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Abstract

In a car accident, negligence is evaluated through a process known as split liability assessment. This assessment involves recon-
structing the accident scenario based on information gathered from sources such as dashcam footage. The final determination of
negligence is made by simulating the information contained in the video. Therefore, accident cases for split liability assessment
should be classified based on information affecting the negligence degree. While deep learning has recently been in the spotlight for
video recognition using short video clips, no research has been conducted to extract meaningful information from long videos, which
are necessary for split liability assessment. To address this issue, we propose a new task for analysing long videos by stacking the
important information predicted through the 3D CNNs model. We demonstrate the feasibility of our approach by proposing a split

liability assessment method using dashcam footage.
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1. Introduction

Every once in a while, drivers get involved in car accidents. When
they are lucky, the damage to the collision will be limited to the
car and not to personal injuries. The relief can be quickly replaced
by worries as drivers involved in the accident must undergo set-
tlements to determine who will be liable for the damage and to
what extent. The split liability assessment in car accidents refers
to revisiting the moment of the collision and finding the cause of
the accidents leading to the conclusion as to who is responsible
for the property loss. The responsibility is often partially accred-
ited to each driver and often mediated by car insurance agents. In
cases where both parties do not come to a satisfying agreement,
legal disputes will commence, finally leading to settlements made
by the court. Each defendant will submit evidence proving they
are less liable for the damage than the opponent. One of the most
valuable pieces of evidence in a collision accident case is recorded
video footage, often considered more credible than human wit-
ness testimony. In Korea, the use of car dashcams reached more
than 90%. The same trend is true for other countries. Most car
insurance companies discount for the insurance fees when the
cars are equipped with dashcams. In some instances, even with
available videos, it may not be sufficient to understand the un-
derlying cause of a collision. In such scenarios, advanced simula-
tion software can digitally reconstruct the scene using a combi-
nation of accident videos. Those include PC-Crash, LS-DYNA, and
MADYMO (Steffan & Moser, 1996; Steffan et al., 1999; Shang et al.,
2021), which use 3D simulations based on object movements to
understand the detailed motions of the cars during the collision.
From multiple video clues and operator inputs, the velocity and
position of the objects involved in the collision can be simulated

through a physics engine leading to a better understanding of the
collision scene. Lawyers can use these reconstructed simulations
to clearly understand the cause of the accidents and defend their
clients. Courts can therefore use these simulations as supporting
material for their final judgment of the split liability assessment.

Split liability assessment is a scorching topic, and TV shows
and Youtube channels are devoted to this subject. Many lawyers
appear on these channels to give their professional opinions, and
audiences also give their personal opinations. Often, there can be
a gap between traffic law and common sense. Some assessments
can receive large flames from audiences because, in many cases,
the disputes can be controversial, and opinions can be biased.

Legal matters are an area where Artificial Intelligence (Al) has
the potential to eventually surpass humans. A notable example of
this occurred during the Alpha Law competition in 2019, where Al
and humans competed against each other. The competition was
a legal advisory challenge between a team comprising of Al and
a human and another team consisting of two humans. The team
that had the assistance of Al emerged as the winner. This is be-
cause legal matters are primarily logical in nature, and Al excels
in domains where logical rules dominate. With this in mind, we
propose a novel Al system that can accurately classify a collision
accident and assign it to a category based on prior similar acci-
dents. Our Al model is based on a convolutional neural network
(CNN), which has demonstrated remarkable success in computer
vision applications such as classification, detection, and feature
extraction. We trained the Al model using video clips labeled by
experts in split traffic liability assessments, categorized by acci-
dent types. We validate the effectiveness of our approach using
real-life dashboard camera footage of traffic accidents.
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2. Related Work

According to the Korea Insurance Development Institute, there
were more than two million reported car accidents in a year.
Among them, 80% of the cases involved full liability, where one
side of the car accident was deemed fully responsible for the
entire damage. However, the remaining 20% were disputed. For
these disputed cases, the General Insurance Association of Korea
(GIAK), jointly formed by car insurance companies that are mem-
bers of the association, provides settlements that are mandatorily
followed by its members. These settlements are made to avoid
lengthy court disputes, which can take an average of four months
to 2 years. The GIAK also operates a portal (https://accident knia.
or.kr) where well-established categories exist in the form of a hi-
erarchy to systematically classify the types of accidents and the
possible split liability assessments. Currently, there are 109 cases
of car-to-car accidents. At the high level, the classification is based
on the movements of the cars involved in the accident: go-straight
vs go-straight, go-straight vs left-turn, go-straight vs right-turn,
and left-turn vs left-turn. At the mid-level, the number of roads
that meet at the junction (three-way junction, four-way junction,
etc.) and the type of movement of the car (changing lane, pass-
ing, stop-and-go) are used. Lastly, at the low-level, critical factors
affecting the split ratio of liability, such as the speed of the car
and traffic light conditions, are used. In summary, the high-to-mid
level divides the type of split liability, and the low level determines
the detailed liability scores. As described, various factors affect
the criteria for determining the hierarchical nature of the classi-
fication. In this study, we follow these hierarchical rules and the
final score of the split liability. Detailed accident classification is
given in Appendix 1.

Analysing video clips of accidents is essential to enhance the
accuracy of car accident classification using artificial intelligence.
CNNs are effective in analysing images. CNNs are particularly
adept at extracting representational features from input data
compared to other methods (Lowe, 1999; Dalal & Triggs, 2005). This
is because the network can extract common features among mul-
tiple images that belong to the same class. Consequently, CNNs
have shown excellent performance in various fields, such as im-
age classification (He et al., 2016; Krizhevsky et al., 2017; Houssein
et al., 2022) and object detection (Ren et al.,, 2015; Redmon et al,,
2016; Choi et al., 2022). However, 2D CNNs cannot be directly ap-
plied to video clips where time is added to space leading to three
dimensions.

Recurrent neural networks (RNNs) are a model for dealing with
time information. RNNs can store and handle information over
time. The difference between 2D CNNs and RNNs is in the recur-
rent character. This means that there is an iterative connection
that takes previous values back as input. However, RNNs have a
vanishing gradient problem in which the influence of preceding
information decreases over time (Bengio et al., 1994). Therefore, a
model that combines the spatial information analysis ability of
2D CNNs and the temporal information analysis ability of Long
Short Term Memory (LSTM) exists. And there is research that uses
Gated Recurrent Units (GRU) besides using LSTM. Although GRU
performs similarly to LSTM, GRU has fewer gates and model pa-
rameters (Chung et al., 2014; Ballas et al., 2015).

