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ABSTRACT Projection mapping has been used for various purposes in everyday situations. A key step
in projection mapping is to project images and videos without distortion through calibration, which is
typically performed manually. Calibration becomes more challenging when multiple projectors are involved.
To address this issue, a fully automated calibration method for a multi-projector-camera system is proposed
in this paper. The projectors and cameras are assumed to be un-calibrated, and an arbitrary geometric
shape of the projection surface is considered. Without using checkboards or user-provided parameters, the
proposed method can automatically estimate calibration parameters for the cameras and projectors and
generate compensated content for projection without distortion within a reasonable amount of time. The
proposed method utilizes AprilTag markers and modified YOLOv8 with deformable convolution for robust
marker detection and correspondence estimation between the projectors and cameras, providing an automatic
process for completing calibration and distortion correction. Various experiments have demonstrated that the
proposed method outperforms existing methods using checkerboards in terms of calibration accuracy and
processing time across various camera-projector configurations. The proposed method can minimize the
difficulty of projection mapping, allowing it to be used in everyday situations without requiring a certain
level of knowledge about projection mapping theory and related hardware.

INDEX TERMS Multiple projector-camera calibration, marker detection, fiducial marker, deformable
convolution, distortion correction.

I. INTRODUCTION
Projection mapping, also known as spatial augmented reality
(SAR), is used to project images and videos onto the surface
of a real object, creating various visual effects for artistic
or commercial purposes. It provides several advantages over
traditional screen-based augmented reality (AR). SAR can
provide immersive experiences for multiple users simultane-
ously, does not require screen-based devices, such as mobile
devices or smart glasses, and is more scalable in size than
AR. These advantages, along with rapid advancements of
hardware, have made it more attractive in a wide range
of areas such as interior design, fine arts, exhibitions, and
performances.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

Projection mapping requires projector-camera calibration,
which is a process used to align and calibrate a projector and
a camera to achieve accurate and precise projections onto
complex surfaces. The projector and the camera have differ-
ent characteristics such as lens distortion, and the geometric
shape of the surface is complex. Due to this, the projected
imagesmay notmatch the desired content, resulting in serious
artifacts on the projected images. The problem becomes even
more challenging when a multiple projector-camera setup is
considered.

Structured light has been used to calibrate projectors and
cameras. Various structured light patterns are projected onto
the target surface, and the projected patterns are then cap-
tured by the camera. The projected and captured patterns
are then encoded and decoded to establish pixel-wise corre-
spondences between the projection and camera image planes.
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In this context, the projectors are treated as inverted cam-
eras, enabling them to capture the target surface. Once the
correspondences are obtained, Zhang’s method [1] can be
employed for calibration. Moreno and Taubin [2] utilized a
sequence of encoded gray bar images for accurate calibra-
tion. Gray bar images are projected onto the target surface,
and the projected images are then captured and processed
to establish correspondence. However, this method requires
the projection-capture of each image, resulting in a rela-
tively long processing time. Huang et al. [3] employed a
single-color grid pattern for projector-camera calibration to
simplify the calibration process. However, it faces a challenge
in decoding the color-grid pattern when a textured projection
surface is used. Additionally, a flat calibration board is still
required for calibration.

Calibration based on Zhang’s approach requires position-
ing the calibration board in such a way that a significant
portion of the camera’s field of view captures the board for
high accuracy. For example, a calibration board of at least A0
size should be utilized at two meters. Therefore, this method
is not convenient, and achieving a high level of calibration
accuracy is challenging [4]. Additionally, the application of
this method to calibrate multi projector-camera systems is
limited and impractical.

A lot of effort has been put into self-calibration meth-
ods that do not use a calibration board. Yamazaki et al.
[5] proposed a fully automatic calibration method for
projector-camera systems without using a flat calibration
board. However, computing the intrinsic and extrinsic param-
eters of the camera and projector is sensitive to the initial
values used in the computation, and only one radial distortion
coefficient can be estimated.

Li et al. [6]. utilized prior values for the focal length
and principal points during calibration. Structured light is
projected to find an unknown principal point using the focus
of expansion (FOE). Projected images, generated by chang-
ing the zoom, provide a projection of the image points on
the optical axis of the projector lens. The center of optical
blur between images with transformed zoom values becomes
the principal point. The approach is impractical because the
user needs to change the zoom level manually. Moreover,
its applicability is limited because it requires prior estimates
of the focal length, principal points, and the size of target
objects. Willi and Grundhöfer [7] proposed a method for
automatically calibrating multiple projectors and RGB cam-
eras in a static environment. This method demonstrated good
performance overall. However, establishing corresponding
points based on structured light is vulnerable to lighting
conditions, and a large error may occur during the initial
calibration based on the Epipolar geometry. Tehrani et al. [8]
utilized the EXIF (Exchangeable Image File Format) infor-
mation of the images to estimate the internal parameters of the
cameras, perform geometric registration of multi-projector
systems, and estimate the parameters of the cameras and
projectors.

