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a b s t r a c t 

Neural networks (NN) have shown promising performance in point cloud segmentation (PCS). However, 

the measured points are too numerous to be used as model input at once. It results in a long inference 

time and high computational cost due to iterative sampling and inference. This study proposes Probability 

Propagation (PP) as a stochastic upsampling method. PP propagates the predicted probability of a sampled 

part of a point cloud into the other unpredicted points by considering proximity. By replacing the iterative 

inference of NN with PP, large point clouds can be dealt with quickly and efficiently. We investigated 

the effectiveness of PP using the ShapeNet benchmark on various settings: sampling methods (random, 

farthest point, and Poisson disk sampling) with sampling ratios (5%, 10%, 20%, 39%, and 78%) for NN 

and the stochastic mapping conditions (uniform, linear, cosine, Gaussian, and exponential distributions) 

for PP. Using NN with PP achieved higher performance and faster inference speed than when using NN 

alone. For the farthest point sampling method of 5% sampling ratio, NN+PP improved the instance mIoU 

by 2.457%p with 102 times faster speed compared to that when using NN alone. The result indicates that 

PP can significantly contribute to the improvement of performance and efficiency in PCS when used in 

edge AI systems. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

As the demand for mobile robots and autonomous vehicles 

rows, so has the need for LiDAR (light detection and ranging) used 

o scan and understand their surroundings [1] . High-resolution 3D 

aser scanners are now widely used for various applications on the 

round and in the air, such as drones and unmanned aerial vehi- 

les [2] . In understanding the environment through a point cloud 

cquired by the laser scanner, it is crucial to recognize the distance 

nd shape of the object and to distinguish each part individually 

or the intelligent manipulation of autonomous systems and proper 

eal-time interaction with the surrounding environment [3] . 

Point cloud segmentation (PCS) is the task of dividing the point 

loud into subsets with the same parts by classifying each point 

n the point cloud [4–7] . Compared to 2D segmentation of images, 

D PCS is highly challenging when the point cloud is not struc- 
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ured and ordered data in situations where point clouds continue 

o accumulate over time [8] , such as mobile mapping. It also has 

igh redundancy and nonuniform point density [2] . Following the 

uccess of deep learning in the image domain, many algorithms 

ave been proposed for the PCS. For the early approaches, vox- 

lized point clouds were segmented using 3D CNN [9,10] . How- 

ver, they require substantial computational costs to represent the 

olumes. The following research [11] proposed the fully connected 

ayer to input the point cloud directly into a neural network (NN). 

hough these methods have improved the PCS performances using 

he simple layers, they failed to capture local patterns within com- 

lex scenes. Recent studies found that utilizing feature aggregation 

odules, which extract and aggregate features by progressively en- 

arging receptive fields, helped preserve geometric details [12–14] . 

The introduced methods have improved the PCS performance; 

owever, there are still remaining issues, in terms of field applica- 

ility, for edge AI systems with low-cost computing, such as mo- 

ile robots, autonomous vehicles, and self-driving drones. As the 

esolution of LiDAR increases, the number of scanned points be- 

omes too large to be inferred at once by NNs [15] . The amount of

emory available limits the model performance [16] . Inferring a 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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arge number of points with limited memory requires sampling 

ome of the point clouds and inferring multiple times up to the 

ntire point prediction [14] , where a trade-off between memory 

nd inference time exists. 

This study proposes Probability Propagation (PP) as a stochas- 

ic mapping method. PP replaces expensive NN inferences with 

he propagation of the inferred probability distribution to save in- 

erence time along with reduced memory usage. We investigated 

he effectiveness and efficiency of PP by comparing the PCS per- 

ormance of NN alone to that of NN with PP for various experi- 

ent settings: sampling methods for NN and weight function for 

P, called stochastic mapping conditions. PointNet++ [12] was used 

s NN, and ShapeNet part segmentation dataset [17] was used as 

he dataset. 

