the effective distance ratio (dg: 0.1).

selects a group of points farthest apart from each other. Through
the iterations, the subsets of points are selected by maximizing
the distance between them. Similar to the Poisson disk sam-
pling method, farthest point sampling has better coverage of the
sampling domain than the random sampling method.

4.3. Probability propagation settings

As shown in Fig. 3, five probability distributions (uniform, co-
sine, linear, Gaussian, and exponential distributions) were used as
the stochastic weight functions, S(-), and set effective distance ra-
tios, dg, ranging from 2% to 80% in 2%p increments. Optimal combi-
nations of propagation weight function and effective distance ratio
were investigated through ablation studies.

4.4. Metrics

Instance mloU was used as a PCS performance measure. The
mloU is calculated by taking the IoU, a.k.a. Jaccard index, of each
class or each instance and averaging them. The IoU is the number
of points where the predicted label and the ground truth are the
same divided by the number of points where the predicted label
and the ground truth exist. Relative inference time and average it-
eration count are compared in terms of efficiency. The performance
was measured under the same conditions using CPU (AMD Ryzen
9 3900X) and GPU (NVIDIA GeForce RTX 3070) in Ubuntu 18.04.6
LTS.

5. Results and discussion

The best-trained NN for each sampling condition was used to
compare the PCS performance between using sampling and NN for
all points and using NN for the initial sampled points and itera-
tive PP for the other points. For the sampling methods (random,
farthest point, and Poisson disk sampling), sampling ratio (about
5%, 10%, 20%, 39%, and 78% of the average total number of points
in the point cloud), and effective distance ratio (from 2% to 80% in
2%p increments), the instance mloU is shown in Fig. 4.

NN with Poisson disk sampling achieved the highest instance
mloU compared with NN with farthest point sampling and random
sampling. Regardless of the sampling method, the instance mloU
with NN+PP was always higher than with NN alone. These results
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Fig. 4. Instance mean intersection over union (mloU) for sampling method, sampling ratio, and effective distance ratio.

support the claim that PP contributes to PCS performance improve-
ment and more physically reasonable segmentation based on the
number of neighboring points and their proximity by spreading
the probability distribution of each point to geometrically adja-
cent points. Unlike the farthest point and Poisson disk sampling
methods, random sampling does not ensure that sampled points
cover the point cloud regions evenly, especially when the den-
sity of points is imbalanced. The normalized distances between the
closest neighboring points have different standard deviations ac-
cording to the sampling method, as shown in Fig. 5. The proba-
bility density of the random sampling is more dispersed than that
of the other sampling methods in the histogram. The points sam-
pled by random sampling were more locally clustered than those
by the other sampling methods, and this phenomenon appeared
to be obvious as the sampling ratio was small. These results sug-
gest that the sampling method with a low standard deviation of
the distances between the closest neighboring points is appropri-
ate for PP.

Exponential, Gaussian, cosine, linear, and uniform distribution
are arranged in descending order of their performance when us-
ing NN+PP. This means that it is advantageous to use PP to as-
sign higher probabilistic weight to closer and adjacent points. PP
demonstrated a better effect with fewer sampling points, implying

28

that PP is useful for conditions requiring high efficiency. The per-
formance increased until the best effective distance ratio for each
sampling condition, and then it decreased thereafter. This is be-
cause the influence of the probability distributions of distant un-
related points increases as the effective distance gets longer. This
characteristic was more apparent in using the exponential distri-
bution compared to those of the other distributions. When using
the exponential distribution, the stochastic weight increases much
more drastically as the distance to the adjacent point decreases,
i.e., the neighboring point is closer, as shown in Fig. 3. This is at-
tributed to the fact that negative probability distributions of irrele-
vant points spread as strongly as positive probability distributions
of relevant points spread strongly. In particular, a small effective
distance ratio is preferable to improve the efficiency when using PP
since the computational cost to accumulate the probability distri-
butions of close neighboring points increases exponentially. There-
fore, the exponential distribution is recommended for PP because
of its superior performance and a wider range of the optimal effec-
tive distance, i.e., it is favorable to choose a small effective distance
ratio for high efficiency with reasonable performance.
Furthermore, we performed a class-wise mloU comparison be-
tween NN and NN+PP in the best condition using NN with Pois-
son disk sampling and PP based on exponential distribution. As
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Table 2

Pattern Recognition Letters 170 (2023) 24-31

Inference time per object at the best instance mean intersection over union according to sampling condition

(unit: second).

