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H I G H L I G H T S  

• The proposed framework contributes to alleviating the net load variability problem caused by the over-penetrated VRE capacity. 
• The framework effectively captured the net load deviation intensity and magnitude without losing consistency in conservative results. 
• To consider the volatilities and uncertainties of VRE and loads, a multi-time stochastic optimization model was formulated. 
• To evaluate the economic effect, the estimation of the accommodation costs for VREs was compared with the results of the conventional HC model.  
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A B S T R A C T   

With the increasing penetration rates of variable renewable energies (VREs), estimating the maximum network 
capacity without adversely impacting the reliability or voltage quality for power system operation, that is, the 
hosting capacity (HC), is a significant issue. For system operators, it is challenging to secure flexible resources 
that can respond to the volatility of the net load resulting from the intermittent generation characteristics of 
VREs and the appearance of various consumers. Thus, this study proposed a hosting capacity estimation 
framework that considers the net load deviation. It thereby overcomes the abrupt net load deviation for the 
economic accommodation of VREs. To evaluate proposed framework, the qualification of the proposed net load 
deviation limit as a new performance index and investigation for improving HC was verified via performance 
violation analysis. The proposed net load filter exhibited excellent performance in capturing the net load devi-
ation without distorting the conventional performance index. To consider the net load deviation magnitude and 
intensity effect on system operation, a multi-time stochastic optimization model was formulated. The proposed 
framework was tested on an IEEE 33-radial bus system to investigate the effects of the net load deviation limit on 
the HC, and its potential as a performance index was analyzed. Finally, as an application of the proposed model 
to help the system operator’s precise decision making, the VRE accommodation costs was quantitatively 
suggested.   

1. Introduction 

1.1. Research background & motivation 

The increase in greenhouse gas emissions has resulted in a climate 
change crisis that has resulted in the declaration of the Climate Ambition 
Alliance (Net Zero 2050) being signed by 121 countries. According to 
this declaration, each country should set and implement a nationally 
determined contribution to achieve net-zero emissions by 2050. To 
achieve net-zero emissions by 2050, 1,020 GW of photovoltaic (PV) 
power and wind turbine (WT) power capacity per year should be 

installed by 2030 [1]. These variable renewable energies (VREs) are 
distributed and small in capacity, and their dispatchability cannot be 
guaranteed. This paradigm shift in power generation resources results in 
challenging issues for both transmission and distribution network op-
erations. At the level of distribution system, the prevailing “fit-and- 
forget” approach, where a “firm connection guarantees that the installed 
capacity does not exceed capacity limits set by the distribution system 
operators (DSOs), has introduced technical operation problems of dis-
tribution system, such as over-voltages, increased losses, thermal over-
loading, and reverse flow problems [2–4]. At the transmission level, 
abrupt net load deviation due to intermittent characteristics of VREs 
results in balancing issues that necessitate securing the system’s 
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flexibility. Because conventional bulk power generators have a ramp- 
up/down limit, they may be unable to handle sudden fluctuations. 
Whereas, for power systems with high VRE penetration rates, only a few 
hours of abrupt net load variation have a decisive effect on the power 
system [5]. 

The distribution network, which is a direct connection point of VREs, 
is threatened with stable operation by the intermittent characteristics of 
VREs. To manage this risk, DSOs may consider various strategies uti-
lizing additional resources such as ESS and flexible resources. Although 
such active network management has been actively researched, prac-
tical implementation of hindered owing to the uncertainty regarding the 
topology of the system [6]. Therefore, the DSO should preferentially 
estimate the possible capacity for VREs in a distribution network 
without adversely impacting the reliability or voltage quality for system 
operation, that is, hosting capacity (HC). In future power systems, 
market design will be advanced to expand to network-related services as 
well as energy-related services to maximize the potential of distributed 
resources [7]. To successfully transition towards the trend of this era, the 
DSO requires an unbiased and analytical evaluation of HC to efficiently 
manage and operate distributed resources within the system. This can be 
achieved with sophisticated HC estimation framework. 

At the transmission system level, owing to the thrives of VREs, 
Transmission System Operators(TSO) are experiencing considerable 
difficulties in the most important supply–demand balance re-
sponsibility. To solve this, TSOs are making various efforts and attempts. 
For example, lowering the market’s clearing resolution to reduce fore-
casting errors, increasing reserve margins, or introducing new markets 
such as flexible ramping products (FRPs) [8]. FRP has been recently 
launched in electricity markets to enhance the power grid flexibility and 
accommodate netload deviation’s uncertainty introduced by renewable 
energy resources. However, these measures also require TSO to secure 
the flexibility by procuring flexible resources that would otherwise have 
been involved in other markets at an additional cost as well. 

As confirmed above, DSO and TSO are making their own efforts to 
achieve the green energy transition. As the proportion of VREs in the 
distribution system increases, the distribution system will evolve into an 
active distribution network with dispatchability rather than a passive 

source of demand [9]. However, owing to the VRE’s low installed ca-
pacity and uncertainties, the net load variability at the interconnection 
point between transmission and distribution will become more serious, 
and eventually, it will have a great detrimental effect on maintaining the 
real-time supply–demand balance on transmission level. Consequently, 
customers will bear all the burden caused by the indiscriminate inte-
gration of renewable energy. 

1.2. Literature reviews 

This chapter introduces the latest research trends on hosting capacity 
estimation framework. In particular, the performance indices and 
simulation method, which are the core of the framework, are described. 