Many studies simultaneously deal with spatiotemporal infor-
mation. First of all, there is a spatiotemporal field that deals with
the behavior of objects in the video, such as action recognition (Le
et al., 2022; Jiaxin et al., 2021), car accident prediction (Yao et al,,
2019; Bao et al., 2020; Adewopo et al., 2022), and video segmenta-
tion (Wan et al., 2022). Another area that deals with the temporal
information is video super-resolution (Xiao et al., 2021; Xiao et al.,

2022). In this area, joint spatiotemporal enhancement of videos
resulting in higher resolution and increased number of frames
are achieved. Various tasks dealing with spatiotemporal informa-
tion have been created with the development of deep learning,
as stated above. In addition, this field acquires supplementary in-
formation from temporal data to enhance network performance
(Xiao et al.,, 2023b). This is beneficial as it enables a broader fea-
ture space. However, it also requires more data for training the
model. Therefore, research has been conducted on data gener-
ation through data simulation (Dosovitskiy et al., 2017; Li et al.,
2022). However, challenges exists in generalization due to the dif-
ferences between real and simulated data. Research is available
to address this problem (Xiao et al., 2023a).

In this research, a study was conducted to split liability as-
sessment in car accidents. This research extends object behav-
ior analysis into the spatiotemporal domain with the addition of
legal judgment. First, we will describe related works through the
development trend of action recognition, a representative task of
spatiotemporal analysis from the next part.

Action recognition is a field where video clips are analysed to
understand the actions (Laptev, 2003). SIFT3D and HOG-3D that
extend SIFT and HOG belong to action recognition methods (Sco-
vanner et al., 2007; Klaser et al., 2008; Patel et al., 2018). Recently
CNNs, with a large number of datasets, have also been used for
action recognition which is mainly in the field of human behavior
recognition (Zhou et al., 2018; Fan et al., 2019; Piergiovanni & Ryoo,
2019; Gowda et al., 2021; Quddus et al., 2021; Xu et al., 2022).

Action recognition problem requires consideration of both tem-
poral and spatial information in videos. First, there is a way to
recognize behavior using 2D CNNs. Karpathy et al. (2014) con-
ducted research that uses 2D CNNs to learn spatial information
and analyses temporal information through fusion. There is an
advantage of using various pre-trained models when using the 2D
CNNs structure. However, there are limitations because the CNNs
structure only learns spatial information. Also, it is not easy to
process videos of various lengths because only fixed length is al-
lowed. Wang et al. (2016) segmented the video and extracted one
frame from each segment. Then, they used it as an input for 2D
CNNs that share weights with the corresponding frame. Through
this, they secured the performance of temporal segment networks
(TSN), which classifies by looking at the whole video. While TSN is
good at capturing short-term temporal information, it may strug-
gle to model longer-term temporal dependencies due to segment-
level processing.

Next, there is a way to analyse spatial information using 2D
CNNs and input it into an LSTM model that handles temporal
information. This is called the 2D CNNs + LSTM method. There
is an advantage of using the backbone that is pre-trained with
a vast amount of images using 2D CNNs as a means of trans-
fer learning. Donahue et al. (2016) proceeded with action recogni-
tion by using the result of the 2D convolution of the input frame
as input to LSTM. Through this, end-to-end learning was possi-
ble. However, long-term recurrent convolutional network (LRCN)
combines CNNs and RNNs, but it may not be as effective in
capturing temporal dynamics as 3D CNNs, which can extract
both spatial and temporal features from video frames simulta-
neously. And these characteristics of LRCN make it more com-
putationally expensive than other models, including 3D CNNs
models.

3D CNNs extend 2D convolutional networks with the added di-
mension of time (Ji et al., 2012). 3D CNNs have shown outstanding
results in the field of action recognition and categorization. Tran
et al. (2015) have proposed the optimal kernel size for 3D convo-
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Table 1: Dataset related to traffic accident.

Dataset Number of Videos Positive Source Purpose

DAD* (Chan et al., 2017) 1750 620 Youtube Accident anticipation
A3D** (Yao et al., 2019) 1500 1500 Youtube Accident anticipation
CCD** (Bao et al., 2020) 4500 1500 Youtube Accident anticipation
Ours (GLAD) 1267 1267 Youtube, KakaoTV etc Accident anticipation,

ment in car accident

split liability

Each dataset can be downloaded from the links provided below:
* https://aliensunmin.github.io/project/dashcam/

** https://github.com/MoonBlvd/tad-IROS2019

** https://github.com/Cogito2012/CarCrashDataset

lutional networks with the best accuracy. Similar to the 2D CNNs
(Simonyan & Zisserman, 2014), it has been shown that each axis
having three lengths of floating numbers resultingina 3 x 3 x 3
kernel performed best. Furthermore, they have investigated the
effect of using only a few numbers of layers for action recognition
in terms of accuracy. They have concluded that the 3D CNNs per-
formed well on time and space data, such as video clips. Having
been motivated by their work, we applied 3D CNNs to assess the
split liability in car accidents. The CNN-based network is used to
utilize CNN'’s feature extraction. In other words, the CNN back-
bone’s feature extraction capability is important. Hara et al. (2018)
have experimented with the classification capability of 3D CNNs.
They compared the relationship between the depth of the layers
and the accuracy. They concluded that the accuracy was linearly
proportional to the depth. They have also tested the use of ResNet.
They were able to conclude that there exists little difference be-
tween the 3D CNNs and 3D CNNs modified with ResNet. They
have found that the best results can be achieved by increasing
the depth of the network in the case of 3D convolutions. There-
fore, we also investigated the effect of increasing the number of
layers in our experiments. Furthermore, as mentioned above, we
changed the pretraining dataset in addition to the number of lay-
ers and checked the result in order to check the performance of
the backbone.

As described above, action recognition is a research field that
analyses video by adding time information to 2D image process-
ing. Typical examples of action recognition datasets are Sports-
1M and HMDB-51 (Kuehne et al., 2011; Karpathy et al., 2014). Deep
learning-based action recognition research has been conducted
based on the dataset. The data class of Sports-1M consists of
clips about behavior such as track cycling, running and kayak-
ing. HMDB-51 is a human motion recognition dataset consisting
of jump, kick, and kiss. The characteristic of the two datasets is
that clips are made up of short and repetitive simple actions. This
is true of several datasets used in the study of action recognition
(Soomro et al,, 2012; Caba et al., 2015; Abu-El-Haija et al., 2016;
Goyal et al., 2017). Therefore, the clips used in the study serve the
purpose of classifying repeated images into one class.

However, the goal of this study, the split liability assessment,
differs from previous studies. The information must be accumu-
lated over time in the long video. The split liability assessment
in car accidents extracts information from images played over
time and collects the information to perform the final classifica-
tion. For example, in the case of a lane change accident, the in-
formation about lane change and the information about collision
are needed. For this reason, this study proposed a voting method.
The final classification was selected from the information from
the long video by stacking the real-time information predicted
through the 3D CNNs model.