Most of the methods developed so far utilize the Gray-code
structured lighting technique to establish correspondence for
calibration. However, the method has a drawback: when mul-
tiple structured light patterns are used to improve accuracy,
the shooting time increases as the hardware configuration
becomes more complex, which limits its applicability to sys-
tems with multiple projectors and cameras. As one solution
to this problem, an image with a repeated single pattern can
be considered. This method identifies the spatial relations
between patterns based on their arrangement and positions
encodedwithin a local window area. Therefore, if a part of the
pattern is not detected within the window, the entire domain
cannot be processed.

To solve this problem, markers capable of recognizing the
pixel correspondence of the area projected by the projector
can be used. Fiala [9] employed ARtag [10] markers of
different densities to enable projection mapping in multiple
projector systems. However, this method is limited to planar
surfaces. Hu et al. [11] proposed a network that estimates
posture by detecting patterns of ChArUco [12] markers.
By incorporating a network that detects markers and cor-
rects their locations using a feature point extraction network
based on SuperPoint [13], it becomes possible to robustly
identify the vertices of ChArUco marker patterns even in
dark or obscured situations. Liu et al. [14] introduced the
Ghost-DeblurGAN network for AprilTags and ArUcos. The
marker detection rate was improved using a network that
processed blurred marker patterns resulting from the rapid
motion of the drone. Zhang et al. [15] estimated the positions
and identities of markers through a two-level network. The
network estimates probable Regions of interest (ROIs) for
rectangular markers, distorts the estimated ROIs to create
rectified patches, and detects markers using key-point detec-
tors. They introduced a generic network that detects various
markers such as AprilTags [16], Aruco [17], Artoolkitplus
[18], etc. However, the method requires calibrated camera
parameters. The marker detection network assumes a pro-
jected surface and is unable to handle cases where brightness
changes, the projected images are obscured or blurred due to
non-planar projection surfaces and projector characteristics.
Yaldiz et al. [19] proposed a network for marker detection
on non-planar shapes using color-encodedmarkers. However,
this method is not robust against variations in the color or
texture of the projection surface, lighting conditions, and
relies on the performance of the cameras.

In this paper, a fully automatic method for calibrat-
ing multiple projector-camera systems is proposed. Given
un-calibrated cameras and projectors, as well as arbitrary geo-
metric shapes of the projection surface, the method projects
markers onto the surface, captures them, detects the bounding
boxes and IDs of the markers, establishes correspondence
between the camera and projection image planes, estimates
the intrinsic and extrinsic parameters, and distortion coef-
ficients of the cameras and projectors, and reconstructs the
3D geometric shape of the projection surface. Once the

78946 VOLUME 11, 2023



M. Son, K. Ko: Multiple Projector Camera Calibration by Fiducial Marker Detection

calibration is completed, the method generates images and
projects them onto the projection surface with minimized
distortion when viewed from a selected direction. The con-
tributions of the proposed method are as follows:

• The proposed method eliminates the need for calibration
checkerboards, initial parameters, or additional hard-
ware information.

• The proposed method employs a marker detection tech-
nique utilizing deformable convolution, which enhances
the robustness of marker detection and ensures precise
correspondence computation.

• The proposed method is fully automatic and enables
non-experts to effortlessly utilize projection mapping
using multiple projectors and cameras in everyday sit-
uations, without requiring a specific level of knowledge
about projection mapping theory and related hardware.

The paper is structured as follows: in Section II, the overall
procedure of the proposed method is presented with illus-
trative diagrams. In Section III, detailed explanations are
provided for preparing markers for training and a modified
network for marker detection using deformable convolution.
In Section IV, the camera-projector calibration method is
introduced, followed by the methods of generating view
based contents and edge-blending in SectionV. In SectionVI,
the experiments demonstrating the performance of marker
detection and calibration of the proposed method are pre-
sented. Finally, Section VII concludes the paper with brief
discussions on the limitations of the proposed method and
recommendations for future work.

II. OVERVIEW OF THE APPROACH
Consider a system with Nc un-calibrated cameras and Mp
un-calibrated projectors, where Nc and Mp are the numbers
of un-calibrated cameras and projectors, respectively, and
Nc > 1 and Mp > 0. The projection surface has an arbitrary
shape, and the cameras are set up to cover the projected area.
Multiple projectors do not have to be configured to overlap.