1.2.1. Hosting capacity’s performance index reviews 
To estimate HC, we must first consider the performance index. This 

makes the concept of HC practical by employing system parameters as 
an assessment criterion for VRE penetration [5]. The performance 
indices may include voltage, frequency fluctuation, transformer thermal 
limit, power quality, and protection required for reliable power system 
operation. In addition, the acceptable variation of radial distribution 
feeder performance is identified by voltage limits, thermal capacity, and 
imbalance [11] Overvoltage and thermal overloading indices are pri-
marily considered because they are key components in distribution 
system operation. A previous study investigated the impact of surplus 
power on feeders and found that, when the voltage at the substation was 
adjusted to the maximum value, the voltage rise criterion tended to be 
the most restrictive in HC maximization [11]. However, subject to an 
appropriate voltage state, the HC is limited by the conductor’s ampacity. 
Moreover, the maximum capacity is limited by the voltage rise, and the 
topology of lines is crucial for estimating the maximum capacity of the 
radial-feeder distributed generators [12]. Sun et al. [13] introduced 
harmonic distortion limits as new constraints for HC assessments. They 
identified the effects of total harmonic distortion and individual har-
monic planning level limits when considering power quality as a per-
formance index in HC estimation. In [14], a location-based individual 
feeder analysis for the HC of a PV-connected feeder was presented. This 

Nomenclature 

Sets 
Ci Set of points of interconnection connected to bus i 
T Set of time periods 
B Set of buses 
L Set of lines 
Li Set of lines connected to bus i 

Indices 
c Index for points of interconnection 
i, j Index for buses 
t Time period 

Parameters 
Ppvgen

t Unit PV active power generation, over time t 
PWTgen

t Unit WT active power generation, over time t 
Qpvgen

t Unit PV reactive power generation, over time t 
QWTgen

t Unit WT reactive power generation, over time t 
bmn Susceptance of line ij 
gmn Conductance of line ij 
rij Resistance of line ij 
xij Reactance of line ij 
ΔVmax

i Upper limit of voltage magnitude deviation at bus i 
ΔVmin

i Lower limit of voltage magnitude deviation at bus i 

PLmax
ij Maximum active power flow of line ij 

QLmax
ij Maximum reactive power flow of line ij 

PM,max
c,t Maximum active power exchanged between the upstream 

grid and distribution network at point c, over time t 
ΔPM,max

c Maximum net load deviation intensity of power exchanged 
between the upstream grid 

Variables 
CPV

i Number of installed unit PV at bus i 
CWT

i Number of installed unit WT at bus i 
PD

i,t Active power load at bus I at time t 
QD

i,t Reactive power load at bus I at time t 
PM

c,t Active power exchange with upstream grid at point of 
interconnection c at time t 

QM
c,t Active power exchange with upstream grid at point of 

interconnection c at time t 
PLij,t Active power flow at line ij at time t 
QLij,t Reactive power flow at line ij at time t 
Vi,t Voltage magnitude of bus i at time t 
θi,t Voltage angle in bus i at time t 
ΔVi,t Voltage magnitude deviation of bus i at time t 
Δθi,t Voltage angle deviation in bus i at time t  
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approach considers the correlation between the locations of installed 
PVs in a region. An increase in the VRE penetration rate complicates the 
protection system design. It was found that fluctuating wind power in-
jection results in voltage disturbances and severe voltage flicker prop-
agation at each node [15]. In [16], a relay protection coordination 
approach was presented. The method integrates optimal DG placement 
and sizing methods in accordance with the impact of the DG location 
and size on the fault current. 

1.2.2. Hosting capacity’s simulation method reviews 
After choosing the performance indices, we must model the pro-

cedure for assessing the impact on the performance index as the pene-
tration rate of VREs increases. A simple iterative approach exploits the 
weak sections of a remote feeder and specifies the potential of multiple 
voltage regulators on the long rural section that feeds power to remote 
communities [17]. However, this approach does not address the impact 
of simultaneous VRE deployment on other nodes. Additionally, this 
deterministic method cannot capture the VRE intermittent output power 
profile, which is a core factor determining HC. To overcome these lim-
itations, a probabilistic HC analysis was investigated. The planning 
framework for the optimal mix of VRE in distribution networks was 
presented in [18]. In this framework, the probability distribution func-
tion was utilized to consider the uncertainties associated with solar and 
wind DGs. Moreover, in [6], a risk assessment tool-based probabilistic 
HC model was proposed. When modeling PV uncertainties, localized 
solar irradiances were considered with a detailed formulation of a 
clearness index that accurately characterized the locational weather 
conditions. Spatio-temporal probabilistic voltage sensitivity analysis 
was applied to exploit both spatial and temporal uncertainties associated 
with PV injections [19]. In [17], an estimation framework considering 
the time-series impact based on scenarios for PV capacity deployment 
was proposed. The correlations between wind speeds from adjacent sites 
on a wind farm were modeled using a probabilistic approach [20]. In 
[21], a process of lowering from a violation to a violation-free state was 
proposed, with the aim of mitigating the violations: nodes overvoltage, 
lines overcurrent, and transformer overloading in grid operation. In 
[22], a multi-period AC optimal power flow (OPF) approach was pro-
posed based on HC estimation under active network management 

schemes. However, this multi-period AC OPF was formulated with 
nonlinear programming, which requires high computational 
complexity. 