There are also datasets related to car accidents. Research has
been conducted to predict and prevent accidents. Accident predic-
tion is a study that derives the probability of accidents happening
while driving a car. The objective of this study is to prevent acci-
dents from ever happening. Table 1 shows these related datasets.
The ‘Positive’ column indicates the number of videos that contain
accident scenes among all the videos. Dashcam Accident Dataset
(DAD) aims to find the car accident, with 1750 videos and 620 posi-
tive samples. AnAn Accident Detection (A3D)is a dataset of car ac-
cidents recorded by dashcams, with 1500 videos and 1500 positive
samples. The Car Crash Dataset (CCD) is used to predict when car
accidents might occur by assessing anomalies in the movements
of on-road participants, with 4500 videos and 1500 positive sam-
ples. While this dataset has the most data, it cannot be used for
split liability assessment because it aims to anticipate accidents.
Our dataset comprises 1267 videos, all of which contain accidents
and are labeled as an accident type. We propose a new task that
does not exist in the field, which sets our dataset apart from the
others.

In summary, as previously described, this study proposed a new
task to perform classification by collecting information over time
from video rather than the simple classification of existing action
recognitions. For the split liability assessment, the final classifi-
cation must be performed by collecting important elements from
the video. We propose a method of stacking the result values of 3D
CNNss to find features relevant to assessing the split liability. The
network’s performance depends on the depth of the network lay-
ers. Therefore, we experimented with checking the performance
of the feature extraction of the network by changing the number
of layers and the pretraining dataset.

3. Experimental Configuration

3.1 Dataset
3.1.1 Data collection

We have collected the car accident video clips by web-crawling on
Youtube, KakaoTV, and Bobaedream. Our objective was to collect
worldwide car accident cases, and 1267 cases were gathered. Fig-
ure 1 illustrates featured data statistics that include resolutions,
install location of the video camera (front/back), filmed time of
day (daytime/night), FPS, and running time.

Many of the outsourced video clips are not used. Although gen-
erality could be achieved by collecting all possible video clips, in
many cases, the number of samples having specific special con-
ditions was extremely rare such that these particular conditions
could interfere with the generality of the available cases. There-
fore, we have excluded these types of video clips. We explain these
samples in Section 3.1.2.
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Figure 1: Features of collected videos.

The traffic laws were different because the collected video clips
originated from various countries. For simplicity, we have ex-
cluded split liability assessment that requires the consideration
of the traffic laws. The fact that some countries enforce keeping
to the left and others enforcing the opposite was of no concern
because this did not affect the split liability assessment.

3.1.2 Pre-processing

As explained above, we have reduced the data dimensions to as-
sess the split liability in car accidents. We have preprocessed the
data based on five areas. These include the length of the video clip,
objects involved in the accident, the location of the dashcam, the
time of the accident and the quality of the videos. First, the video
clip’s length was trimmed to 3 seconds just before the crash. The
trim duration was experimentally chosen by comparing it with a
five-second trim, which showed lower accuracy. We found that in
most accidents, the first 2 seconds of the video (which accounts
for 40% of the total 5-second running time) typically showed nor-
mal driving patterns without any actions such as lane changes.
This reduced the possibility of excluding the fact that longer video
clips would result in a certain bias of accident classification. Thus
only 3 seconds of uniformly timed video clips were used. There
were some special cases where video clips that were longer than 3
seconds possessed information that would affect the split liability
assessment, but they were not used for simplicity. This simplifica-
tion allowed us to achieve better network performances as to the
reduction of dimensions of the features.

We only considered accidents involving car vs car. Accidents
involving car vs motorcycle and car vs pedestrian collisions were
not included due to the scarcity of available samples and to re-
duce the feature dimensions. We also excluded video clips ob-
tained from rear-facing dash cams for similar reasons. Only video
clips taken from the cars involved in the accident were used. In
other words, we did not use video clips from a third-person per-
spective. We also excluded video clips with lower resolutions and
images of low quality where objects were not clearly identifiable.
Lastly, video clips that were taken by recording the playback and
scenes that showed the aftereffect of the accident were also not
used. Following Fig. 2 shows sample screenshots of video clips that
were not used.

Number of videos

3.1.3 Post-processing

In this section, we explain the data labeling. To label the data, we
provided the labelers with the accident type classification criteria
specified by GIAK. We used written instructions and direct feed-
back to assist them in the labeling process. We selected good label-
ers by analysing the labeling results of several accident type cases
in the screening test. These selected labelers then proceeded with
the annotation process. This method is widely used in the devel-
opment of deep learning datasets to ensure objectivity. Ouyang
et al. (2022) secured the objectivity of the language model dataset
using a similar approach.

The data labeling was based on 109 categories of car accidents
which belonged to one of 11 steps (0-100%) of split liability propor-
tions of the proponent. Figure 3 illustrates the statistics of 11 split
liability ratios. The x-axis represents the split liability ratio of the
proponent, and the y-axis represents the number of videos in that
ratio. Those that have 20% or fewer proportions of the proponent’s
liability occupy more than 80% of total video clips. Those that per-
tain to 0% of the proponent’s liability occupy more than 60%. We
have found that the publicly collected video clips were quite bi-
ased toward the proponent. This is understandable because no
one would post video clips that showed his or her fault. In other
words, it is human nature to post video clips that are more fa-
vorable to themselves. It is also concerned that there is not much
similarity among particular liability proportions. For example, for
0% of the proponent’s liability cases, there existed categories such
as wrong-way driving, collisions while parked, and rear collisions.
We found these categories belonging to the same portion of the
proponent’s liability possessed no visual semantic similarity.

Thus, we have chosen to train the classifier based on the cate-
gories of the accident. We used 109 classes of car vs car accidents
which is a subset of the full classes as described by GIAK. The
clear benefit is that, in this way, a clear visual semantic similar-
ity was achieved within the same class. The detail of the classes
is described in the appendix 1. We evaluated the class for three
items. It is “‘Whether split liability assessment is checkable with
my dash cam video’, ‘Necessity of opponent’s dash cam video’,
and ‘Necessity of rear installed dash cam video'. It can be seen
that accident analysis is possible only with my dash cam video
for 64 of 109 classes. And it can be seen that accident analysis is
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Figure 2: Excluded video clips: (a) rear-faced dash cams, (b) recorded on the playback, (c) aftereffect of the accident, (d) low light, (e) poor image quality

and (f)third point of view.
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Figure 3: The count of video clips as a function of the proportion of the
liability.

possible only with my video in some situations for 32 cases. Thus,
out of the 109 classes in dash cam videos, 96 classes can be used
for our purpose. Figure 4 shows the count of video clips available
for each class. We can see that classes 252, 249, and 253 clearly
dominate the number of video clips.