This study provides a simple solution for maintaining the su- 

erior segmentation performance of NN even with significantly re- 

uced inference time and memory usage. Furthermore, in respect 

f the maintainability of devices, the more the graphic proces- 

or unit (GPU) is used for the segmentation of all the points in 

he point cloud, the less the battery life of the systems lasts [18] .

herefore, it is necessary to develop a method to perform the PCS 

or all points successfully while minimizing GPU usage. PP can con- 

ribute to reducing the computational cost of PCS required for the 

mbedded AI systems by minimizing data transfer between edge 

evices and a high-performance GPU server and minimizing the 

umber of inferences via GPUs. 

. Related works 

.1. Deep learning based point cloud segmentation 

Segmentation of voxelized point clouds was an early approach 

or PCS based on deep learning. Maturana et al. proposed the 

oxNet [9] which applied 3D CNN to detect target objects from 

oxelized point clouds. The irregularity and unstructured problems 

f a point cloud can be solved by voxelization. Tchapmi et al. pre- 

ented the end-to-end PCS framework called SEGCloud [10] . Coarse 

egmentation results were estimated by using the voxelized point 

louds. After the coarse segmentation, detailed parts were seg- 

ented via trilinear interpolation and refined via fully connected 

andom fields. However, they have the disadvantage of containing 

 lot of unnecessary information because voxel structures store oc- 

upied spaces as well as free spaces, which requires huge memory 

sage [11] . 

Qi et al. presented the pioneering work, PointNet [11] , which 

onsists of max pooling and fully connected layers that consume a 

oint cloud as input. Before the fully connected layers, they applied 

he simple symmetry function to the point sets to make a model 

nvariant to permutation. Compared with the previous approaches 

9,10] , PointNet has advantages in its simplicity along with superior 

erformance. However, it failed to capture local patterns within 

he complex scenes. Its follow-up study [12] applied hierarchical 

rouping and sampling approaches to progressively extract features 

f larger regions along the hierarchy. Similarly, Zhao et al. utilized 

elf-attention maps to preserve the relationship among the points 

13] . 

To expand the applicability of PCS algorithms even in limited 

esource environments, Hu et al. proposed RandLANet that merged 

he random sampling with local feature aggregation module [14] in 

n efficient manner. In order to minimize the possibility of miss- 

ng key points during random sampling and preserve the geometric 

etails, a local feature accumulation module was used to extract 

he relations among the sampled points. This model contributes 

o reducing the inference time and memory consumption required 

or the inferences using NN. However, the proposed approach has 

 limited attentive field, which may not be effective for capturing 
25
ontextual information for points that are far away from each other 

r are collected in detail and densely. Additionally, while Rand- 

ANet is focused on fast inference for down-sampled points, it still 

equires an upsampling method to segment the entire point cloud. 

s a result, we aim to develop a fast and accurate upsampling 

ethod that considers contextual information for all points. 

. Proposed methodology 

This study investigates the performance and efficiency of PCS 

ased on the proposed methodology using NN with PP (NN+PP). 

he overall procedure of NN+PP is depicted in Fig. 1 . Instance mIoU 

re evaluated in terms of performance. Relative inference time and 

verage iteration count are compared in terms of efficiency. We 

rst state the problem definition that segments all the points in 

 point cloud using NN with a sampling method of a specific 

umber of points. Next, we introduce our proposed approach with 

N+PP, which significantly reduces the inference time required for 

ll the points in the point cloud and even improves PCS perfor- 

ance. Multiple inferences via NN are replaced by PP in the pro- 

osed method, in which the prediction probability distributions of 

he points inferred by NN with the initial sampling are stochasti- 

ally spread to the other unlabeled points to reduce computational 

osts. 

.1. Problem statement 

For PCS using NN alone, points in a point cloud must be divided 

nto the sampled points whose number fits the model input size. 

he points in the point cloud can be defined as 

 = X 

S ∪ X 

U , (1) 

here X ∈ R N×3 are all the points in the point cloud; X 

S ∈ R n ×3 and

 

U ∈ R (N−n ) ×3 are the sampled and unsampled points, respectively. 

is the total number of points in the point cloud and n is the 

umber of sampled points. 

