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Abstract 

In a car accident, negligence is evaluated through a process known as split liability assessment. This assessment involves recon- 
structing the accident scenario based on information gathered from sources such as dashcam footage. The final determination of 
negligence is made by simulating the information contained in the video. Ther efor e, accident cases for split liability assessment 
should be classified based on information affecting the negligence degree. While deep learning has recently been in the spotlight for 
video recognition using short video clips, no resear c h has been conducted to extract meaningful information from long videos, which 

ar e necessar y for split lia bility assessment. To addr ess this issue , w e pr opose a new task for anal ysing long videos by stacking the 
important information predicted through the 3D CNNs model. We demonstrate the feasibility of our approach by proposing a split 
liability assessment method using dashcam footage. 

Ke yw ords: car accident, split liability assessment, 3D convolution 
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1. Introduction 

Every once in a while, drivers get involved in car accidents. When 

they ar e luc ky, the dama ge to the collision will be limited to the 
car and not to personal injuries . T he relief can be quic kl y r eplaced 

b y w orries as drivers involved in the accident must undergo set- 
tlements to determine who will be liable for the damage and to 
what extent. The split liability assessment in car accidents refers 
to r e visiting the moment of the collision and finding the cause of 
the accidents leading to the conclusion as to who is responsible 
for the property loss . T he responsibility is often partially accred- 
ited to each driver and often mediated by car insurance agents. In 

cases where both parties do not come to a satisfying a gr eement,
legal disputes will commence, finally leading to settlements made 
by the court. Each defendant will submit evidence proving they 
are less liable for the damage than the opponent. One of the most 
valuable pieces of evidence in a collision accident case is recorded 

video footage, often considered more credible than human wit- 
ness testimony. In Korea, the use of car dashcams r eac hed mor e 
than 90%. The same trend is true for other countries. Most car 
insurance companies discount for the insurance fees when the 
cars are equipped with dashcams. In some instances, e v en with 

a vailable videos , it ma y not be sufficient to understand the un- 
derlying cause of a collision. In such scenarios, advanced simula- 
tion software can digitally reconstruct the scene using a combi- 
nation of accident videos . T hose include PC-Crash, LS-DYNA, and 

MADYMO (Steffan & Moser, 1996 ; Steffan et al ., 1999 ; Shang et al .,
2021 ), which use 3D simulations based on object movements to 
understand the detailed motions of the cars during the collision.
Fr om m ultiple video clues and oper ator inputs, the v elocity and 

position of the objects involved in the collision can be simulated 
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hrough a physics engine leading to a better understanding of the
ollision scene . La wyers can use these r econstructed sim ulations
o clearly understand the cause of the accidents and defend their
lients. Courts can ther efor e use these simulations as supporting
aterial for their final judgment of the split liability assessment. 
Split liability assessment is a scorching topic, and TV shows

nd Youtube channels are devoted to this subject. Many lawyers 
ppear on these channels to give their professional opinions, and
udiences also give their personal opinations. Often, there can be
 gap between traffic law and common sense. Some assessments
an r eceiv e lar ge flames fr om audiences because, in man y cases,
he disputes can be contr ov ersial, and opinions can be biased. 

Legal matters are an area where Artificial Intelligence (AI) has
he potential to e v entuall y sur pass humans. A notable example of
his occurred during the Alpha Law competition in 2019, where AI
nd humans competed a gainst eac h other. The competition was
 legal advisory challenge between a team comprising of AI and
 human and another team consisting of two humans . T he team
hat had the assistance of AI emerged as the winner. This is be-
ause legal matters ar e primaril y logical in nature, and AI excels
n domains where logical rules dominate. With this in mind, we
r opose a nov el AI system that can accur atel y classify a collision
ccident and assign it to a category based on prior similar acci-
ents. Our AI model is based on a convolutional neural network