There is a difference in the number of accident types between
the ranking of GIAK (https://accident.knia.or.kr/ranking) and our
constructed dataset. Class 249 is the second most frequent class
in our dataset, but it does not appear in GIAK's ranking. This phe-
nomenon arises from the regional bias in the dataset. GIAK has re-
gional dependence in Korea, whereas our constructed dataset was
built through web crawling, therefore, being more international.
Such cultural bias has been reported in various deep learning ap-
plications (Gebru et al., 2021; Buolamwini & Gebru, 2018).

For simplicity, we have chosen to only concentrate on the top
three classes (249, 252, 253) to verify the performance of our CNN-
based spatiotemporal network. If we examine the count of the
available video clips among these three classes, we can see that
class 252 almost doubles in the number of counts as compared
to the remaining two classes (249, 253). The bias on the available
count in each class can result in unsatisfactory accuracy. In Sec-
tion 3.2.2, we explain data augmentation methods to overcome
this bias problem. Through pre-processing, we obtained a total of
192 video clips for three classes. We have split the datasetinto 171
training sets and 21 test sets.

*Three classes of the dataset
The classification criteria for the aforementioned three classes of
car accidents are illustrated in the following Fig. 5. The blue car is

the proponent’s car. The red car is the opponent’s car. Class 249 is
wrong-way driving. The opponent’s car seriously crosses the cen-
ter line and hits the proponent’s car. Class 252 is a lane change
accident. While the proponent and opponent are driving in the
same direction, the proponent changes the lane and collides with
the proponent’s car. Class 253 is a rear collision accident. While
both are driving, the proponent’s car collides with the rear of the
opponent’s car. The proportions of the liability, as seen by the pro-
ponent, are 0%, 30%, and 100%. Each class of accident can be clas-
sified based on the movements of the proponent’s car and the op-
ponent’s car. Furthermore, because there exists little resemblance
in the movements of the cars involved in the accident, it is suitable
for the classifier used in this study.

3.2 Model
3.2.1 3D CNNs

The split liability assessment is determined by the trajectories of
the cars and the environmental factors before the collision. Here,
it is important that the information leading up to the collision is
considered as a criterion for classifying the accident case. That
is, the trajectories of the car are accumulated as a principle, and
the accident cases are classified based on the accumulated tra-
jectories. Therefore, to classify the accident case, it is necessary
to analyse not only spatial information but also temporal infor-
mation. The spatial and temporal development of the cars is of
primary interest. To analyse these subjects of interest, we used
3D CNNs, which are capable of processing time and space.

3D CNNs are based on 2D convolution on 2D images in the di-
rections of height and width and extended in the third direction of
time. In other words, the filter (kernel) is a cuboid. Therefore, the
time-stacked images are convolved in three dimensions. By utiliz-
ing these features, we can assess the time-dependent motion of
the cars involved in the accident. We discussed the feature map,
including the motion of the car in 4.4, with the class activation
map (CAM).

In this study, the feature extraction capability of the backbone
of the 3D CNNs plays an important role in accident case classifica-
tion. Therefore, using C3D as the basic backbone, the performance
of the backbone was measured by changing the number of layers
and the pre-trained dataset. C3Dis an Al model used in the field of
action recognition, and because temporal and spatial data can be
simultaneously processed, it was found to be most appropriate for
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Figure 4: The count of video clips as a function of the car accident categories.

our problem. To see the effect of the depth of the backbone layer,
we have compared by changing the layers to 11, 13, 16, and 19 lay-
ers. Table 2 shows the configuration of each layer-specific model.
Each layer is denoted as conv3D-<number of channels > . The ac-
tivation function is the RELU. The size of the filter is 3 x 3 x 3,
which performs best in a 3D convolutional network (Tran et al.,
2015). Stride and padding are set to one.

Each layer is a VGG network, and the purpose of using this
layer was to take the benefit of 2D CNNs. The head of the net-
work is responsible for the classification and is made of soft-max
functions. The network was used to classify three car-accident
classes. The loss function used in the learning is cross-entropy
losses.

We also experimented with the effect of transfer learning. As
the depth of the layer is deepened, a larger dataset is required to
train the network. This is a common problem in the training be-
cause a small dataset can result in over-fitting and will not gen-
eralize well. Thus, we have pre-trained our network using a huge
Sport-1M dataset and HMDB51. Afterward, the pre-trained back-
bone was fixed, and only the classification part was fine-tuned. We
compared the transfer learning effect with those done by training
from random parameters.

The hyperparameters are as follows. The learning rate was set
to 0.00001, the clip length was set to 16, and the batch size of 10
was used. Each parameter was optimized experimentally.

Figure 6 shows the overall network diagram. As mentioned
previously, when the input images (clip) are input, the data is
pipelined to the backbone and the head, and the resulting clas-
sification is reported.

3.2.2 Data augmentation

As noted previously, we have added more video clips through data
augmentation. We chose data augmentation methods that do not
interfere with the position and movement of the cars. First, we
applied a horizontal flip. Figure 7 (top) illustrates the horizontal
flip. Because we are dealing with video clips, entire sets of images
are identically flipped. When the images are horizontally flipped,
notice the directions of the movements of the cars, and the lane
marks also change. However, these changes do not interfere with
classifying classes 249, 252, and 253 because they are invariant to
horizontal flips. For example, when a car changes the driving lane

from left to right, it will change from right to left when horizontal
flipping is applied. The fact that there was a lane change (class
252) does not change. Similarly, the horizontal flipping is invariant
to classes 249 and 253.

Next, consider random cropping. When large cropping is used,
it can lead to the loss of the cars involved in the accident. There-
fore, we limited the cropping to be modest and only used cropping
of images less than 20% of the original width and height of the im-
ages. Notice that cropping resulted in images with a reduced num-
ber of resolutions. Random cropping is illustrated in Fig. 7 (bot-
tom). In addition, basic augmentation was performed to change
the brightness and saturation of the image.

Here is another important method of augmentation, shuffle. In
this study, the input video clip was shuffled. Thus, the video was
divided into several clips and shuffled. In other words, the entire
video was not used as input consecutively. One clip in our model
consists of 16 images. Through this, we were able to solve data
shortage problems and achieve results in performance improve-
ments. In addition, the evaluation of the results described in the
next chapter is constructed based on these shuffle augmentation
results.

3.2.3 Results evaluation

A dash cam video from car accidents is split into multiple clips
and input to the model with shuffle augmentation in training ses-
sions. Moreover, each clip passes the backbone classifier, where
the classified result is output in the test session. This means that
one dash cam video can trigger many classified results. These re-
sults work as votes, and the majority of the voting result is used
to determine the class of the dashcam video.

The dash cam video is composed of multiple clips denoted as ¢;.
The total number of the clip is defined as n. ¢; is input to the net-
work N(x). The output of the network is shown as R(c;). This clas-
sifier gives three probabilities. The classification result is shown
as pm. M denotes the class number: 249, 252, or 253. m>{249, 252,
253}. Therefore, py denotes the probability that the clip belongs
to a particular class, m. For any one clip ¢;, > pm sums to 1.