For the sampled points, NN predicts their labels as a form of 

robability p(y i = C| x i ; x i ∈ X ) , where y i is the predicted label of

he i th point, C is the ground truth label, and x i is the x, y, z co-

rdinates of the i th point. The probability distributions (p NN ) from 

N represent the probability that a subset of sampled points X 

S 

orresponds to their classes as follows: 

p NN (y S | X 

S ) = H(X 

S ) , (2) 

here H : X 

S −→ y S is the model for the PCS and y S =
 y S 

1 
, y S 

2 
, . . . , y S n } are the predicted labels for the sampled points. If

 is smaller than N, the model is required to be used as many 

imes as the quotient of N divided by n for the segmentation of 

ll points in the point cloud until X 

U has no element; the PCS by 

terative inference using NN is described in Algorithm 1 . 

However, the multiple inferences of the model are computa- 

ionally expensive and time-consuming, especially when N � n . In- 

tead of repetitive inferences, we propose a novel method to prop- 

gate the probability distributions of the initial sampled points to 

he neighboring unsampled points. The objective of our proposed 

pproach is the estimation of a probability distribution that the i th 

nsampled point x U 
i 

is classified into their classes when the prob- 

bility distributions for sampled points are given as follows: 

p(y U i | x 

U 
i ; x 

U 
i ∈ X 

U , p NN (y S | X 

S )) . (3)

.2. Probability propagation (PP) 

We propose the PP algorithm to propagate the probabilistic dis- 

ributions of the sampled points to the unsampled points, stochas- 

ically weighted by the normalized distance between them. PP ap- 

roaches involve segmentation, accumulation, and normalization. 
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Fig. 1. The overall pipeline of probability propagation. The segmentation of all the points is conducted by single inference via a NN for its initial sampled points and then 

iterative probability propagation for the remaining points. 

Algorithm 1 PCS by iterative inference using NN with sampling 

for all the points ( NN ). 

1: Input: the coordinates (x, y, z) of a point x , all the points of a 

point cloud X , the unlabeled points X 

U , the number of points 

for the model input N 

S , and the probabilitydistributions p NN 

2: Output: the predicted results y for all the points X 

3: N 

U ← length (X 

U ) 

4: while N 

U > 0 do 

5: X 

S ← the sampled N 

S points from X 

U 

6: X 

U ← { x / ∈ X 

S } 
7: y S ← p NN (y S | X 

S ) as in Eq. (2) 

8: y ← y ∪ y S 

9: N 

U ← length (X 

U ) 

10: if N 

U < N 

S then 

11: X 

A ← (N 

S − N 

U ) points from { x ∈ X 

S } 
12: X 

U ← X 

U ∪ X 

A 

13: N 

U ← N 

S 

14: end if 

15: end while 

F

i

u

t

c

l

i

=

w

i

w

r

a

w

u

w

p

a

i  

i

t

t

n

t

t

p  

i

f

A  

w

t

p

=

w

i  

i

t

s

i

4

4

s

m

s

S

d

3

t

F

o

p

4

d

e

irst, the segmentation model is utilized for the prediction of the 

nitial sampled points. Then, the probability distribution of each 

nsampled point is estimated by accumulating the probability dis- 

ributions of neighboring sampled points and normalizing the ac- 

umulated probability distribution. 

For the segmentation, the probability distribution of the i th un- 

abeled point from the jth labeled point is obtained by the follow- 

ng equation: 

p(y U 
i 
| x 

U 
i 
; x 

U 
i 

∈ X 

U , p(y S 
j 
| x 

S 
j 
; x 

S 
j 
∈ X 

S )) 

 S(d(x 

U 
i 
, x 

S 
j 
) | d E ) ∗ p(y S 

j 
| x 

S 
j 
) , 

(4) 

here S(·) is the stochastic weight function. d(x j , x j ) = 

‖ x i −x j ‖ 2 
D M 

s the normalized L 2 distance measure between the input points 

here D M 

is the maximum distance obtained as twice the largest 

adius that is the distance between the centroid of the point cloud 

nd its furthest point. Using D M 

, the distance between the points 

as normalized to lie between 0 to 1. It may be unreasonable to 

se the maximum reference distance (D M 

) as defined in this study 

hen outliers exist very far away. Therefore, it is necessary to pre- 

rocess for handling outliers. It is also possible to normalize using 

 criterion other than necessarily the greatest distance consider- 

ng the density and maximum distance of points. S(d(x U 
i 
, x S 

j 
) | d E )

s the stochastic weight function that inputs the normalized dis- 

ance between two points and then outputs the weight factor for 

he accumulation. d is the effective distance ratio for reflecting 
E 

26 
eighboring sampled points only; if a normalized distance between 

he sampled and unsampled points is larger than the effective dis- 

ance, the weight is set to 0 to exclude the influence of distant 

oints. If PP does not occur due to insufficient d E , d E is temporar-

ly increased by 1.5 at the next PP until PP occurs. 