CNN), whic h has demonstr ated r emarkable success in computer
ision applications such as classification, detection, and feature 
xtr action. We tr ained the AI model using video clips labeled by
xperts in split traffic liability assessments, categorized by acci- 
ent types. We validate the effectiveness of our approach using
eal-life dashboard camera footage of traffic accidents. 
 for Computational Design and Engineering. This is an Open Access article 
l License ( https://creativecommons.org/licenses/by-nc/4.0/ ), which permits 
e original work is pr operl y cited. For commercial r e-use, please contact 
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. Related Work 

ccording to the Korea Insurance Development Institute, there
er e mor e than two million r eported car accidents in a year.
mong them, 80% of the cases involved full liability, where one
ide of the car accident was deemed fully responsible for the
ntir e dama ge. Ho w e v er, the r emaining 20% wer e disputed. For
hese disputed cases, the General Insurance Association of Korea
GIAK), jointly formed by car insurance companies that are mem-
ers of the association, provides settlements that are mandatorily
ollo w ed b y its members . T hese settlements are made to a void
engthy court disputes, which can take an av er a ge of four months
o 2 years . T he GIAK also operates a portal ( https://accident.knia.
r .kr ) where well-established categories exist in the form of a hi-
r arc hy to systematically classify the types of accidents and the
ossible split liability assessments. Curr entl y, ther e ar e 109 cases
f car-to-car accidents. At the high le v el, the classification is based
n the movements of the cars involved in the accident: go-straight
s go-str aight, go-str aight vs left-turn, go-str aight vs right-turn,
nd left-turn vs left-turn. At the mid-le v el, the number of roads
hat meet at the junction (three-way junction, four-way junction,
tc.) and the type of movement of the car (changing lane, pass-
ng, stop-and-go) ar e used. Lastl y, at the low-le v el, critical factors
ffecting the split ratio of liability, such as the speed of the car
nd traffic light conditions, are used. In summary, the high-to-mid
e v el divides the type of split liability, and the low le v el determines
he detailed liability scor es. As described, v arious factors affect
he criteria for determining the hier arc hical natur e of the classi-
cation. In this study, we follow these hier arc hical rules and the
nal score of the split liability. Detailed accident classification is
iven in Appendix 1. 

Analysing video clips of accidents is essential to enhance the
ccuracy of car accident classification using artificial intelligence.
NNs ar e effectiv e in anal ysing ima ges. CNNs ar e particularl y
dept at extracting representational features from input data
ompared to other methods (Lo w e, 1999 ; Dalal & Triggs, 2005 ). This
s because the network can extract common features among mul-
iple images that belong to the same class. Consequently, CNNs
ave shown excellent performance in various fields, such as im-
ge classification (He et al., 2016 ; Krizhevsky et al., 2017 ; Houssein
t al., 2022 ) and object detection (Ren et al., 2015 ; Redmon et al.,
016 ; Choi et al., 2022 ). Ho w e v er, 2D CNNs cannot be dir ectl y a p-
lied to video clips where time is added to space leading to three
imensions. 

Recurr ent neur al networks (RNNs) ar e a model for dealing with
ime information. RNNs can store and handle information over
ime . T he difference between 2D CNNs and RNNs is in the recur-
 ent c har acter. This means that ther e is an iter ativ e connection
hat takes pr e vious v alues bac k as input. Ho w e v er, RNNs hav e a
 anishing gr adient pr oblem in whic h the influence of preceding
nformation decreases over time (Bengio et al., 1994 ). T herefore , a

odel that combines the spatial information analysis ability of
D CNNs and the temporal information analysis ability of Long
hort Term Memory (LSTM) exists. And there is r esearc h that uses
ated Recurrent Units (GRU) besides using LSTM. Although GRU
erforms similarly to LSTM, GRU has fewer gates and model pa-
ameters (Chung et al., 2014 ; Ballas et al., 2015 ). 

Many studies simultaneously deal with spatiotemporal infor-
ation. First of all, there is a spatiotemporal field that deals with

he behavior of objects in the video, such as action recognition (Le
t al., 2022 ; Jiaxin et al ., 2021 ), car accident prediction (Yao et al.,
019 ; Bao et al., 2020 ; Adewopo et al., 2022 ), and video segmenta-
ion (Wan et al., 2022 ). Another area that deals with the temporal
nformation is video super-resolution (Xiao et al ., 2021 ; Xiao et al .,
022 ). In this area, joint spatiotemporal enhancement of videos
esulting in higher resolution and increased number of frames
r e ac hie v ed. Various tasks dealing with spatiotempor al informa-
ion have been created with the development of deep learning,
s stated abo ve . In addition, this field acquires supplementary in-
ormation fr om tempor al data to enhance network performance
Xiao et al., 2023b ). This is beneficial as it enables a broader fea-
ure space. Ho w ever, it also requires more data for training the

odel. Ther efor e, r esearc h has been conducted on data gener-
tion through data simulation (Dosovitskiy et al., 2017 ; Li et al.,
022 ). Ho w e v er, c hallenges exists in generalization due to the dif-
er ences between r eal and sim ulated data. Researc h is av ailable
o address this problem (Xiao et al., 2023a ). 