The overall process of the proposed calibration method
consists of three parts: projection and detection of marker
patterns, projector-camera calibration and reconstruction,
and generation of geometry-corrected pixel correspondence,
as shown in Fig. 1. In the first part, an image with markers
is projected onto the projection surface and captured using
cameras. Next, the captured images are processed to detect
the markers using the YOLOv8-based network. In the sec-
ond part, the correspondence between the projection and the
captured images is established using the detected markers.
Projector-camera calibration is then performed through bun-
dle adjustment to produce the 3D points of the projection
surface, as well as the intrinsic and extrinsic parameters of
the projectors and cameras. In the third part, the projection
surface is represented by a mesh of triangles through the
Delaunay triangulation method, and pixel-wise correspon-
dences between the cameras and projectors are estimated.
Finally, an image is adjusted and warped to compensate for

FIGURE 1. Overall process of the proposed calibration method.

distortion and projected onto the projection surface to obtain
an image without distortion.

III. GENERATION AND DETECTION OF MARKERS
The most crucial step in calibrating a projector-camera
system is to establish accurate pixel-wise correspondence
between the image planes of projectors and cameras.Methods
based on multi-pattern structured light have been widely
used to address this problem. However, they often fail to
work because changes in light can compromise the quality
of captured images, which negatively affects correspondence
estimation, and the time required for projection and acqui-
sition increases linearly with the number of devices in the
system (typically, around 20 seconds per set of one projector
and one camera.) Therefore, they are not suitable for multi-
projector-camera systems.

In this work, markers with unique patterns are used to
improve correspondence estimation in the calibration pro-
cess. An image with markers is projected and captured. The
markers in the captured image are detected and identified to
establish correspondence. The correspondence is then pro-
vided as input to subsequent processes.

A. MARKER GENERATION
Fiducial markers are designed to be easily detected and rec-
ognized by computer vision algorithms. Since each marker
contains unique information, correspondence between the
projected and captured images can be established once mark-
ers with the same pattern in both images are recognized.

AprilTag, a type of fiducial marker, is recommended for its
high accuracy in detection and pose estimation [20], as well as
its robustness against blurring phenomena that can frequently
occur during projection [21]. In this work, 180 markers with
unique IDs were created and used to generate an image of
markers in a 10 by 80 matrix, as shown in Fig. 2.
The number of markers needs to be determined based on

the resolutions of the camera and projector, the shape of the
projection surface, and the computation time. 180 markers
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FIGURE 2. AprilTag marker pattern for projection.

were determined empirically for the proposed system config-
uration. However, different numbers of markers can be used
without modifying the system.

B. MARKER DETECTION
An object detection network based on YOLOv8 [22] is used
to improve the performance of marker detection. YOLOv8 is
the latest deep neural network specialized for object detection
and uses an anchorless model that directly predicts the center
of a detected object, rather than an offset from an anchor box
enclosing the object. This approach reduces the number of
boxes to be predicted and speeds up NMS (Non-Maximum
Suppression), which filters out redundant object detections.
Additionally, YOLOv8 demonstrates better accuracy than the
existing YOLOv5 [23] network in fiducial marker detection.
YOLOv8 is designed for the detection of general objects.

Therefore, it may not show the expected performance in
detecting specialized targets. YOLOv8 has been modified
to improve the performance of detecting fiducial markers.
The convolution part of YOLOv8 has been replaced with
deformable convolution [24]. Deformable convolution allows
for the adaptive adjustment of the receptive field of each
convolutional kernel, considering the input data. Thus, it can
capture features more effectively that may be deformed or
misaligned in the input data compared to traditional convo-
lution operations, which results in improved object detection.
It consists of two branches, as shown in Fig. 3. Branch 1 is a
convolutional layer that learns offsets to change the positions
of pixels. Branch 2 generates a feature map by performing
a convolution operation through filters of various shapes
created by the offset information.

The existing convolution operation extracts features only
from the grid used in the feature map. For instance, a 3 ×

3 filter extracts features solely from a 3× 3 region. Consider
a specific region in the grid with n+ 1 pixel elements, where
the position of ith element is ti. The position of the center is t0,
and the positions of the neighbouring elements are tj (j = 1,
. . . , n). The weighted feature in this region, y(t0), considering
the features in the neighborhood, is given as Eq. (1)

y (t0) =

∑n

j=1
w(tj) · x(t0 + tj), (1)

FIGURE 3. Deformable convolution layer structure.

wherew(ti) is the weight at ti, and x(ti) is the feature at ti com-
puted by convolution. A deformable convolution introduces
an offset 1tn in Eq. (1) to produce

y (t0) =

∑n

j=1
w(tj) · x(t0 + tj + 1tn). (2)

It allows for the extraction of features from a wider grid area.
The offset can also be trained and is typically a small number.
The feature at a position with the offset can be estimated
through bilinear interpolation.