For any given dash cam video V, the result of V can be repre-
sented as

V ={R(co),R(c1),R(c2),R(c3),...R(Ca)} R (Cpn) ~Prn.
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Class

249

252

253

wrong-way driving

lane change

rear collision

Table 2: 3D Convolutional networks configurations.
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Figure 5: The time sequential movements and the proportional liability
(as seen by the proponent (blue)) for the classes 249, 252, and 253.

The final class of V is determined by the dominant class of V. In
other words, the most frequent R(cy) in V represents the final class
of V.

4. Results and Discussion

4.1 Results with layers and parameters

We tested the effect of changing the depth of layers on the accu-
racy of 3D CNNs. We used the most popular 2D CNNs backbones of
varying depths VGG11, VGG13, VGG16, and VGG19. And addition-
ally, we conducted experiments on the SlowFast model (Feichten-
hofer et al., 2019), which is commonly cited in the field of action
recognition. SlowFast has a ResNet-50 backbone, and we followed
the criteria presented in the study for the training parameters. We
conducted experiments on the scratch model and the pretraining
model. The pretraining model was fine-tuned after being trained
on the Kinetics-400 dataset.

11 layers 13 layers 16 layers 19 layers
input (224 x 224 x 224 RGB video)
Conv3D-64 Conv3D-64 Conv3D-64 Conv3D-64
Conv3D-64 Conv3D-64 Conv3D-64
maxpool
Conv3D-128 Conv3D-128 Conv3D-128 Conv3D-128
Conv3D-128 Conv3D-128 Conv3D-128
maxpool
Conv3D-256 Conv3D-256 Conv3D-256 Conv3D-256
Conv3D-256 Conv3D-256 Conv3D-256 Conv3D-256
Conv3D-256 Conv3D-256
Conv3D-256
maxpool
Conv3D-512 Conv3D-512 Conv3D-512 Conv3D-512
Conv3D-512 Conv3D-512 Conv3D-512 Conv3D-512
Conv3D-512 Conv3D-512
Conv3D-512
maxpool
Conv3D-512 Conv3D-512 Conv3D-512 Conv3D-512
Conv3D-512 Conv3D-512 Conv3D-512 Conv3D-512
Conv3D-512 Conv3D-512
Conv3D-512
maxpool
FC-4096
FC-4096
FC-3
softmax

Table 3 shows the result obtained by varying the depth of the
backbone layers. Accuracy calculated whether the final prediction
result obtained through stacking is correct with ground truth. The
first column is the number of layers. The second to last columns
are accuracy. The second column is the average accuracy for the
entire video. The third to fifth columns show the accuracy of each
case.

In average accuracy, the model with 11 layers proposed by C3D
shows 71.4% accuracy. And the models with 13 layers and 16 lay-
ers show the same accuracy at 66.7%. Lastly, the layer 19 model
shows the lowest accuracy of 61.9%. The complexity of the model
increases with the number of layers. In the classification of the
three accident cases used in this study, it can be seen that the
performance of the small model is high. These results can also be
observed in comparison with the SlowFast model. The SlowFast
model achieved accuracies of 38.1% and 57.1% in the scratch and
pretraining models, respectively.

The accuracy of 253 case of the layer 11 model is the lowest at
33.3%. Thus, the average accuracy is the highest due to the high
accuracy of 249 and 252 cases. On the other side, it can be seen
that the layer 16 model is evenly distributed for each case. That
is, it can be seen that the performance of the layer 16 model is
good in terms of generalization. However, as mentioned in Sec-
tion 3.1.3, when 249 case is not the majority, one could also con-
sider choosing 11 or 13 layer models that achieve high accuracy
on other cases. This approach, which emphasizes the importance
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Figure 6: The network diagram of the split liability assessment based on 3D CNN.
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Figure 7: Data augmentation: (top) horizontal flipping, (bottom) random cropping.

Table 3: Accuracy obtained by varying the network depth.

Number of layers Accuracy [%]

Accuracy_249

Accuracy_252 Accuracy_253

11 71.4
13 66.7
16 66.7
19 61.9
50* 38.1
50** 57.1

71.4 100 333
42.9 75.0 83.3
71.4 62.5 66.7
71.4 75.0 333
42.9 25.0 50.0
85.7 62.5 16.6

* slowfast, ResNet-50 backbone, scratch
* slowfast, ResNet-50 backbone, kinetic-400 pre-trained

of accurate classification for specific classes, has been used in the
field of medicine (Fotouhi et al., 2019).

4.2 Results with pre-trained dataset

As described above, the model performance according to the pre-
training dataset is confirmed as a method for evaluating the per-
formance of the backbone. Table 4 is a brief description of the pre-
training dataset. Pretraining is carried out using Sports-1M and
HMDB51. Sports-1M consists of more than 1 million videos. It has
a total of 487 classes and 1000-3000 clips per class. It contains la-

bels such as skiing, judo and yoga because it is made for sports
videos. HMDB51 is a dataset with 51 action classes. It consists of
6849 video clips. It has classes such as walking and shaking hands
because it deals with the action of a person’s motion.

Table 5 represents the accuracy according to the pretraining
dataset. Other parameters other than the pretraining dataset are
the same for the model used in this section. In other words, it
has the same parameters as the layer 11 model of Section 4.1.
This network learns 200 times (epochs) for the pretraining dataset.
After that, the head part is fine-tuned using the accident video
dataset.
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Table 4: Pre-trained dataset.

Pre-trained dataset Size Class Clips per class Objects example
Sports-1M Over million 487 1000-3000 Skiing, judo etc
HMDB51 6849 51 101 Walking, shaking hands etc

Table 5: Accuracy obtained by varying the dataset.

Pre-trained dataset Accuracy [%]

Accuracy_249

Accuracy_252 Accuracy_253

Sports-1M 71.4
HMDB51 90.5

714 100 333
71.4 100 100

Experiment results show that the model that learned the
HMDB51 shows higher performance than the Sports-1M model.
It can be seen that the average accuracy is 90.5%, showing higher
performance even in the effect of the change of the layer tested
earlier. In addition, it can be seen that the accuracy for each case
is also higher. It can be seen that the performance of the backbone
by the pretraining dataset is more important than the effect of the
number of layers through this result.