1.3. Contributions 

To narrow the gap between the DSO’s reliable operation and TSO’s 
securing system flexibility, this study proposed an HC estimation 
framework by expanding the HC problem from a distribution system- 
only problem to a problem considering coordinated operation with the 
transmission system’s balancing responsibility. To this end, the vola-
tility of net load, which has a great effect on the system’s flexibility 
requirement, was included in the HC estimation model. In addition, the 
distribution system operation parameters, which were mainly consid-
ered in the existing HC estimation, were also encompassed without 
distortion. The HC results from the proposed study mitigate the vari-
ability in net load, allowing DSOs to fulfill their responsibilities for the 
operation of existing reliable distribution networks. Simultaneously, it 
reduces the cost of securing flexibility by alleviating the sudden vari-
ability of net load that occurs at the transmission-level. Finally, as a 
decision-making tool for DSO, it can be served as a cornerstone for 
various distribution system operations and planning problem. The pro-
posed framework can help address system operation and planning 
problems by enabling decision makers to verify cost-effective HC 
without requiring further management of net load deviation due to the 
high-penetrated VREs. 

From the above, the key contributions of this study are listed below: 

• A novel HC estimation framework that considers the net load devi-
ation as a new performance index was proposed to mitigate the 
abrupt net load deviation resulting from the VRE maximum pene-
tration rate.  

• By using a net load deviation filter that can be applied to all intervals 
based on a consistent criterion, the framework effectively captured 
the net load deviation intensity and magnitude without losing con-
sistency in achieving conservative results.  

• To identify the effectiveness of the proposed performance index, the 
results were compared with those of the conventional HC model, and 

Fig. 1. Proposed HC framework considering net load deviation.  
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performance indices violation analysis was performed to verify key 
elements for improving HC.  

• To consider the net load volatilities and uncertainties of VRE and 
loads, a multi-time stochastic optimization model was formulated. 

• To evaluate the economic effect of the proposed model, the estima-
tion of the accommodation costs for VREs was compared with the 
results of the conventional HC model. 

The remainder of this paper is structured as follows. Section 2 in-
troduces the proposed HC estimation framework, the input profile 
generation model based on a probabilistic approach, and the mathe-
matical description of net load deviation. Section 3 describes the sto-
chastic optimization model. Section 4 presents the numerical results of 
the net load deviation effect on HC (4.2.1), the qualification of the 
proposed index, and the verification of the key elements for improving 
hosting capacity (4.2.2). Accordingly, the ability to capture net load 
deviation is assessed. Section 5 provides the estimation of the VRE ac-
commodation costs based on HC calculated by the proposed model. 
Section 6 concludes the paper. 

2. HC estimation framework considering net load deviation. 

This section describes the proposed HC estimation framework. Fig. 1 
illustrates the HC estimation framework considering net load deviation. 
The proposed framework comprises an input profile generation model 
(IPGM) and a hosting capacity estimation model (HCEM), which include 
a net load filtering module. In the IPGM, probability distribution fitting 
is performed using historical data to consider the VRE uncertainties and 
loads. The input profile is generated based on the predefined physical 
characteristics of each resource and fitted probability function. The 
HCEM consists of two-stage optimization. The mathematical formula-
tion of power flow in the distribution system is mainly expressed in a 
non-linear form, which acts as a major hindrance to solving optimization 
problems in a timely manner. To address this nonlinearity, this study 
utilized a linearization method based on several practical assumptions. 
In the first stage, an HC optimization model without loss is formulated 
with linearized power flow constraints. From the result of stage 1, ∇v 
can be obtained. In the second stage, the reformulated HC model 
including power flow’s losses could be solved with replaced parameter 
∇v. The detailed validation of the linearization is described in [23]. In 
addition, the net load deviation filter was modeled in the form of an 
HCEM constraint. A convolutional technique was used to effectively 
capture the magnitude and intensity of net load deviation for each 
period to evaluate deviation with a consistent criterion. Details are 
provided in Section 2.4. Finally, we obtained the maximum installed PV 
and WT for each node of the distribution grid with consideration of the 
net load deviation. 

2.1. Load profile model 

Electricity consumption is affected by various factors, such as 
weather, climate, and customer behavior [24]. In this study, a Gaussian 
distribution was used over time to reflect the pervasive characteristics of 
electricity consumption [25]. The Gaussian probability distribution 
function of the load can be expressed as follows: 

PDFDemand
(
PD

t

)
=

1
√2πσpDt

e
1
2

(
PDt − μ

pDt
σ
pDt

)2

,∀t (1) 

where PD
t represents the load at time t, μPD

t 
is the mean of the load, 

and σPD
t 

is the standard deviation of the load. 

2.2. Photovoltaic generation profile model 

When modeling the probability distribution function of solar irra-

diance to characterize the uncertainty of irradiance, it can be assumed 
that irradiance follows a beta probability distribution function [26], 
which can be expressed as. 