C. PREPARATION OF TRAINING DATA FOR MARKER
DETECTION
A set of training data for fiducial marker detection can be
created as follows. First, a fiducial marker pattern is created,
as shown in Fig. 2. The pattern is then projected onto surfaces
of diverse shapes in various environmental conditions, and
the resulting images are captured to produce 2D images.
Bounding boxes are then created for each marker in each
image, and appropriate IDs are assigned to the bounding
boxes. However, this process is time-consuming and labor-
intensive and cannot cover a wide range of environmental
conditions that may affect the quality of the captured images.

In this work, a method for creating training data is pre-
sented. Firstly, an image of a fiducial marker pattern is
generated. Then, four augmentation methods are employed
to simulate realistic conditions that may arise in a real projec-
tion environment. The first method applies Gaussian blur to
introduce blurring effects to the image that may occur during
projection and capture. The second method introduces vari-
ous lighting conditions in an indoor environment by adjusting
gamma, contrast, and brightness, and incorporating them into
the image generation process. The third method simulates
geometric distortion of markers when projected onto complex
surfaces. It utilizes perspective and piecewise affine transfor-
mations applied to the pattern to generate distorted marker
images. The last method adds Gaussian noise caused by the
camera to the images.

Once a set of images is obtained, each marker is seg-
mented and labelled with its corresponding ID. This step
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FIGURE 4. Example of the augmented markers processed by the
augmentation methods, (a) -(d), and a resulting image generated by data
augmentation.

can be performed automatically as pixel-wise correspondence
between the images before and after augmentation can be
mathematically computed.

A total of 4,000 images were generated using the aug-
mentation methods mentioned above. Out of these, 3,600
images were used for training, and 400 images were used for
validation. Fig. 4 shows an example of an augmented image.

IV. PROJECTOR CAMERA CALIBRATION
The calibration of a projector-camera system is important in
any application involving projectors and cameras. A camera
has an image plane onto which the real world is mapped
through lenses, while a projector has a projection plane where
an image is displayed and then projected onto the surface
of an object. The projector-camera calibration determines
the accurate pixel-wise correspondences between the image
planes of the cameras and the projection planes of the pro-
jectors by estimating the intrinsic and extrinsic parameters of
the devices. The intrinsic parameters are the internal charac-
teristics of each device, including their focal length, principal
point, and lens distortion. On the other hand, the extrinsic
parameters represent the rigid body transformation between
the cameras and the projectors, aligning them within a refer-
ence coordinate system.

In this work, the theory of a pinhole camera model for
calibration is employed. It is a linear model that transforms
3D world coordinates into 2D image coordinates and is used
to describe the characteristics of the camera. The projector,
on the other hand, can be viewed as an inverse camera that
emits light from a lamp, passes it through a lens, and projects
it onto a surface. Hence, the same model can be utilized to
characterize the intrinsic parameters of the projector.

A. CORRESPONDENCE COMPUTATION
Projector-camera calibration requires pixel-wise corres-
pondence between the image planes of the cameras and the
projection planes of the projectors. The process of the corre-
spondence computation is given as follows. An image of Nm
markers with unique IDs is mapped onto the projection plane
of a projector. Here, Nm is 180 as presented in Section III-A.
The coordinates of the pixels corresponding to the center

of each marker, upk , (k = 1, . . . , Nm), are computed in the
projection plane. Then, the image is projected onto a target
surface. A camera captures the projected image and maps it
onto the camera’s image plane. The proposed detection net-
work detects each marker from the captured image, estimates
the ID and bounding box of each marker, and determines
the pixel coordinates of the center of each box, uci (i = 1,
. . . , nd ). Here, the number of the detected markers is nd ,
and ideally, nd = Nm. Subsequently, the nd correspondences
between the center pixels of the markers in the projection
plane and the image plane can be established by matching the
pixels with the same IDs in both planes. The same process is
applied to the remaining cameras and projectors to establish
correspondences between them.

B. PROJECTOR CAMERA MODEL
An ideal pinhole camera model as given in Eq. (3), which
does not consider lens distortion, is defined by Hartley and
Zisserman [25].

sp = K[R|t]P, (3)

where P = (X ,Y ,Z )T ∈ R3 is a vector representing a 3D
point in the world coordinate system, p = (xp, yp)T ∈ R2

denotes a pixel in the image plane, K is the 3 × 3 camera
intrinsic matrix, R is a 3× 3 rotation matrix, t is a translation
vector, and s is a scaling factor that does not affect the
camera model. The camera intrinsic matrix K comprises the
focal lengths fx and fy, the principal point cx and cy, and
the asymmetric coefficient sk , as shown in Eq. (4).