4.3 Results with GUI

We have implemented a simple GUI to show the intermediate and
final outcome of the split liability assessment. The left pane shows
the loaded dashcam video. The bottom area, it shows the loca-
tion of the loaded video. The right pane shows the analysis result.
The analysis includes the intermediate (on the fly) classifications
and also the final classification. In this picture, the first, second,
and third lines show the top three classification results that have
been processed by the dashcam videos played up until that mo-
ment. The first line shows two colored bars. The upper bar (sky
color) shows the predicted likelihood, and the bottom (green color)
shows the number of votes accredited to the particular class. For
example, the moment of the dash cam image is predicted to be
‘lane change (252)" as shown in Fig. 8. It has 67% likelihood. And
this video has been predicted 32 times with the lane change case
so far. The two bars for the lines second and third also show sim-
ilar bars. Notice the sum of the three upper bar (sky color) per-
centile values is 100%. The final conclusion shown at the bottom
of the right panel is determined by a majority vote. The classifica-
tion number, accident types, and split liability assessment follow
immediately after. In this section, we discuss the result as shown
in these dashcam videos for several examples.

4.3.1 253-class

Figure 9 shows the time lapsed (t0~t3) screenshots of the dash-
cam video and the accompanying assessment results. We used a
single Tesla-V100 GPU for inference. The test performance of the
model (11 layers, HMDB51 pre-trained) is 40 FPS. Real-time first
denotes the most probable class, and real-time second shows the
second most probable class. At the time t0, we can see that there
are two cars, one in the front and the other in the second lane. No-
tice that the model predicts that the top two predictions are first
252 and second 253 with similar probabilities. And most notice-
ably, the car in the second lane is closer than the car in the front.
At the time t1, notice the two cars are closer. Notice the prediction
of the model is now first 253 and second 252. Since the influence of
the car in the front is stronger, the first value now changes to 253.
At the time t2, the first 253 and second 252 remain unchanged.
And the probability of third 249 is lower than at the time t0 and

t1.In other words, two cars are in the front view, and the likelihood
of the imminent accident is distributed among the top two predic-
tions. Lastly, at the time t3, first 253 accounts for 74% probability,
and class 253 seems to be more dominant. Thus, the probability
of first 253 has the highest value. From these results, we can see
that the network can distinguish between the two classes, 252 and
253. This is due to the fact that the second lane car is totally out
of sight, and only the front car strongly affects the predicted ac-
cident class.

As described above, we can understand the ability of the pro-
posed network to classify the type of accident by analysing dash-
cam videos. In addition, the network is capable of predictingan ac-
cident that may occur in real-time while watching the video. This
demonstrates that the model is able to analyse the movement of
the car. Furthermore, the model is more accurate in predicting
ground truth data in the latter part of the video, closer to the mo-
ment of collision. Lastly, the final assessment of the model’s per-
formance shows that it is equal to the ground truth label of 253.

4.3.2 249-class

Figure 10 shows the time lapsed (t0~t3) assessments of a case
about class 249. The assessment results for specific moments are
shown in Fig. 10. As previously shown, real-time first denotes the
most probable class, and real-time second shows the second most
probable class.

At the time t0, we see that the car (ego) is driving in the second
lane. Notice that the model predicts that the top two predictions
are first 249 and second 252. At the time t1, we suddenly see a car
in the first lane. The assessment classes are first 252 and second
249. Because a car appeared in the first lane, it is most likely that
an imminent lane-change class accident may occur due to the
appearance of this car. At the time t2, we can see that the model
continues to pay close attention to lane-change class as identical
to time t1. Lastly, at time t3, we see that a car traveling in the
opposite direction is headed toward the car with the dashcam.
The assessment now reads first 249 and second 253. The reason
why the second prediction showed an accident while driving is
presumed to be because the last moment of the video shows the
opponent’s rear side of the car.

The screenshots show that the assessment focuses on wrong-
way driving. This can be presumed to be because the scene just
prior to the collision depicted scenes often seen from wrong-way
driving in training sessions. Additionally, we can see that the as-
sessment changes over time. This is due to the effect of the pro-
cessed clips. We can understand each clip possesses enough in-
formation to predict the class of the accident in the near future.
In other words, the model can be used to perceive upcoming acci-
dents.
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Figure 8: GUI software for the split liability assessment.

4.3.3 252-class

Lastly, we discuss the 252 class. Figure 11 shows the time lapsed
(t0O~13) assessments of a case about class 252. At the time t0, the
model assesses first 249 and second 253. At the time t1, first is
252, and second is 249. And at the time t2, first is 252, and sec-
ond is 249. At times t0 and t1, because cars in sight are very far
away, the model assumes accidents that might occur during such
situations. At the time t1, the car on the left lane is assessed to
increase the probability of causing the lane-change accident. In
other words, at the time t2, it appears that the effect of accumu-
lated voting counts influenced the assessment, not the actual car
on the right-hand side that would eventually collide. We can con-
clude that when the likelihood of the same class of accidents is
high, this tendency is preserved through accounted voting counts.
Lastly, at the time t3, first is 252, and the second is 253. Now at the
moment when the collision occurred, we can see that the model
correctly and quickly assessed the accident to be of class 252. It
is interesting to see the second assessment, which is 253. In sum-
mary, the model concluded the case to be of class 252, which is
the lane-change accident.

By examining Sections 4.3.1 through 4.3.3, we can make the fol-
lowing conclusions:

1) The model assessment with quantized clips proved to show
accurate results.

2) When two conflicting classes of accidents exist, the
model lists both with more votes for the true accident
class.

3) For clips that are far from the moment of collisions, the
model predicts the most likelihood of the accident consid-
ering the current situation.

4) The voting scheme can be used to conclude the final assess-
ment. This is the reason why we have limited the clip to be
of 3 seconds.

In the next section, we look into how the model is making the
assessment through the use of the CAM.
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4.4 Results with CAM

There exist many approaches to understanding how CNNs work
(Zeiler & Fergus, 2014). For example, the filters are visualized to
see that the edges are sought in the shallow part of the layers,
and more high-level features are detected in the deeper layers.
In classification problems, it is of primary interest to understand
which parts of the network can be attributed to deciding on a
particular class. Therefore, we used CAM to understand which
parts were responsible for concluding certain classes (Zhou et al,,
2016).

CAM can be obtained by replacing the fully connected network
with Global Average Pooling in the output layer of a convolutional
network. A CNN layer with the number of channels equal to the
number of classes is attached at the end of the backbone, where
feature maps are extracted. Each channel of the corresponding
layer represents one class. By adding a FC layer, a classification
is achieved with softmax. CAM can be obtained by multiplying
the weights at the Fully Connected (FC) layer with the feature
map.

Figure 12 illustrates a snap show about the accident class 252
(lane change). We obtained the CAM by assuming three classes
at the last layer. Time-lapsed results are shown from tO to t3.
The left image shows the raw image, and the right image shows
the CAM result. Areas of high attention are colorized with red. At
time t0, it appears fewer areas are showing red colors. The lower
left corner pulls some attention. This is due to the fact for lane-
change classes, lower-left and lower-right corners are the areas
where lane changes are happening.