In this r esearc h, a study was conducted to split liability as-
essment in car accidents . T his r esearc h extends object behav-
or analysis into the spatiotemporal domain with the addition of
egal judgment. First, we will describe related works through the
e v elopment tr end of action r ecognition, a r epr esentativ e task of
patiotempor al anal ysis fr om the next part. 

Action recognition is a field where video clips are analysed to
nderstand the actions (La pte v, 2003 ). SIFT3D and HOG-3D that
xtend SIFT and HOG belong to action recognition methods (Sco-
anner et al., 2007 ; Klaser et al ., 2008 ; Patel et al ., 2018 ). Recently
NNs, with a large number of datasets, have also been used for
ction r ecognition whic h is mainl y in the field of human behavior
ecognition (Zhou et al. , 2018 ; F an et al. , 2019 ; Piergiovanni & Ryoo,
019 ; Gowda et al., 2021 ; Quddus et al., 2021 ; Xu et al., 2022 ). 

Action r ecognition pr oblem r equir es consider ation of both tem-
oral and spatial information in videos. First, there is a way to
ecognize behavior using 2D CNNs. Karpathy et al. ( 2014 ) con-
ucted r esearc h that uses 2D CNNs to learn spatial information
nd analyses temporal information through fusion. There is an
dv anta ge of using various pre-trained models when using the 2D
NNs structure. Ho w ever, there are limitations because the CNNs
tructur e onl y learns spatial information. Also, it is not easy to
rocess videos of various lengths because only fixed length is al-

o w ed. Wang et al . ( 2016 ) segmented the video and extracted one
r ame fr om eac h segment. Then, they used it as an input for 2D
NNs that share weights with the corresponding frame . T hrough

his, they secured the performance of temporal segment networks
TSN), which classifies by looking at the whole video. While TSN is
ood at capturing short-term temporal information, it may strug-
le to model longer-term temporal dependencies due to segment-
e v el pr ocessing. 

Next, there is a way to analyse spatial information using 2D
NNs and input it into an LSTM model that handles temporal

nformation. This is called the 2D CNNs + LSTM method. There
s an adv anta ge of using the bac kbone that is pr e-tr ained with
 vast amount of images using 2D CNNs as a means of trans-
er learning. Donahue et al. ( 2016 ) proceeded with action recogni-
ion by using the result of the 2D convolution of the input frame
s input to LSTM. T hrough this , end-to-end learning was possi-
le. Ho w e v er, long-term r ecurr ent conv olutional netw ork (LRCN)
ombines CNNs and RNNs, but it may not be as effective in
a pturing tempor al dynamics as 3D CNNs, whic h can extr act
oth spatial and tempor al featur es fr om video fr ames sim ulta-
eousl y. And these c har acteristics of LRCN make it more com-
utationall y expensiv e than other models, including 3D CNNs
odels. 
3D CNNs extend 2D conv olutional netw orks with the added di-

ension of time (Ji et al., 2012 ). 3D CNNs have shown outstanding
esults in the field of action recognition and categorization. Tran
t al. ( 2015 ) hav e pr oposed the optimal kernel size for 3D convo-

https://accident.knia.or.kr
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Table 1: Dataset related to traffic accident. 

Dataset Number of Videos Positi v e Source Purpose 

DAD 

∗ (Chan et al., 2017 ) 1750 620 Youtube Accident anticipation 
A3D 

∗∗ (Yao et al., 2019 ) 1500 1500 Youtube Accident anticipation 
CCD 

∗∗∗ (Bao et al., 2020 ) 4500 1500 Youtube Accident anticipation 
Ours (GLAD) 1267 1267 Youtube, KakaoTV etc Accident anticipation, 

split liability assessment in car accident 

Each dataset can be downloaded from the links provided below: 
∗ https:// aliensunmin.github.io/ project/ dashcam/ 
∗∗ https:// github.com/MoonBlvd/ tad-IROS2019 
∗∗∗ https:// github.com/Cogito2012/ CarCrashDataset 
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lutional networks with the best accuracy. Similar to the 2D CNNs 
(Simonyan & Zisserman, 2014 ), it has been shown that each axis 
having three lengths of floating numbers resulting in a 3 × 3 × 3 
k ernel performed best. Furthermore, the y ha ve in vestigated the 
effect of using only a few numbers of layers for action recognition 