K =

 fx sk cx
0 fy cy
0 0 1

 (4)

The focal lengths are given as fx and fy, to account for the
potential variation in the distribution of image sensor cells
along the horizontal and vertical directions. However, the
difference is typically small, and it is generally accepted to
consider f = fx = fy. The principal point (cx , cy) indicates
the intersection of the optical axis and the image plane. The
asymmetric coefficient sk accounts for skew errors but is
often ignored in practice due to their minor impact. Therefore,
the intrinsic matrix for the camera-projector system can be
expressed as shown in Eq. (5),

K =

 f 0 cx
0 f cy
0 0 1

 (5)

The rotation matrix R, represented in Euler angles, is a 3 ×

3 matrix, and the translation vector t is a 3×1 column matrix.
Therefore, Eq. (3) can be expressed as in Eq. (6). x

y
1

 =

 f 0 cx
0 f cy
0 0 1

 [R|t]


X
Y
Z
1

 (6)

where s = 1.
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The intrinsic and extrinsic parameters can be estimated
using Eq. (6). However, real projectors and cameras cannot
be precisely described by the ideal pinhole camera model.
For instance, low-cost webcams with wide view angles or
projectors using large lenses can introduce significant dis-
tortion. Hence, it is crucial to consider lens distortion during
the calibration process. Lens distortion can be classified into
two types: radial distortion and tangential distortion. They are
modeled using non-linear functions defined by Zhang [1] as
given in Eq. (7),[

xpc
ypc

]
=

(
1 + k1r2 + k2r4 + k3r6

) [
xp
yp

]

+

2q1xpyp + q2
(
r2 + 2x2p

)
q1

(
r2 + 2y2p

)
+ 2q2xpyp

 , (7)

where (xp, yp)
T and (xpc, ypc)

T are the pixels before and

after correction, r ∼=

√
x2p + y2p , and k1, k2, k3, q1 and q2 are

unknown coefficients to be determined.

C. CALIBRATION BY BUNDLE ADJUSTMENT
The correspondence relations between the projection and
camera image planes are utilized to estimate the intrinsic and
extrinsic parameters of the projectors and cameras and to
reconstruct the 3D points on the projection surface. Consider
a setup with one projector and two cameras. The number of
correspondences, nc, would be the same as the number of
markers projected onto the surface if all the markers in the
image planes were detected. Arbitrary nc points in 3D space,
(p1, . . . , pnc), are generated, and pi is assigned IDi, where IDi
is the ID of the ith marker. Suppose that pi(i = 1, . . . , nc) are
projected onto the image plane of Camera 1. The coordinates
of the ith detected marker in the Camera 1’s plane are u1i. The
coordinates of the projected pi onto the Camera 1’s image
plane, upc1i = (upc1i, v

p
c1i), are computed using Eqs. (3) and (7)

with the camera’s intrinsic Kc1 and extrinsic parameters Rc1
and tc1, as well as distortion correction for the camera’s lens.
The re-projection error for a camera, EC1, is defined by

EC1 =

∑nc

i=1

∣∣u1i − upc1i
∣∣2 . (8)

Similarly, the re-projection error for Camera 2, EC2, and the
projector, Ep, can be defined by

EC2 =

∑nc

i=1

∣∣u2i − upc2i
∣∣2 , (9)

and

EP =

∑nc

i=1

∣∣∣vi − vppi
∣∣∣2 (10)

where vi is the coordinate of the center pixel of the ith marker
in the projection plane, vppi is the coordinate of the projected
pi in the projection plane, which is computed using the pro-
jector’s intrinsic Kp and extrinsic parameters Rp and tp, and
distortion correction for the projector’s lens. For a camera,
14 parameters need to be determined, including three intrinsic

parameters (one focal length and two principal points), six
extrinsic parameters (three components for translation, and
three components for rotation), three radial distortion coeffi-
cients, and two tangential distortion coefficients. A projector
is treated as an inverse camera; therefore, the same number of
parameters is considered. The projector-camera setup can be
calibrated by finding P, Kc1, Rc1, tc1, Kc2, Rc2, tc2, Kp, Rp,
and tp that minimize E = EC1 + EC2 + EP. The function E is
nonlinear with many parameters, which can be solved using
the Levenberg-Marquardt method.
The initial conditions for optimization are set as follows.