For the t1 image, we still see much attention is given to the
lower left lane marks. We also see some attention given to the
center of the image as well as to the right. The attention given
at the center is due to the fact that there exists a car in the
front. It is interesting to see that the parked car on the right is
pulling attention even if it is not in a drivable space. We can
understand that all cars, whether it is in drivable space or not,
are attracting much attention. In fact, we were able to see that
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Figure 9: Time lapsed predictions of the case of accident class 253.

much attention was given to all cars in the image for the trained

dataset.

At the time t2, we can see the left car is receiving attention. At
the same time, the rest of the areas (lower left corner at the time
t0 and t1) is receiving less attention. This is due to the fact that
just prior to the collision car that is most likely to collide is given

more attention.

1589

Lastly, the CAM image at the time t2 shows that after the mo-
ment of collision, the attention is increased for the collided car. By
examining the CAM results, we can see that the model pays spe-
cial attention to cars. And when cars are not present (t0), more
attention is paid to the generalized circumstances of the relevant
class. Throughout this study, we were able to conclude that our

model is able to categorize car accidents by the trained classes.
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Figure 10: Time lapsed predictions of the case of accident class 249.

5. Conclusions

Usually, the field of video recognition is known as the field of
behavior recognition using a short video clip such as sports-1M.
However, video analysis often analyses information on long videos

in the real world. Accordingly, as a representative example, a task
for the split liability assessment in a car accident is proposed in
this study. This task involves generating a final classification re-
sult by combining factors that influence a liability assessment
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Figure 11: Time lapsed predictions of the case of accident class 252.

over time in a long video. Therefore, we propose a new task for
analysing long videos.

In this study, video analysis is carried out by using 3D CNNs.
It is a network that analyses short videos from the past. There-
fore, long video classification was performed through a method of

stacking each clip result. The results of acquiring important infor-
mation from long videos were shown through this method, unlike
previous studies. The CAM results are also shown in this study to
see where the network concentrates. The network focuses on and
tracks the movement of the vehicle over time.
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Figure 12: CAM results for the class 252: t = time, original = raw input video, CAM = 252 class CAM results.

From the perspective of using constructed data, we deleted ill-
conditioned data and used the remaining data, as shown in Fig. 2.
However, in real accidents, the videos taken from the vehicles of-
ten contain a number of peculiar footage. Therefore, to enable the
wide use of the developed network in actual accident situations,
these videos must be dealt with. The camcorder footage obtained
by filming the dashcam screens with a cell phone cannot be used
because the Al model confuses the dashboard background and
the relevant traffic actors in the dashcam playback. Perhaps it
may be possible to extract and use the video by using special-
ized filtering techniques to prune the background dashboard or
remove unwanted motion from the screen. Low-definition videos
could also be pre-processed using video super-resolution tech-
niques before applying them. We plan to extend our work to these
ill-conditioned videos in the future.

The proposals and results of this study show a new video task
in artificial intelligence. Therefore, it will lead to applying existing
video recognition field research to the real world. It will also be
the foundation for the AI field that can be applied to the legal
field through split liability assessment research.

In our study, we analysed spatiotemporal information using 3D
CNNs. The 3D CNN has the advantage of being able to simul-
taneously process spatiotemporal information. The operation of
3D CNN involves the convolution of kernels along the temporal
axis with limited window. Consequently, as the window progresses
over time, information outside the window is lost. While it is ca-
pable of handling full temporal information in short videos, it ex-
hibits limitations when processing longer videos. Therefore, our
future work is to develop a transformer-based network that can
capture important spatiotemporal information in long videos.
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Appendix 1. Accident cases for the split liability assessment
Whether split
liability assessment ~ Necessity of = Front  Rear
Accident Large Medium Category is checkable with opponent’s dash  dash
case category category Small category number my video data video data cam cam
Car-to-Car Straight-to- Crossroads Traffic violence-related 201 0 X 0 X
accident straight (traffic lights accident by a car from
accident are on the both one side
sides)
Accident by failing to 202 0 X 0 X
escape the crossroads
Traffic violence-related 203 0 X ¢} X
accident by cars from
both sides (yellow-light
vs red-light)
Traffic violence-related 204 A 0 0 X
accident by cars from
both sides (red-light vs
red-light)
Crossroads Entering from right lane 205 0 X O X
(based on the versus from left lane
width of road) (same road width)
Entering from right lane 206 o] X 6] X
versus from left lane
(different road width)
Stop sign vioation-related 207 A 0 O O
accident
One-way sign 208 A ) 0 X
vioation-related
accident
Straight-to- Crossroads Signal violation-related 209 6] X 6] X
left-turn (traffic lights accident (going straight
accident are opposite on red-light)
(head) one anthoer)
Signal violation-related 210 6] X 0 X
accident (turning left on
green-light for straight)
Signal violation-related 211 ) X O X
accident (going straight
on yellow-light)
Signal violation-related 212 o] X o] X
accident by cars from
both sides (same traffic
light)
Accident by failing to 213 o] X 0 X
escape the crossroads
Crossroads Unprotected left 213-1 0 X 0 X
(unprotected turn-related accident
left turn)
Crossroads (no Crossroads-related 214 0 X 0 X
traffic light) accident (no traffic light)
Stright-to- Crossroads Signal violation-related 215 0 X 0 X
left-turn (traffic lights accident (going straight
accident are across the on red-light)
(Side) crossroads )
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Continued

Split liability in car accident using 3D CNN

Accident
case

Large
category

Medium
category

Small category

Category
number

Whether split
liability assessment
is checkable with
my video data

Necessity of
opponent’s
video data

Front
dash
cam

Rear
dash
cam

Traffic light
is only on
one side

Straight vs
right-turn
accident

Crossroads
(based on the
width of road)

Crossroads (the
sign is only on
one side)

Traffic light is
only on the
direction where
a car is going
straight

Crossroads
(based on the
width of road)

Signal violation-related
accident by cars from
both sides (red-light)

Signal violation-related
accident by cars from
both sides (going
straight on yellow-light
vs turning left on
red-light)

Signal violation-related
accident by cars from
both sides (going
straight on red-light vs
turning left on
yellow-light)

Accident by failing to
escape the crossroads
Straight from the left road
vs left-turn from the

right road accident

Straight from the right
road vs left-turn from
the left road accident

Going straight on the wide
road vs turning left on
the narrow road

Going straight on the
narrow road from the
left vs turning left from
the right wide road

Going straight on the
narrow road from the
right road vs turning left
from the left wide road

Stop sign violation-related
accident (turning left)

Stop sign violation-related
accident (going straight
from left road)

Stop sign violation-related
accident (going straight
from right road)

Traffic light is only on the
direction where a car is
going straight

Right-turn vs
straight-related
accident (same road
width)

Right-turn on the narrow
road vs straight on the
wide road

Right-turn on the wide
road vs straight on the
narrow road

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

0

X

o]