The probability distributions for an unsampled point obtained 

rom sampled points are summed as follows: 

 (x 

U 
i , p(y S | X 

S )) = 

N S ∑ 

j=1 

(S(d(x 

U 
i , x 

S 
j ) | d E ) ∗ p(y S j | x 

S 
j )) , (5)

here N 

S is the number of labeled points. 

Finally, the accumulated results are normalized for each itera- 

ion of PP by applying the softmax function to the accumulated 

robability distribution as follows: 

p PP (y U 
i 
| x 

U 
i 
; x 

U 
i 

∈ X 

U , p(y S | X 

S )) 

 

{
0 if ‖ A (x 

U 
i 
, p(y S | X 

S )) ‖ 1 = 0 

σ (A (x 

U 
i 
, p(y S | X 

S ))) otherwise 

(6) 

here σ (·) is the softmax function to normalize the probabil- 

ty distribution. If p PP (y U 
i 
| x U 

i 
; x U 

i 
∈ X 

U , p(y S | X 

S )) = 0 , the probabil-

ty distributions for a unsampled point x U 
i 

is not determined for 

his time. The propagation process is repeated until all points are 

egmented, as described in Algorithm 2 . This is denoted as NN+PP 

n the following sections. 

. Experiments 

.1. Dataset: Shapenet 

ShapeNet [17] is a richly-annotated, large-scale dataset of 3D 

hapes that covers 55 common object categories. It provides 3D 

odels that can be utilized for various tasks (e.g., 3D shape clas- 

ification, part segmentation, and semantic segmentation). The 

hapeNet part segmentation dataset is a subset of the ShapeNet 

esigned for part segmentation of 3D objects. It consists of 16,881 

D objects obtained from 16 categories of common things, anno- 

ated with 50 parts in total. Each object has 2 to 5 distinct parts. 

or the PCS experiments, point clouds are sampled from the 3D 

bjects according to the settings in [19] ; point clouds are com- 

osed of 2620 points on average. The train test split follows [17] . 

.2. Neural network: PointNet++ 

PCS Model. The ultimate PCS performance was highly depen- 

ent on the performance of NN. We utilized PointNet++ [12] , an 

nd-to-end deep learning framework specialized for point clouds. 
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Algorithm 2 PCS via single inference using NN with sampling for 

the initial sampled points and then via iterative probability propa- 

gation for the other points ( Ours, NN+PP ). 

1: Input: the coordinates (x, y, z) of a point x all the points of a 

point cloud X , the unlabeled points X 

U , the number of points 

for the model input N 

S , the probabilitydistributions p NN , theac- 

cumulated probability distribution p PP , and the effective dis- 

tance ratio d E 
2: Output: the predicted results y for all the points X 

3: X 

S ← the initial sampled N 

S points from X 

U 

4: X 

U ← { x / ∈ X 

S } 
5: y S ← p NN (y S | X 

S ) as in Eq. (2) 

6: d E,de fault ← d E 
7: while length (X 

U ) > 0 do 

8: X 

A ← {} 
9: for x U 

i 
in X 

U do 

10: y U 
i 

← p PP (y U 
i 
| x U 

i 
; x U 

i 
∈ X 

U , p(y S | X 

S )) 

as in Eq. (6) 

11: if y U 
i 

	 = 0 then 

12: X 

A ← X 

A ∪ { x U 
i 
} 

13: y S ← y S ∪ { y U 
i 
} 

14: end if 

15: end for 

16: X 

S ← X 

S ∪ X 

A 

17: X 

U ← X 

U − X 

A 

18: y ← y ∪ y S 

19: if length (X 

A ) > 0 then 

20: d E ← d E,de fault 

21: else 

22: d E ← d E × 1 . 5 

23: end if 

24: end while 
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Fig. 2. The visualization of the sampled points for the sampling method with a 

sampling ratio of 5%. 