PDFPV (irrt) =
Γ(αt + βt)

Γ(αt)⋅Γ(βt)
⋅(irrt)αt − 1⋅(1 − irrt)βt − 1

,∀t (2) 

(Forαt,βt> 0, 0 < irrt < 1), 
where irrt is a random variable for solar irradiance over time t. The 

probability density function of beta is defined when the value of the 
random variable lies between 0 and 1. To fit the probability density 
function and obtain its parameters, the irradiance values of the beta 
distribution over time are scaled before fitting via normalization. Γ de-
notes the gamma function, and αt and βt are the gamma function shape 
parameters. The shape parameters are determined by the average and 
variance of solar irradiance for each time segment, as follows: 

αt =
μirrt ⋅βt(

1 − μirrt

), βt =
(
1 − μirrt

)
⋅
(μirrt

(
1 + μirrt

)

σ2
irrt

)

− 1∀t (3) 

The output of a PV unit is mainly affected by the characteristics of its 
module, solar irradiance, and the ambient temperature of the site. 
Therefore, the expected output of solar power can be expressed as in (4) 
– (8), given the meteorological conditions, including solar irradiation 
and the module characteristics [27]. The V–I characteristic curve, which 
is the main component affecting the PV module output, can be deter-
mined for a given radiation level and ambient temperature (TA) using 
the following equations [28]: 

PGPV(irrt) = Npvmod • FF • Vg • Ig (4)  

Ig = ISC +Ki(TC − 25) (5)  

TC = TA + S
(
NOT − 20

0.8

)

(6)  

Vg = VOC − kv⋅TC (7)  

FF =
VMPPT ⋅IMPPT

VOC⋅ISC
(8) 

where NPVmod is the total number of PV modules, PGPV(irrt) is the PV 
generation output; FF represents the fill factor, TA and TC are the 
ambient and module temperatures, respectively, Kv and Ki are the 
voltage and current temperature coefficients, respectively, NOT is the 
nominal operating temperature of the cell, ISC and VOC indicate the short- 
circuit current and open-circuit voltage, respectively, and IMPP and VMPP 

denote the current and voltage respectively, at the maximum power 
point. 

2.3. Wind turbine generation profile model 

Wind speed variability is known to be the main factor contributing to 
the uncertainty in wind power generation. The Rayleigh and Weibull 
probability distribution functions have been typically used to represent 
the stochastic behavior of wind speed [29]. In this study, the Weibull 
distribution function was employed to describe the wind speed vari-
ability and uncertainty. Wind speed is modeled as a random variable 
over each period following the Weibull probability distribution function 
with parameters λt (scale factor) and πt (shape parameter), which are 
expressed as. 

PDFwind speed(wt) =
πt

λt

(
wt

λt

)π− 1

e
−

(
wt
λt

)π

∀t(wt > 0, λt > 1, πt > 0) (9)  

πt =

(
σwt

μwt

)− 1.086

∀t (10) 
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λt =
μwt

Γ
(

1 + 1
πt

)∀t (11) 

where μwt 
and σwt represent the mean and standard deviation of the 

wind speed at time t, respectively, and λt and πt represent the scale factor 
and shape parameter at time t, respectively. 

The output of a WT generator unit can be expressed using the 
generator power performance curve [18]. For the polynomial charac-
teristics of the power performance curve, the output of the WT generator 
at the wind speed can be calculated as. 

PWT(wt) =

⎧
⎪⎪⎨

⎪⎪⎩

aw3
t + bPWT

rated, wcut− in⩽wt < wn

PWT
rated, wn⩽wt < wcut− out

0, otherwise
(12)  

a =
PWT

rated(
w3

n − w3
cut− in

) (13)  

b =
w3

cut− in(
w3

n − w3
cut− in

) (14) 

where PWT
rated represents the rated power that can be generated by WT, 

and wcut− out represents the cut-out wind speed. Meanwhile, a and b are 
calculated by the cut-in wind speed (wcut− in) and nominal wind speed 
(wn). 

2.4. Net load deviation filter 

This section introduces several definitions of net load deviation. 
Definition 3 used in the proposed model was described in terms of 
comparison with Definitions 1 and 2.The net load typically refers to the 
combined variability in power consumption and non-dispatchable gen-
eration [30]. At the subsystem level in the distribution grid, the net load 
is defined as the power flow measured at the feeder head substation in 
the distribution network [31,32]. Because this study focuses on the 

description of the variability of the net load in the distribution system, 
which is directly connected to VRE, the net load referenced herein ad-
heres to the latter definition. Similarly, the net load deviation indicates 
the change rate of the net load within a specified time interval. The net 
load deviation can be characterized according to three features: (1) di-
rection, including upward (+) and downward (-) deviation; (2) magni-
tude, which can be defined as the deviation start time – the deviation 
end time; and (3) duration: the time interval between the deviation start 
and end times. With these three features, referring to [33], the net load 
deviation can be described mathematically as follows: 

Definition 1 

|NL(t + Δt) − NL(t) |〉NLDval∀t (15) 

where NL(t) represents the net load at time t and NLDval and Δt 
denote the predefined threshold value and user-defined time-duration 
parameter, respectively. 

From Definition 1, we can obtain the net load deviation by calcu-
lating the difference between the start and end values for a predefined 
duration. This value can be considered for both upward/downward di-
rections of the abrupt net load deviation. However, Definition 1 cannot 
consider the net load deviation that occurs within a predefined duration. 

Definition 2 

max(NL[t, t + Δt] ) − min(NL[t, t + Δt] )〉NLDval∀t (16) 

In contrast to Definition 1, Definition 2 calculates the net load de-
viation by considering only the maximum and minimum values among 
all net load values within the predefined duration. Using Definition 2, 
we can obtain the magnitude of fluctuations within a predefined dura-
tion. However, this method does not consider the net load profile slope, 
which is the change rate over the differences in net load deviation. 