The Rodrigues rotation 3D vector is employed instead of the
rotation matrix, with the default positive z-axis direction of
(0, 0, 1). The translation vectors along the three axes are
initialized as (0, 0, 0). The initial value for the focal length
of the camera or projector is determined as the average of the
horizontal and vertical values of the image resolution. The
principal points for the camera and projector are initialized
to be half the width and height of their respective image
resolutions. All radial and tangential distortion coefficients
are initially set to 0, and the values of pi are initialized as
(0, 0, 1). The optimization process performs simultaneous
reconstruction of the projection surface and calibration of
the camera and projector. Fig. 5 illustrates the intermediate
and final results of the optimization process for a setup with
two cameras and one projector. The top-left image shows the
initial state before optimization. The top-right and bottom-
left images display the adjusted positions and orientations of
the projector and cameras, as well as the rough shape of the
projection surface. The bottom-right image presents the final
results of the optimization process, showing the reconstructed
shape of the surface and the finalized intrinsic and extrinsic
parameters of the cameras and projector. The optimization
process in this work can be directly generalized to setups
involving multiple projectors and cameras.

V. CAMERA VIEW-BASED CONTENTS GENTRATION
Since calibration is performed based on the center points of
each marker, a maximum of 180 pixels are utilized during
calibration. Therefore, correspondence relations between all
the pixels in the image and projection planes need to be esti-
mated to display contents with no distortion on the projection
surface when viewed in the camera’s direction.

A. PIXEL-WISE CORRESPONDENCE COMPUTATION
The pixel-wise correspondence between the image and
projection planes can be obtained as follows. Firstly, the
reconstructed 3D points after calibration are processed to
generate a triangular mesh using Delaunay triangulation,
which approximates the shape of the projection surface. Con-
sider a mesh element with the vertices A, B, and C, as shown
in Fig. 6. π () is the projection of a point in 3D space onto a
2D plane.
A point p+ in 3D space is projected onto the image plane

using the camera’s parameters and the camera’s lens distor-
tion correction model. Suppose that the point in the image
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FIGURE 5. Visualization of calibration and reconstruction during
optimization for two cameras and one projector.

FIGURE 6. Illustration of generating a geometry compensated image.

plane is represented as p+
c . As the coordinates of A, B, and C

in the image plane, denoted as ac, bc, and cc, are computed
during calibration, the relation between p+

c and ac, bc, and cc
can be established by

p+
c = waac + wbbc + wccc, (11)

where

wa =
1pcbccc
1acbccc

,wb =
1pcccac
1acbccc

,wc =
1pcacbc
1acbccc

,

0 ≤ wa,wb,wc ≤ 1,wa + wb + wc = 1,

and 1αβγ is the area of the triangle defined by α, β, and γ

points. Then, the point that corresponds to p+
c in the projec-

tion plane, p+
p , is estimated by

p+
p = waap + wbbp + wccp (12)

where ap, bp, and cp are the points in the projection plane
corresponding to A, B, and C. This method can determine
the correspondence relations between all the pixels in the
image and the projection planes. Consequently, an image to

FIGURE 7. Example of edge blending using four projectors. Before (left)
and after (right) edge blending.

be projected can be adjusted based on these correspondence
relations and then projected onto the surface to display a
distortion-free image when viewed from the camera.

B. EDGE BLENDING
When the projected areas of multiple projectors overlap, the
overlapping region becomes significantly brighter than the
non-overlapping region, leading to visual inconsistency in
the projection. To address this issue, Chen’s method [26] is
employed. This method adjusts the brightness of the images
to be projected by applying weights proportional to the dis-
tances among the pixels of each projector that correspond
to the overlapping region. As a result, a seamless projected
image is obtained, as depicted in Fig. 7. This figure shows
that the multiple projected images are merged into a single
image after edge blending.

VI. EXPERIMENT RESULTS
A. FIDUCIAL MARKER DETECTION AND CENTER PIXEL
ESTIMATION
The proposed marker detection network was compared
with existing networks (YOLOv5, YOLOv5 anchor free,
YOLOv8, YOLOv8 anchor free.) For this test, the validation
dataset presented in Section III-C was utilized. The perfor-
mance was evaluated based on the box loss, the class loss,
the mAP (mean Average Precision), and the pixel error. The
box loss measures the difference between the centers, widths,
and heights of the bounding boxes of the detected marker
and the corresponding original marker. The classification loss
represents the failure rate of ID detection.
mAP is the average of APs (Average Precision). AP is com-

puted as follows: Supposem1 is the number of IDs used in the
process, m2 is the number of IDs that are correctly predicted,
m3 is the number of IDs that are incorrectly predicted, m4
is the number of IDs that should be detected but have not
been detected, and m5 is the number of IDs that should not
be detected and have not been detected. Here, m1 ≥ m2 +

m4. Prediction and recall are computed as m2/(m2 + m3)
and m2/(m2 + m4), respectively. A graph is plotted using
the prediction and recall values in the recall-prediction plane,
and the area bounded by the graph and the recall-prediction
axes becomes an AP. The average value of APs becomes
the mAP, which is used to evaluate the detection algorithm.
A high value of mAP indicates that a detection network can
accurately distinguish the IDs of the detected markers.
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TABLE 1. Performance comparison of the proposed and existing
networks for marker detection.