Fig. 3. Uniform, cosine, linear, Gaussian, and exponential distributions for probabil- 

ity propagation with the effective distance ratio ( d E : 0.1). 
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t consists of a sampling and grouping layer for building a hier- 

rchical grouping of points and PointNet [11] layer, which includes 

ax-pooling and fully-connected layers to extract features of larger 

egions along the hierarchy progressively. The extracted features 

re subsequently aggregated to extract global features with multi- 

esolution grouping methods. In this study, the model was trained 

ith a batch size of 16 and an epoch of 300. Early stopping was

et with the patience of 50. Adam optimizer was utilized with a 

earning rate of 0.001, betas ranging from 0.9 to 0.999, and a decay 

ate of 0.0 0 01. It should be noted that the training, verification, 

nd testing were conducted on the sampled points according to 

ach sampling condition. The best performance models were used 

or the performance comparison between using NN alone and us- 

ng NN+PP. 

Sampling Methods. We sampled the input point cloud into 

ubsets of 128, 256, 512, 1024, and 2048 points using three differ- 

nt sampling methods: random sampling, Poisson disk sampling 

20] , and farthest point sampling [12] . The number of sampled 

oints, 128, 256, 512, 1024, and 2048, corresponded approximately 

%, 10%, 20%, 39%, and 78% of the averaged total number of points, 

espectively. The random sampling method selects subsets of 

oints from all the sets with the same probability of selection for 

ach point. While random sampling provides a uniform probability 

f sample placement, it does not ensure that the sampled points 

re distributed uniformly. The Poisson disk sampling selects points 

ith the constraint that no two selected samples are closer than 

he Poisson disk radius. When compared to random sampling, 

he Poisson disk sampling produces more uniformly distributed 

amples across the sampling domain due to the constraints of 

istance among the selected points, as illustrated in Fig. 2 . The 

arthest point sampling is the most widely utilized method that 
27 
elects a group of points farthest apart from each other. Through 

he iterations, the subsets of points are selected by maximizing 

he distance between them. Similar to the Poisson disk sam- 

ling method, farthest point sampling has better coverage of the 

ampling domain than the random sampling method. 

.3. Probability propagation settings 

As shown in Fig. 3 , five probability distributions (uniform, co- 

ine, linear, Gaussian, and exponential distributions) were used as 

he stochastic weight functions, S(·) , and set effective distance ra- 

ios, d E , ranging from 2% to 80% in 2%p increments. Optimal combi- 

ations of propagation weight function and effective distance ratio 

ere investigated through ablation studies. 

.4. Metrics 

Instance mIoU was used as a PCS performance measure. The 

IoU is calculated by taking the IoU, a.k.a. Jaccard index, of each 

lass or each instance and averaging them. The IoU is the number 

f points where the predicted label and the ground truth are the 

ame divided by the number of points where the predicted label 

nd the ground truth exist. Relative inference time and average it- 

ration count are compared in terms of efficiency. The performance 

as measured under the same conditions using CPU (AMD Ryzen 

 3900X) and GPU (NVIDIA GeForce RTX 3070) in Ubuntu 18.04.6 

TS. 

. Results and discussion 

The best-trained NN for each sampling condition was used to 

ompare the PCS performance between using sampling and NN for 

ll points and using NN for the initial sampled points and itera- 

ive PP for the other points. For the sampling methods (random, 

arthest point, and Poisson disk sampling), sampling ratio (about 

%, 10%, 20%, 39%, and 78% of the average total number of points 

n the point cloud), and effective distance ratio (from 2% to 80% in 

%p increments), the instance mIoU is shown in Fig. 4 . 