X
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Continued
Whether split
liability assessment ~ Necessity of = Front  Rear
Accident Large Medium Category is checkable with opponent’s dash  dash
case category category Small category number my video data video data cam cam
Crossroads (the Stop sign violation-related 232 A o] 0 X
stop sign is accident (turning right)
only on the one
side)
Stop sign violation-related 233 A ) O X
accident (going straight)
Among others Accident by changing a 233-1 A o] o] X
lane in the crossroads
Left-turn vs Crossroads Left-turn from the right 234 o] X o] X
left-turn (based on the road vs left-turn from
accident width of road ) the left road (same road
width)
Left-turn on the narrow 235 ) X O X
road vs left-turn on the
wide road
Crossroads (the Stop sign violation-related 236 A ) ] X
stop sign is accident (turning left)
only on the one
side)
Among other  Passing accident 237 o] X 0 0
crossroads- on the
related crossroads
accidents
The accident at 238 o] X 6] 0
the road where
two cars can
drive next to
each other
Crossroads 239 X X X X
where the
angle is less
than 90 degree
for (left)
right-turn
T-junction Straight vs (left) Straight from the left road 240- ) X O X
road- right-turn vs left-turn from the 220C0O
related accident right road accident
accidents
Straight from the right 240- 0 X O X
road vs left-turn from 221C0O
the left road accident
Going straight on the wide 240- o] X 0 X
road vs turning left on 222CO
the narrow road
Going straight on the 240- 0 X O X
narrow road from the 223C0O
left vs turning left from
the right wide road
Going stright on the 240- 0 X 0 X
narrow road from the 224C0O

right road vs turning left
from the left wide road
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Continued
Whether split
liability assessment ~ Necessity of = Front Rear
Accident Large Medium Category is checkable with opponent’s dash  dash
case category category Small category number my video data video data cam cam
Stop sign violation-related 240~ A ) o] X
accident (turning left) 225CO
Stop sign violation-related 240- A ] o] X
accident (going straight 226CO
from left road)
Stop sign violation-related 240- A @) O X
accident (going straight 227CO
from right road)
Straight vs right-turn 240- O X O X
(same road width) 229CO
Going straight on the wide 240- O X 0 X
road vs turning left on 230C0O
the narrow road
Going straight on the 240- 0] X o] X
narrow road from the 231CO
left vs turning on the
wide road
Stop sign violation-related 240- A ] o] X
accident (turning right) 232C0O
Stop sign violation-related 240- A 0 o] X
accident (going straight) 233CO
Left-turn vs Left-turn from the right 241~ 0] X o] X
left-turn road vs left-turn from 234C0
accident the left road (same road
width)
Left-turn from the right 241~ 0] X o] X
narrow road vs left-turn 235C01
from the left wide road
Left-turn from the left on 241~ ] X o] X
the narrow road vs 235C02
left-turn on the wide
road
Stop sign violation-related 241- A O O X
accident (turning left) 236C0O
Car Entering to the 242 O X O X
accidents driveway from
of among where is not
other road the driveway
types
Entering to where 243 0 X o] X
is not the
driveway from
the driveway
Accident on the 244 X X X X
parking lot
Second car 245 A O O X
accident
Merging accident 246 0 X o X
where the
number of

lanes decrease
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Accident Large
case category

Medium
category

Small category

Category
number

Whether split
liability assessment
is checkable with
my video data

Necessity of
opponent’s
video data

Front
dash
cam

Rear
dash
cam

Right (left)-turning accident happens
cotemporaneously from two different lanes

Opened
door-related
contact
accident

Wrong-way
driving-related
accident

Intersection
accident on the
narrow road

Passing accident
happens where
passing
manner is
prohibited

Two drivers’ overtaking behavior-related
accident in where overtaking is prohibited

Overtaking
accident
(center lane is
the dotted)

Changing
lane-related
accident

Lane
change-related
accident (from
solid lane to
overtaking
lane)

Lane change
happens
simultaneously

Lane change all
of sudden
during traffic
congestion

Lane
change-related
accident
(passing safty
zone)

Collision
betweem two
cars while
driving

U-turn-related
accident
(straight vs
U-turn)

U-turn-related
accident
(right-turn vs
U-turn)

247

248

249

249-1

250

250-1

251

252

252-1

252-2

252-3

2524

253

254

254-1

o]

X

X

X

o]

X
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Continued
Whether split
liability assessment ~ Necessity of = Front Rear
Accident Large Medium Category is checkable with opponent’s dash  dash
case category category Small category number my video data video data cam cam
U-turn-related 254-2 A O 0 X
accident (both
cars are U
turning)
Car collision 255 0 X o 0
while pulling
Left-turn vs 256 ] X o] X
right-turn
Car departure 257 A O O X
after pulling
Pavement Going straight on 258 O X 0 X
marking left-turn road
violation mark
accidents
Left-turn on 259 0 X o] X
straight road
mark
Right-turn on 260 0] X o] X
straight road
mark
Going straight on 261 (@) X O X
right-turn road
mark
Accidentson  Roundabouts Entering to roundabouts 262 0] X o] X
round- (one lane type) vs driving on the
about roundabouts
Roundabouts Driving second lane on the 263 O X O X
(two lane type) roundabouts vs
changing first lane to
the second lane
Simultaneously entering 264 O X 0 X
to roundabouts
Entering to roundabouts 265 O X O X
vs driving on the
roundabouts
Exiting from first 266 0 X o] X
roundabout lane vs
entering to first
roundabout
Emergency Emergency car 267 X X X X
car goes straight
accident (signal
violation)
Emergency car’s 268 X X X X
wrong-way
driving on the
left lane (1)
Emergency car’s 269 X X X X
wrong-way
driving on the
left lane (2)
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Continued
Whether split
liability assessment ~ Necessity of = Front  Rear
Accident Large Medium Category is checkable with opponent’s dash  dash
case category category Small category number my video data video data cam cam
Emergency car 270 X X X X
enters to the
road (no signal)
Emergency car 271 X X X X
overtakes
others
Emergency car 272 X X X X
changes the
lane
Emergency car vs 273 X X X X
a car that
changes the
lane
Highway Merging Merging 501 A o] 6] X
road- road-related
related accident
accident
Decrease in Decrease in 502 A o] 6] X
number of number of
lane- lane-related
related accident
accident
Lane change- Lane change to 503 A o] o] X
related the fast lane
accident
Lane change 504 A o] 6] X
while driving
Rear-end car  Car collision 505 0 X ] 0O
collision while pulling
Car collision 506 0 X ] 0O
while pulling
over
Car collision 507 o] X o] e]
while driving
Falling Falling 508 X X X X
object- object-related
related accident
accident
Pedestrian Pedestrian 509 X X X X
related- related-
accident accident
(unreasonable
walking
behavior)
Pedestrian 510 X X X X
related-
accident
(reasonable
walking
behavior)
Lane change  Lane change to 511 A ) 0 X
to the road the road
shoulder shoulder
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