Definition 3. 
NLDf

t = mean
{
NLDt+h − NLDt+h− nam ; h = 1,…, nam

}

= NLDt⋅fnam

, 

Fig. 2. Example of net load profile and filtered profile for each nam parameter.  
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NLDf
t =

1
nam

∑n

h=1
NLDt+h −

1
nam

∑n

h=1
NLDt+h− n (17) 

where nam represents the number of average differences of measured 
values as in (15). In Definition 3, the net load profile is considered a 
signal. Herein, NLDf

t represents the variation in the initial net load 
profile, which is represented by NLDt. Note that NLDf

t can be expressed 
as a convolution product of the net load profile with fnam . The number of 
averaged measures, nam, denotes the width of fnam to be considered as a 
smoothing filter. For example, a small value of nam makes the filtered 
profile NLDf

t more sensitive to a short-time-interval deviation of the net 
load, NLDt. 

Fig. 2 illustrates the effects on the nam parameters. According to 
Definition 3, the length of the filtered signal can be shorter or longer 
than the length of the original signal, depending on time band parameter 
nam. In addition, the filtered signal is not a net load in the physical sense 
because it has been reprocessed by smoothing and differentiating pro-
cesses. In terms of limiting the value of net load deviation as the VRE 
capacity increases, Definition 3 has several advantages when consid-
ering the net load volatility in the HC estimation model. It effectively 
accounts for both the magnitude and intensity of the net load deviation. 
Particularly, when setting the performance index limit for the net load 
deviation, it can be equally applied at the level of deviation intensity and 
magnitude for the global time horizon with a consistent criterion. Thus, 
the characteristics of Definition 3 appear to be effective in considering 
the HC net load deviation problem. Thus, Definition 3 was used to 
formulate the optimization problem. 

3. Problem formulation considering net load deviation. 

In this study, the stochastic optimization problem was developed 
based on mixed-integer linear programming (MILP), and it was 
expanded to a multi-time formulation to reflect the uncertainty and 
intermittency of VRE and the temporal effect. Moreover, the complexity 
of the multi-time period can be easily addressed by integrating the 
iteration process, which is a time-consuming step, with the optimization 
problem. 

Objective function. 
The objective function of HC estimation maximizes the capacity of 

WT and PV that can be installed for all nodes. This can be expressed as 
follows: 

Maximize
∑

∀i

(
CPV

i + CWT
i

)
(18) 

where CPV
i and CWT

i can be determined by the generation profile of 
each generator, bus voltage magnitudes and angles, real and reactive 
line flows, and real and reactive power exchanges with the upstream 
grid. 

Constraints. 
The proposed optimization model should satisfy certain equality and 

inequality constraints described below. 

Linear power flow. 

Equations (19) and (20) represent the active and reactive power 
flows of the line, respectively, which are linearized according to the 
assumptions. ΔV̂ i,t can be obtained from the lossless optimization 
problem. The installed number of unit PV and WT variables is a free 
positive variable in all nodes, except the point of the interconnection 
node. 

PLij,t = gij
(
1+ΔV̂ i,t

)(
ΔVi,t − ΔVj,t

)
− bij

(
Δθi,t − Δθj,t

)
∀ij, ∀t (19)  

QLij,t = − bij
(
1+ΔV̂ i,t

)(
ΔVi,t − ΔVj,t

)
− gij

(
Δθi,t − Δθj,t

)
∀ij, ∀t (20) 

Active/reactive supply and demand balance. 

Constraints (21) and (22) ensure that the sum of the active and 
reactive powers of the VRE power installed in each node and that from 
all lines connected to the node is equal to the load at that particular 
node. In addition, PPVgen

t and PWTgen
t are the output of per unit PV and WT 

calculated by the IPGM of the framework presented in Sections 2.2 and 
2.3. Here, set B is a subset of i. Further, PM

c,t and QM
c,t are assigned values 

only when there is a point of interconnection connected to node i. 
∑

c∈Ci

PM
c,t +

∑

i∈Li

PLij,t +PPVgen
t • CPV

i +PWTgen
t • CWT

i = PD
i,t∀i ∈ B,Ci⊂B (21)  

∑

c∈Ci

QM
c,t +

∑

i∈Li

QLij,t +QPVgen
t • CPV

i +QWTgen
t • CWT

i = QD
i,t,∀i ∈ B,Ci⊂B (22) 

Active/reactive power exchange with upstream grid limit. 

Constraints (23) and (24) limit the amount of active and reactive 
power that can be exchanged with the upstream grid, considering the 

1 2 43 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

26 27 28 29 30 31 32 33

Substation

: Load

19 20 21 22

Fig. 3. IEEE 33-radial bus system.  
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main substation feeder capacity. 

− PM,max
c ≤ PM

c,t ≤ PM,max
c ∀c, ∀t (23)  

− QM,max
c ≤ QM

c,t ≤ QM,max
c ∀c, ∀t (24) 

Performance indices limit. 

The performance indices include the line capacity, node overvoltage, 
and net load deviation. To avoid violating these performance indices, 
constraints (25)–(29) establish upper and lower limits on the deviation 
of the voltage magnitude, as well as the real and reactive power flows of 
lines, respectively. In addition, constraint (29) represents the maximum 
net load deviation for NLDf

t . Specifically, it limits the amount of varia-
tion and intensity in the filtered profile of the net load owing to the 
installed capacity of the VRE generation profile and load. 