NN with Poisson disk sampling achieved the highest instance 

IoU compared with NN with farthest point sampling and random 

ampling. Regardless of the sampling method, the instance mIoU 

ith NN+PP was always higher than with NN alone. These results 
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Fig. 4. Instance mean intersection over union (mIoU) for sampling method, sampling ratio, and effective distance ratio. 
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upport the claim that PP contributes to PCS performance improve- 

ent and more physically reasonable segmentation based on the 

umber of neighboring points and their proximity by spreading 

he probability distribution of each point to geometrically adja- 

ent points. Unlike the farthest point and Poisson disk sampling 

ethods, random sampling does not ensure that sampled points 

over the point cloud regions evenly, especially when the den- 

ity of points is imbalanced. The normalized distances between the 

losest neighboring points have different standard deviations ac- 

ording to the sampling method, as shown in Fig. 5 . The proba- 

ility density of the random sampling is more dispersed than that 

f the other sampling methods in the histogram. The points sam- 

led by random sampling were more locally clustered than those 

y the other sampling methods, and this phenomenon appeared 

o be obvious as the sampling ratio was small. These results sug- 

est that the sampling method with a low standard deviation of 

he distances between the closest neighboring points is appropri- 

te for PP. 

Exponential, Gaussian, cosine, linear, and uniform distribution 

re arranged in descending order of their performance when us- 

ng NN+PP. This means that it is advantageous to use PP to as- 

ign higher probabilistic weight to closer and adjacent points. PP 

emonstrated a better effect with fewer sampling points, implying 
28 
hat PP is useful for conditions requiring high efficiency. The per- 

ormance increased until the best effective distance ratio for each 

ampling condition, and then it decreased thereafter. This is be- 

ause the influence of the probability distributions of distant un- 

elated points increases as the effective distance gets longer. This 

haracteristic was more apparent in using the exponential distri- 

ution compared to those of the other distributions. When using 

he exponential distribution, the stochastic weight increases much 

ore drastically as the distance to the adjacent point decreases, 

.e., the neighboring point is closer, as shown in Fig. 3 . This is at-

ributed to the fact that negative probability distributions of irrele- 

ant points spread as strongly as positive probability distributions 

f relevant points spread strongly. In particular, a small effective 

istance ratio is preferable to improve the efficiency when using PP 

ince the computational cost to accumulate the probability distri- 

utions of close neighboring points increases exponentially. There- 

ore, the exponential distribution is recommended for PP because 

f its superior performance and a wider range of the optimal effec- 

ive distance, i.e., it is favorable to choose a small effective distance 

atio for high efficiency with reasonable performance. 

Furthermore, we performed a class-wise mIoU comparison be- 

ween NN and NN+PP in the best condition using NN with Pois- 

on disk sampling and PP based on exponential distribution. As 
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Fig. 5. Normalized distance to the closest neighboring point according to the sam- 

pling condition (SD: standard deviation). 
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hown in Table 1 , the results indicate that NN+PP achieves a per- 

ormance level comparable to NN for almost all categories with re- 

uced time. Notably, for categories such as Lamp and Earphone, 

N+PP outperformed NN by a significant margin, demonstrating its 

ffectiveness. 

The efficiency of PP based on the exponential distribution was 

nvestigated for effective distance ratios by comparing the relative 

nference time and average iteration count, as shown in Supple- 

entary Figs. 2–4 . The performance comparison results according 

o the sampling conditions are shown in Fig. 4 . The inference time 

equired to segment a single object is shown in Table 2 . The results

emonstrate that NN+PP achieves higher instance mIoU and re- 

uires less inference time than NN alone. Using PP based on an ex- 

onential distribution significantly improves PCS performance and 

fficiency. 

When using the exponential distribution for PP, the recom- 

ended effective distances according to the sampling condition 

sampling method and sampling ratio) for NN are shown in Fig. 6 . 

or a low sampling ratio, a long effective distance ratio is recom- 

ended for the best performance; however, for a large sampling 

atio, a short effective distance ratio is favorable for the best per- 

ormance. When using Poisson disk sampling for NN and expo- 

ential distribution with the best effective distance for PP, both 

he performance and efficiency in using NN+PP were superior to 

hose in using NN alone as shown in Fig. 7 . Particularly, as the

ampling ratio decreases, PP significantly reduced the inference 

ime, i.e., dramatically improved the efficiency. When the number 

f sampled points was less than 50% of the average total number 

f points, PP considerably speeded up the PCS, i.e., remarkably im- 
29



H. Seo, S. Noh, S. Shin et al. Pattern Recognition Letters 170 (2023) 24–31 

Table 2 

Inference time per object at the best instance mean intersection over union according to sampling condition 

(unit: second). 