The pixel error was measured as the average distance
between the center points of the markers detected by the
existing AprilTag library and the markers predicted by the
network.

Table 1 presents a summary of the test results of the pro-
posed and existing networks. The proposed method yielded
the smallest values for the box loss and classification loss.
Both the proposed and YOLOv8 (anchor free) networks
achieved the highest mAP value of 0.995. Additionally, the
proposed network exhibited the lowest pixel error, scoring a
value of 0.04.

The tests reveal that the anchor-free methods (YOLOv5
anchor-free, YOLOv8 and the proposed methods) outper-
formed the anchor-box based method (YOLOv5). When a
marker is deformed, the anchor-based method tends to over-
estimate multiple boxes containing the marker. On the other
hand, the anchor-free methods can generate a tighter bound-
ing box by first estimating the center of the marker and then
computing the region enclosing the marker, as illustrated in
Fig. 8. The figure shows that the anchor-free method predicts
more accurate center points than the anchor-based method.

Additionally, the application of deformable convolution to
the network has improved the detection performance. The
existing convolution method typically assumes that the input
pattern is of a grid shape and geometrically undistorted.
Hence, it is not well-suited for distorted patterns as it tends
to treat them differently from undistorted ones. However,
deformable convolution can overcome this problem by train-
ing the shape of an appropriate receptive field for markers
from input data while adaptively adjusting the convolution
pattern.

The proposed network, trained with augmented data,
demonstrated better detection performance for unfavorable
lighting conditions and the defects of the projected images,
such as blurring, as shown Fig. 9. A total of 180 markers were
used in this test. The AprilTag library detected 46.67% of the
total markers, as shown in Fig 9(a). YOLOv8 trained without
augmented data detected only 5.56%of themarkers, as shown
in Fig. 9(b). In the same condition, the proposed method
detected 85.56% of the markers, as presented in Fig. 9(c).

FIGURE 8. Example of the detected centers by YOLOv5 (anchor-based)
and YOLOv8 with DeConv (anchor-free) marker detection. The red point is
the center of the reference marker, and the green point is the center of
the detected marker in each image.

FIGURE 9. Marker detection results under various projection conditions
by (a) AprilTag library, (b) YOLOv8 without augmentation data, and (c) the
proposed method.

The proposed method demonstrated superior performance
on both textured and circular projection surfaces compared
to the latest color-based marker method [19], as shown in
Fig. 10. A total of 24 markers were used in this test, projected
onto a textured flat surface and a half sphere, as depicted in
the figure. The color-based marker method detected 13 mark-
ers on the textured surface and only one marker on the
half sphere. In contrast, the proposed method detected all
24 markers on the textured surface and 13 markers on the
half sphere. These results emphasize the effectiveness of the
proposed method in challenging projection environments.

The general marker detection method, known as the Deep-
tag network [15], was compared with the proposed method.
A total of 180 markers were utilized in this test, as depicted in
Fig. 11. The Deeptag network detected 87 and 101 markers,
while the proposed method successfully detected 167 and
171 markers, demonstrating a detection rate of 93.89%.
The Deeptag network encountered challenges in identifying
marker areas during the ROI detection process, as illustrated
in Fig. 11, resulting in a higher number of false positive
results.

B. CALIBRATION AND ACCURACY
1) CALIBRATION
The proposed method was compared with the camera cal-
ibration toolbox of GML (Graphics and Media Lab) [27]
and Moreno’s calibration method for estimating the cam-
era’s intrinsic parameters. Additionally, it was compared with
Moreno’s [2] and Willi’s [7] methods for estimating the pro-
jector’s intrinsic parameters. In this test, a projector-camera
system with two cameras and two projectors was utilized.
Here, for Camera 1 and Camera 2, ABKO APC1000 and
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FIGURE 10. Marker detection results on the textured surface and sphere.
The top row shows the detection results by color based method [19]. The
bottom row shows the results by the proposed method.

FIGURE 11. Marker detection results. The top image shows the detection
results by Deeptag [15], and the bottom image the detection results by
the proposed method.

TABLE 2. Camera’s intrinsic parameter estimation.