− PLmax
ij ≤ PLij,t ≤ PLmax

ij ∀ij,∀t (25)  

− QLmax
ij ≤ QLij,t ≤ QLmax

ij ∀ij,∀t (26)  

Vi,t = 1+ΔVi,t∀i, ∀t (27)  

− Vmax ≤ Vi,t ≤ Vmax∀i, ∀t (28)  

PM
c,t • fnam ≤ NLDImax∀c,∀t (29)  

4. Numerical results 

The proposed HC estimation framework was applied to an IEEE 33- 
radial bus system [34]. The bus, line number, and line capacity are 
specified in Appendix A. The proposed framework was implemented in 
MATLAB and tested on a desktop with an Intel Core i9-10900 K 3.7 GHz 
processor. The MILP problem was solved through MATLAB Optimiza-
tion Toolbox and the average simulation time was 1.043 s. To demon-
strate the proposed model, comparative studies were analyzed: (1) base 
case: HC estimation without considering the net load deviation, and (2) 
test case: the proposed estimation model. Based on the stochastic 
approach, 500 repetitions were performed using Monte Carlo simulation 
(MCS). 

4.1. Test system parameters and generation profiles 

The IEEE 33-bus distribution system, illustrated in Fig. 3, was used to 
test the proposed framework. The system nominal voltage was 12.66 kV 
and substation node 1 was considered the point of interconnection 
where the voltage was assumed to be 1 [p.u.]. The proposed framework 
was implemented using the Southern California Edison (SCE) hourly 
dynamic load profiles of domestic single/multiple customers [36]. The 
historical solar irradiation, that is, the global horizontal irradiation and 
wind speed data along latitude: 37.73 and longitude: − 122.50, where 
SCE was responsible for supplying electricity, were obtained from the 
NREL National Solar Radiation Database (NSRDB) [37]. NSRDB pro-
vides solar radiation and meteorological data for the United States and 
regions of the surrounding countries. The technical characteristics of PV 
and WT are specified in Table 1. The PV and WT plants in Table 1 refer to 
the specifications of the reference unit PV and WT. Based on these data, 
the mean profiles of the load, unit PV, and WT generated by the IPGM 
are shown in Fig. 4. 

4.2. Comparative analysis 

In the performance indices of the proposed model, the voltage de-
viation was set to 0.95–1.05 [p.u] according to ANSI C84.1–2016 [38]. 
In the test case, the net load deviation parameter was set to be 20 % of 
the maximum line capacity of the test system. Conventionally, the VRE 
ramping event is considered to be 20 % of the installed capacity. The 

Table 1 
Specification of PV modules and WT [35].  

Power Parameter Value 

PV PPV
rated 220 [KW] 

Voc 36.96 [V] 
Isc 8.38 [A] 
VMPP 28.36 [V] 
IMPP 7.76 [A] 
ki 0.0054 [A/℃] 
kv 0.1278 [V/℃] 
NOT 43 [℃] 

Wind PWT
rated 250 [kW] 

wcut− in 3 [m/s] 
wcut− out 25 [m/s] 
wn 12 [m/s]  

Fig. 4. Average profiles of load, unit PV, and unit WT.  
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average HC based on the use of MCS (500 iterations) is summarized in 
Table 2. The best and worst scenarios are the cases with the highest and 
lowest hosting capacities with respect to the number of repetitions, 
respectively. The rated capacities of the PV and WT used in this study 
were 220 kW and 250 kW, and the efficiencies calculated based on the 
scenario results were 10.3 % and 4.1 % on average, respectively. 

4.2.1. Net load deviation effect on HC 
Table 2 indicates that the installed WT capacity in the base and test 

cases account for a high proportion of the HC. These results can be 
attributed to the different characteristics of the VRE generation profiles. 
They are influenced by regional meteorological characteristics and 
seasonality. Considering this effect, the most robust estimation result of 
hosting capacity was 22.98 MW, which was negligibly similar to the 
results shown in Table2. The relatively high HC results in the base case 
were due to the harsh environment of the test system for WT operation. 
Generally, regions with a minimum wind speed of 5.8 m/s or higher are 
considered for WT investment, but our test system environment is in a 

region with an average wind speed of less than 3 m/s, 48 % of the time, 
which means that WT with a cut-in rate of 3 m/s cannot guarantee 
sufficient power generation [39]. This results in a more than twofold 
difference in HC. This suggests that, from the perspective of renewable 
energy generators, the correlation between the HC results from the 
proposed model and the operating environment can be used as a 
quantitative indicator that helps the feasibility of renewable energy in-
vestment and pre-investment decision-making. In the maximization of 
the HC problem, WT, which has a relatively uniform power generation 
output over 24 h when compared to PV, can be considered a more 
attractive resource than PV. Fig. 5 depicts the HC results and their 
variance for each case from MCS. For the test case, as the value of the 
time band (nam) decreases the box mean value and whisker length (HC 
variance) tend to decrease. This implies that, when the variability of the 
net load is strictly considered, the HC is estimated conservatively with 
lower capacity than the base case for the extreme input profile case. It 
also implied that the proposed model reacts sensitively to minimal net- 
load deviation intensities. From the results, DSO must determine the 
appropriate HC by considering the trade-off between the level of vari-
ability in HC and netload deviation. 