Sampling 

Method 

Inference 

Method 

Sampling Ratio 

5% 10% 20% 39% 78% 

Random 

Sampling 

NN 4.881 2.339 1.238 0.504 0.287 

NN + PP 0.153 0.141 0.203 0.243 0.264 

NN/(NN + PP) 31.810 16.641 6.112 2.079 1.087 

Farthest 

Point 

Sampling 

NN 4.661 2.576 1.453 0.796 0.451 

NN + PP 0.046 0.070 0.134 0.198 0.206 

NN/(NN + PP) 102.267 36.649 10.875 4.016 2.184 

Poisson 

Disk 

Sampling 

NN 2.769 1.171 0.692 0.329 0.208 

NN + PP 0.048 0.071 0.110 0.171 0.225 

NN/(NN + PP) 57.659 16.415 6.311 1.927 0.923 

Fig. 6. Best effective distance ratio for sampling method and its ratio at the best 

instance mean intersection over union. 

Fig. 7. Inference time of point cloud segmentation using NN+PP with exponential 

distribution relative to using NN at the best instance mean intersection over union 

(mIoU). 
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30 
roved efficiency. Especially when using 5% farthest point sampling 

or NN, the instance mIoU with NN+PP was improved by approx- 

mately 2.457%p, and the inference speed is 102 times faster than 

sing NN alone. 

. Conclusions 

We proposed Probability Propagation (PP) as a stochastic map- 

ing method for faster and more efficient PCS with better perfor- 

ance while reducing memory usage and inference time. Empiri- 

ally, we investigated the efficiency of PP in various settings: sam- 

ling methods, sampling ratios, and effective distance ratios. Re- 

ardless of the sampling methods, the instance mIoU with NN+PP 

howed higher performance, and the inference time was much 

horter than when using NN only. Specifically, PP based on expo- 

ential distribution was superior to others regardless of the per- 

ormance metric, thereby indicating that it is advantageous to use 

P to assign a higher probabilistic weight to close adjacent points. 

specially, adopting PP yielded better results in terms of fewer 

ampling points; when the number of sampled points was less 

han 50% of the average total number of points, PP significantly re- 

uced the inference time, i.e., dramatically improved the efficiency. 

pecifically, using farthest point sampling with the sampling ra- 

io of 5%, NN+PP improved the instance mIoU by 2.457%p with 

02 times faster PCS compared to that when using NN alone. This 

ndicates that PP is more effective for harsh conditions requiring 

igh efficiency and low battery usage. Furthermore, the proposed 

ethod can be easily applied to other frameworks for PCS or im- 

ge segmentation. Consequently, PP can replace the part of the NN 

nferences with enhanced simplicity and efficiency, which is the 

ore friendly approach for constrained situations such as mobile 

obots and self-driving drones. Significant improvements in perfor- 

ance and efficiency when using NN+PP indicate that PP enables 

he segmentation of numerous points measured using laser scan- 

ers on edge AI systems that require low-cost computing costs 

ith limited memory. Especially outdoor mobile systems such as 

obile robots, autonomous automobiles, and unmanned aerial ve- 

icles need to continuously collect fine point clouds and grasp the 

urrounding situation in real time based on the accumulated point 

louds. Repetition of point sampling and inference using NN alone 

s time-consuming and requires expensive computational costs that 

ccelerate battery discharge and significantly reduce device up- 

ime. In addition, a long inference time causes delays in decision- 

aking based on the situation, making it difficult to respond to 

he rapidly changing environment properly. Since this can cause fa- 

al accidents and device damage, mobile systems require fast and 

fficient PCS. To this end, the proposed PP is an effective and pow- 

rful solution for the segmentation of the large-scale point cloud 

ith high-speed and low-cost computing as well as performance 
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nhancements. Therefore, the adoption of PP can greatly expand 

he applicability of PCS to edge AI systems. 
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