in terms of accuracy. They have concluded that the 3D CNNs per- 
formed well on time and space data, such as video clips . Ha ving 
been motivated by their work, we applied 3D CNNs to assess the 
split liability in car accidents . T he CNN-based network is used to 
utilize CNN’s feature extraction. In other w or ds, the CNN back- 
bone’s featur e extr action ca pability is important. Har a et al. ( 2018 ) 
have experimented with the classification capability of 3D CNNs.
They compared the relationship between the depth of the layers 
and the accuracy. They concluded that the accuracy was linearly 
proportional to the de pth. The y have also tested the use of ResNet.
They were able to conclude that there exists little difference be- 
tween the 3D CNNs and 3D CNNs modified with ResNet. They 
have found that the best results can be ac hie v ed by incr easing 
the depth of the network in the case of 3D con volutions . T here- 
fore , we also in vestigated the effect of increasing the number of 
layers in our experiments. Furthermore, as mentioned above, we 
c hanged the pr etr aining dataset in ad dition to the n umber of lay- 
ers and c hec ked the r esult in order to c hec k the performance of 
the backbone. 

As described abo ve , action r ecognition is a r esearc h field that 
analyses video by adding time information to 2D image process- 
ing. Typical examples of action recognition datasets are Sports- 
1M and HMDB-51 (Kuehne et al., 2011 ; Karpathy et al., 2014 ). Deep 

learning-based action recognition research has been conducted 

based on the dataset. The data class of Sports-1M consists of 
clips about behavior such as track cycling, running and kayak- 
ing. HMDB-51 is a human motion recognition dataset consisting 
of jump, kick, and kiss . T he c har acteristic of the two datasets is 
that clips are made up of short and re petiti ve simple actions . T his 
is true of se v er al datasets used in the study of action recognition 

(Soomro et al., 2012 ; Caba et al., 2015 ; Abu-El-Haija et al., 2016 ; 
Go y al et al., 2017 ). Ther efor e, the clips used in the study serve the 
purpose of classifying repeated images into one class. 

Ho w e v er, the goal of this study, the split liability assessment,
differs fr om pr e vious studies . T he information m ust be accum u- 
lated over time in the long video. The split liability assessment 
in car accidents extracts information from images played over 
time and collects the information to perform the final classifica- 
tion. For example, in the case of a lane change accident, the in- 
formation about lane change and the information about collision 

are needed. For this reason, this study proposed a voting method.
The final classification was selected from the information from 

the long video by stacking the real-time information predicted 

through the 3D CNNs model. 
Ther e ar e also datasets r elated to car accidents. Researc h has
een conducted to predict and pr e v ent accidents. Accident pr edic-
ion is a study that derives the probability of accidents happening
hile driving a car. The objective of this study is to pr e v ent acci-
ents from ever happening. Table 1 shows these related datasets.
 he ‘P ositive’ column indicates the number of videos that contain
ccident scenes among all the videos. Dashcam Accident Dataset 
DAD) aims to find the car accident, with 1750 videos and 620 posi-
ive samples. AnAn Accident Detection (A3D) is a dataset of car ac-
idents recorded by dashcams, with 1500 videos and 1500 positive
amples . T he Car Crash Dataset (CCD) is used to predict when car
ccidents might occur by assessing anomalies in the movements 
f on-road participants, with 4500 videos and 1500 positive sam-
les. While this dataset has the most data, it cannot be used for
plit liability assessment because it aims to anticipate accidents.
ur dataset comprises 1267 videos, all of which contain accidents
nd are labeled as an accident type. We propose a new task that
oes not exist in the field, which sets our dataset apart from the
thers. 

In summary, as pr e viousl y described, this study pr oposed a ne w
ask to perform classification by collecting information over time 
rom video rather than the simple classification of existing action
ecognitions. For the split liability assessment, the final classifi- 
ation must be performed by collecting important elements from 

he video. We propose a method of stacking the result values of 3D
NNs to find features relevant to assessing the split liability. The
etwork’s performance depends on the depth of the network lay-
rs . T her efor e, we experimented with c hec king the performance
f the feature extraction of the network by changing the number
f layers and the pr etr aining dataset. 