4.2.2. Performance indices violation analysis: Key element for improving 
HC and qualification of net load deviation index 

In this subsection, performance indices violations are analyzed for 
the generated scenario. Violations are confirmed for three performance 
indices: voltage regulation, line capacity, and net load deviation. For the 
net load deviation violation, the violation of the filtered signal according 
to definition 3 of Section 2 was applied. Two or more violations can 
occur simultaneously for the multi-time horizon (24 h) of each scenario. 
The violation results are presented in Table 3. Of the three indices, line 
capacity and voltage violation have a decisive influence on HC for 
almost all scenarios. A potential concern when using a novel criterion is 
whether the HC is drastically affected by the proposed index. If the HC is 
highly dependent on the proposed index limit, it may distort the HC. 
However, it was confirmed that the proposed index is considered 
accordant without distorting the effect of the conventional performance 
index on HC. Fig. 6 shows the resulting voltage violation for nodes and 
time periods by heat map. It is observed that the more frequently the 
voltage violation occurred, the brighter the color, and vice versa. In the 
case of the voltage deviation, the violation frequently occurs in nodes 
23–25. In node 23, it is confirmed that the voltage violation occurs most 
of the time, whereas in the case of node 24 there is scarcely a violation. 
In the case of node 23, voltage upper limit violation mainly occurs 
during the daytime period, which is due to an oversupply of PVs. No 
voltage violation occurs on any bus other than the 23–25 nodes, which 
suggests that DSO may effectively improve the HC by managing only a 
few major buses. Fig. 7 shows the results of line capacity violation for 
every line of the network and period. The line capacity violation mainly 
occurs on lines 22–25, which are connected to violated voltage nodes 
23–25, and nodes 26–30, which are the other branch nodes extending 
from the main feeder. Moreover, it is shown that lines 17–21 are low- 
usage lines that have no capacity violation in any case. As in the case 
of voltage violations, it is observed that most line capacity violations 

Table 2 
Hosting capacity results (mean values) of base case and test cases.  

Label Hosting 
capacity 
[MW] 

Installed PV 
capacity 
[MW] 

Installed WT 
capacity 
[MW] 

Base case  22.88  5.22  17.67 
Case 1 

(Time band(nam) =

2h)

9.88  2.74  7.14 

Case 2 
(Time band(nam) =

3h)

14.84  4.06  10.78 

Case 3 
(Time band(nam) =

4h)

19.13  5.05  14.08  

Fig. 5. Box and whisker plot of HC results.  

Table 3 
Performance indices violation results for each scenario.  

Performance index Case Performance indices 

Voltage deviation Line capacity Net load deviation 
(Definition 3) 

Upper limit 
violation 

Lower limit 
violation 

Upper limit 
violation 

Lower limit 
violation 

Upper limit 
violation 

Lower limit 
violation 

Base case 100 % 92.8 % 100 % 96.2 % – 
Case 1 88 % 96.2 % 11 %  12.6 % 
Case 2 95.6 % 96.2 % 15.6 %  17.8 % 
Case 3 95.6 % 96 % 22.2 %  22.2 %  
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occurred in a few major lines connected to frequently violated nodes. 
Based on the above results, it was confirmed that there were a few 

specific lines and buses that hindered the HC improvement, and it was 
closely related to the network topology. Moreover, during the period in 
which the violation occurred, the DSO could proactively prepare for 
periods when flexibility was required. 

4.2.3. Performance indices violation analysis: Capturing net load 
variability 

To validate the effectiveness of the net load deviation filter, the net 
load variability was analyzed in terms of intensity and magnitude. In 

Fig. 8, the intensity of the net load deviation according to the time band 
parameters is identified. In Fig. 8 (a) and (c), the net load profile of case 
3 is almost identical to that of the base case. In contrast, in Fig. 8(b) and 
(d), the net load profile of case 1, which is the strictest case for net load 
deviation, shows a significant decrease in the net load intensity 
compared to the base case over the time horizon. 

Table 4 summarizes the variability in terms of the magnitude of net 
load deviation for all cases in the worst and best scenarios. From Fig. 8 
and Table 4, the effectiveness of the proposed index in capturing the net 
load deviation magnitude and intensity is verified. This implies that the 
proposed performance index can effectively detects volatility in the net 

Fig. 6. Voltage deviation violation heat maps.  

Fig. 7. Line capacity violation heat maps.  
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load resulting from the maximum HC. 

5. Discussion: Estimation of the accommodation costs for VREs 

In this section, the VRE accommodation cost is calculated according 
to the method in [41] based on the power system economics theory. The 
accommodation cost has been defined as the “additional cost of 

accommodating wind and solar” [42]. This cost can be estimated by 
comparing two power system states, with and without VRE, to separate 
the additional system costs. To evaluate the economic effect on HC, the 
accommodation costs of VRE were compared based on the HC result 
calculated by the test case and base case. It is assumed that the entire 
system is composed of a set of identical distribution systems and the 
proposed HC is applied in all of them respect to each load level. The LDC 
is calculated based on the California independent system operator EMS 
load data. The conventional generator parameters for annual fixed costs 
and variable costs are shown in Table 5. The accommodation costs can 
be categorized into balancing costs, grid costs, and profile costs. The 
balancing costs are related to the uncertain VRE supply. The grid costs 
reflect the network expansion cost according to the distance between the 
VRE and the load, and the increased re-dispatch costs of conventional 
generators for congestion management. The profile costs are incurred by 
VRE variability. As this analysis focuses on the net load deviation effect, 
the profile costs related to the volatility of the net load are analyzed. For 
more information on modeling balancing costs and grid costs, see [43]. 
Fig. 9 shows the load duration curve (LDC) of the entire power system 
and the screening curve. From Fig. 9 and Table 5, we can recalculate 
Fig. 10, which is the reduced load duration curve (RLDC). As illustrated 
in that figure, the profile cost caused by the variability of VRE is 
expressed as low-capacity credit and the reduced full-load hour. Finally, 
the profile costs can be calculated by integrating along the inverse RLDC 
and multiplying every full-load hour value with the respective minimal 
screening curve value. Table 6 summarizes the results of the HC ac-
commodation cost for base and test cases. It can be confirmed that the 
more strictly considered the constraints on the net load deviation 
volatility are, the lower the accommodation cost. In particular, in the 
base case without consideration of net load deviation in base case, the 
full-load hour reduction cost comprises a notable portion of the 