Logitech C920 were used. For Projector 0 and Projector 2,
LG PW800 and Projector mania PJM500F were used.

Tables 2 and 3 demonstrate that the estimated parameters
by the proposed method closely align with those by the
existing methods using checkerboards. This indicates that the
proposed method performs calibration reasonably well, even
without the use of checkboards.

2) ACCURACY
The overall accuracy of the calibration can be measured by
the re-projection error. In this test, the proposed method was
compared with Moreno’s method using a setup involving one
projector and two cameras. The re-projection errors for the
camera and the projector were summarized in Table 4.

TABLE 3. Peojector’s intrinsic parameter estimation.

TABLE 4. Re-projection errors for a projector and two camera setup.

TABLE 5. Average re-projection errors on multiple projector-camera
setups.

The test demonstrated that the proposed method yielded
smaller re-projection errors than Moreno’s method. Further-
more, the proposed method was compared with Willi’s and
Tehrani’s methods in the context of a multi-projector camera
system, and the re-projection errors were summarized in
Table 5.

The tests show that the proposed method achieved smaller
re-projection errors for the multi-projector and camera sys-
tems than the existingmethods. Fig. 12 illustrates the result of
geometric correction for a non-flat surface. The figure shows
that the proposed method maintains the regular shape of the
checkerboard by correcting distortions, as indicated by the
circles.

Fig. 13 shows the projection results on a wall with
two corners before and after using the proposed method.
It can be seen that the images are warped to produce a
distortion-corrected image from the camera’s point of view.

In these experiments, a laptop computer with an intel core
i7 CPU without GPU acceleration was used. The program
was implemented using Python.

The computation time of the proposed method is roughly
linearly related to the number of projectors and cameras. For
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FIGURE 12. Example of geometric correction. The sides of squares and
the horizontal lines are aligned after distortion correction as indicated by
the circles.

FIGURE 13. Projection result of the distortion correction for the corner
surface.

a system consisting of two cameras and one projector, the
proposed method completed calibration within 20 seconds:
two seconds for projection and acquisition of images, one
second for marker pattern detection, 10 seconds for calibra-
tion, and five seconds for creating pixel correspondence. In a
setup with two cameras and four projectors, the proposed
method took about oneminute and 40 seconds, which is faster
than Willi’s method that required about two minutes and
30 seconds. Additionally, the proposed method outperformed
Tehrani’s method in a systemwith two cameras and three pro-
jectors by completing the process in about one minute, which
is approximately 30 seconds faster than Tehrani’s method.

Willi’s method utilizes structured light, and its process-
ing time significantly increases as the system configuration
becomes more complex. On the other hand, Tehrani’s method
requires prior knowledge of the camera’s focal length, neces-
sitating an additional step for estimation. However, the pro-
posed does not encounter such issues and can be extended
to general configurations while maintaining processing time
within a reasonable range.

VII. CONCLUSION
In this work, a fully automated calibrationmethod for a multi-
projector-camera system is proposed. This method does not
require checkboards for calibration and can handle both

planar and non-planar projection surfaces. The proposed
method utilizes AprilTag markers and modified YOLOv8
with deformable convolution for robust marker detection and
correspondence estimation, leading to improved calibration
performance without the need for user-defined parameters or
any hardware information. Given a projector-camera system,
the proposed method can automatically estimate calibration
parameters and generate distortion-compensated content for
projection without distortion within a reasonable amount
of time. Furthermore, the proposed method can be easily
extended to multi-projector-camera systems. Various exper-
iments demonstrated that the proposed method outperformed
existing methods using checkerboards in terms of calibra-
tion accuracy and processing time across various camera-
projector configurations.

The proposed method has several limitations that need
to be addressed. Firstly, although the proposed method
demonstrated robust detection performance under various
conditions during tests, there still exist cases where lighting
conditions and the reflection properties of projection sur-
faces negatively affect the detection performance. Therefore,
a systematic method to create more extensive training data
covering possible conditions and additional image processing
methods, which help the network detect markers, is required.
Secondly, the proposed method does not include adjustments
for color in the projected image. As a result, the projected
color may be affected by various factors, compromising the
quality of the projected content. Since cameras are used to
capture the projected image, the color of the image needs
to be adjusted, and the adjusted content should be projected
on the projection surface. An automatic color compensation
method using this process is necessary to solve this problem.
Lastly, the proposed system has not been tested for outdoor
environments where problems different from indoor cases are
expected. More challenging lighting and reflection properties
and demanding hardware requirements are needed, which
should be considered in the calibration process. These issues
must be addressed to achieve the ultimate projection quality
while providing an easy-to-use method in various conditions
and environments. These areas are recommended for future
research and development.
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