Sampling Inference Sampling Ratio
Method Method
5% 10% 20% 39% 78%

Random NN 4.881 2.339 1.238 0.504 0.287
Sampling NN+PP 0.153 0.141 0.203 0.243 0.264
NN/(NN+PP) 31.810 16.641 6.112 2.079 1.087
Farthest NN 4.661 2.576 1.453 0.796 0.451
Point NN+PP 0.046 0.070 0.134 0.198 0.206
Sampling NN/(NN+PP) 102.267 36.649 10.875 4.016 2.184
Poisson NN 2.769 1.171 0.692 0.329 0.208
Disk NN+PP 0.048 0.071 0.110 0.171 0.225
Sampling NN/(NN-+PP) 57.659 16.415 6.311 1.927 0.923

—e— Random Sampling
Farthest Point Sampling
—8— Poisson Disk Sampling

Best Effective Distance Ratio [%)]

T T T T T T T T T T T T T T T T
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Sampling Ratio [%]

Fig. 6. Best effective distance ratio for sampling method and its ratio at the best
instance mean intersection over union.
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distribution relative to using NN at the best instance mean intersection over union
(mloU).
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proved efficiency. Especially when using 5% farthest point sampling
for NN, the instance mloU with NN+PP was improved by approx-
imately 2.457%p, and the inference speed is 102 times faster than
using NN alone.

6. Conclusions

We proposed Probability Propagation (PP) as a stochastic map-
ping method for faster and more efficient PCS with better perfor-
mance while reducing memory usage and inference time. Empiri-
cally, we investigated the efficiency of PP in various settings: sam-
pling methods, sampling ratios, and effective distance ratios. Re-
gardless of the sampling methods, the instance mloU with NN+PP
showed higher performance, and the inference time was much
shorter than when using NN only. Specifically, PP based on expo-
nential distribution was superior to others regardless of the per-
formance metric, thereby indicating that it is advantageous to use
PP to assign a higher probabilistic weight to close adjacent points.
Especially, adopting PP yielded better results in terms of fewer
sampling points; when the number of sampled points was less
than 50% of the average total number of points, PP significantly re-
duced the inference time, i.e., dramatically improved the efficiency.
Specifically, using farthest point sampling with the sampling ra-
tio of 5%, NN+PP improved the instance mloU by 2.457%p with
102 times faster PCS compared to that when using NN alone. This
indicates that PP is more effective for harsh conditions requiring
high efficiency and low battery usage. Furthermore, the proposed
method can be easily applied to other frameworks for PCS or im-
age segmentation. Consequently, PP can replace the part of the NN
inferences with enhanced simplicity and efficiency, which is the
more friendly approach for constrained situations such as mobile
robots and self-driving drones. Significant improvements in perfor-
mance and efficiency when using NN+PP indicate that PP enables
the segmentation of numerous points measured using laser scan-
ners on edge Al systems that require low-cost computing costs
with limited memory. Especially outdoor mobile systems such as
mobile robots, autonomous automobiles, and unmanned aerial ve-
hicles need to continuously collect fine point clouds and grasp the
surrounding situation in real time based on the accumulated point
clouds. Repetition of point sampling and inference using NN alone
is time-consuming and requires expensive computational costs that
accelerate battery discharge and significantly reduce device up-
time. In addition, a long inference time causes delays in decision-
making based on the situation, making it difficult to respond to
the rapidly changing environment properly. Since this can cause fa-
tal accidents and device damage, mobile systems require fast and
efficient PCS. To this end, the proposed PP is an effective and pow-
erful solution for the segmentation of the large-scale point cloud
with high-speed and low-cost computing as well as performance
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enhancements. Therefore, the adoption of PP can greatly expand
the applicability of PCS to edge Al systems.
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