Fig. 8. Net load profile for the test case 1 and 3.  

Table 4 
Summary of total net load deviation magnitudes resulting from each case.  

Case Worst scenario[MW] Best scenario[MW] 

Base case  31.06  38.28 
Case 1 

(Time band(nam) = 2h)
7.71  17.02 

Case 2 
(Time band(nam) = 3h)

17.8  24.56 

Case 3 
(Time band(nam) = 4h)

24.68  33.16  

Table 5 
Conventional generator parameters [40].   

Nuclear Coal CC CT 

Annual Investment cost 
[k$/MW/year] 

224.00 174.72 60.12 38.52 

Fixed cost 
[k$/MW/year] 

89.88 30.04 14.58 14.88 

variable cost 
($/MWh) 

6.5 19.05 39.80 53.78 

Start up/ shut down cost 
($/MW/start) 

N/A 150 50 15  
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accommodation cost. On the other hand, in the test case, it was 
confirmed that the full load hour reduction cost caused by net load 
variability appeared less than the base case. Based on the above results, 
the system operators could determine an appropriate HC according to 
their own environment. However, it should be notice that this is the cost 
when VREs are penetrated to the entire system. Therefore, it appears 
reasonable to regard it as the minimum cost for accommodating VREs. 

6. Conclusion 

In this study, a novel HC estimation framework was designed that 
considers the net load deviation as a performance index with technical 
parameters (i.e., over voltages and ampacity). The proposed framework 
was formulated via MILP based on considerations of multiple periods 
under VRE and load uncertainties within a short duration. To validate 
the proposed model, net load deviation effects on HC were analyzed 
(Section 4.2.1). In Section 4.2.2, the qualification of the proposed net 
load deviation component as a new performance index and key elements 
for improving HC was verified. The proposed net load deviation filter 
exhibited excellent detection ability for net load deviation, as shown in 
Section 4.2.3. Finally, as an application of the proposed model to help 
the system operator’s precise decision making, the VRE accommodation 
costs were analyzed in a highly VRE penetrated system. Thus, the pro-
posed model is expected to serve as a decision-making tool for system 
operators when considering planning and operation problems, such as, 
estimating system integration costs for ensuring system flexibility, TSO- 
DSO coordination, HC enhancement strategies for over-supply problem 
by utilizing EV fleets or heat pumps and network reconfiguration owing 
to an increase in the penetration level of VRE. 

For the advancement of the proposed estimation framework, so-
phisticated modeling of its input profile generation is required with 
actual generation data based on data analytic approaches. To overcome 
the inconsistency problem of time resolution and consider the rela-
tionship between the regional characteristics and periodic variability, 
data-driven HC estimation models with key influencing factors through 
correlation analysis should be developed. Moreover, from a tech-
nological–economic point of view, further quantitative analysis 
research, such as system flexibility analysis, is needed. 
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Fig. 9. Load duration curve (LDC) (a) and Screening curve(b).  
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Table 6 
VRE accommodation costs results.  

Case Accommodation cost 
(profile cost only) 
[$/MWh] 

Back-up 
cost 
[$/MWh] 

Full load hour 
reduction cost 
[$/MWh] 

Base case  9.17  1.40  7.78 
Case 3 

(Time band 
(nam) = 4h)

9.10  1.72  7.37 

Case 1 
(Time band 
(nam) = 2h)

8.68  3.37  5.31  
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20226210100020 and No. 20192010106990).  

Appendix A. IEEE 33 bus radial distribution bus and network data  

From bus To bus Line number Maximum line capacity 
(reactive power[KW]) 

Maximum line capacity 
(reactive power[KVAR]) 

1 2 1 4600 4600 
2 3 2 4100 4100 
3 4 3 2900 2900 
4 5 4 2900 2900 
5 6 5 2900 2900 
6 7 6 1500 1500 
7 8 7 1050 1050 
8 9 8 1050 1050 
9 10 9 1050 1050 
10 11 10 1050 1050 
11 12 11 1050 1050 
12 13 12 500 500 
13 14 13 450 450 
14 15 14 300 300 
15 16 15 250 250 
16 17 16 250 250 
17 18 17 100 100 
2 19 18 500 500 
19 20 19 500 500 
20 21 20 210 210 
21 22 21 110 110 
3 23 22 1050 1050 
23 24 23 1050 1050 
24 25 24 500 500 
6 26 25 1500 1500 
26 27 26 1500 1500 
27 28 27 1500 1500 
28 29 28 1500 1500 
29 30 29 1500 1500 
30 31 30 500 500 
31 32 31 500 500 
32 33 32 100 100  
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