. Experimental Configur a tion 

.1 Dataset 
.1.1 Data collection 

e have collected the car accident video clips by web-crawling on
outube, KakaoTV, and Bobaedream. Our objective was to collect 
orldwide car accident cases, and 1267 cases were gathered. Fig-
r e 1 illustr ates featur ed data statistics that include resolutions,

nstall location of the video camera (front/back), filmed time of
a y (da ytime/night), FPS, and running time. 

Many of the outsourced video clips are not used. Although gen-
rality could be achieved by collecting all possible video clips, in
any cases, the number of samples having specific special con-

itions was extr emel y r ar e suc h that these particular conditions
ould interfere with the generality of the available cases. There-
ore , we ha ve excluded these types of video clips. We explain these
amples in Section 3.1.2. 

https://aliensunmin.github.io/project/dashcam/
https://github.com/MoonBlvd/tad-IROS2019
https://github.com/Cogito2012/CarCrashDataset
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Figur e 1: F eatures of collected videos . 

 

o  

c  

o  

t  

b

3
A  

s  

d  

o  

t  

c  

t  

fi  

m  

f  

m  

T  

c  

o  

w  

s  

a  

t  

r
 

i  

n  

d  

t  

c  

o  

s  

i  

L  

s  

u  

w

3
I  

p  

s  

b  

e  

i  

t  

o  

e  

u
 

w  

t  

l  

p  

r  

l  

t  

h  

a  

o  

w  

v  

s  

0  

a  

W  

p
 

g  

w  

c  

i  

i  

i  

m  

a  

t  

f  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/4/1579/7209896 by G

w
ang Ju Institute of Science & Technology user on 10 Septem

ber 2024
The traffic laws were different because the collected video clips
riginated from various countries. For simplicity, we have ex-
luded split liability assessment that r equir es the consider ation
f the traffic la ws . T he fact that some countries enforce k ee ping
o the left and others enforcing the opposite was of no concern
ecause this did not affect the split liability assessment. 

.1.2 Pr e-pr ocessing 

s explained abo ve , we ha v e r educed the data dimensions to as-
ess the split liability in car accidents. We have preprocessed the
ata based on five areas . T hese include the length of the video clip,
bjects involved in the accident, the location of the dashcam, the
ime of the accident and the quality of the videos. First, the video
lip’s length was trimmed to 3 seconds just before the crash. The
rim duration was experimentally chosen by comparing it with a
v e-second trim, whic h sho w ed lo w er accurac y. We found that in
ost accidents, the first 2 seconds of the video (which accounts

or 40% of the total 5-second running time) typically sho w ed nor-
al driving patterns without any actions such as lane changes.

his reduced the possibility of excluding the fact that longer video
lips would result in a certain bias of accident classification. Thus
nly 3 seconds of uniformly timed video clips wer e used. Ther e
ere some special cases where video clips that were longer than 3

econds possessed information that would affect the split liability
ssessment, but they were not used for simplicity. This simplifica-
ion allo w ed us to ac hie v e better network performances as to the
eduction of dimensions of the features. 

We only considered accidents involving car vs car. Accidents
nvolving car vs motorcycle and car vs pedestrian collisions were
ot included due to the scarcity of available samples and to re-
uce the feature dimensions. We also excluded video clips ob-
ained fr om r ear-facing dash cams for similar r easons. Onl y video
lips taken from the cars involved in the accident were used. In
ther w or ds, w e did not use video clips from a third-person per-
pective. We also excluded video clips with lo w er resolutions and
mages of low quality where objects were not clearly identifiable.
astly, video clips that were taken b y recor ding the playback and
cenes that sho w ed the aftereffect of the accident were also not
sed. Following Fig. 2 shows sample screenshots of video clips that
ere not used. 
.1.3 Post-processing 

n this section, we explain the data labeling. To label the data, we
rovided the labelers with the accident type classification criteria
pecified by GIAK. We used written instructions and direct feed-
ack to assist them in the labeling process. We selected good label-
rs by analysing the labeling results of several accident type cases
n the screening test. These selected labelers then proceeded with
he annotation process . T his method is widely used in the de v el-
pment of deep learning datasets to ensure objectivity. Ouyang
t al. ( 2022 ) secured the objectivity of the language model dataset
sing a similar a ppr oac h. 

The data labeling was based on 109 categories of car accidents
hich belonged to one of 11 steps (0–100%) of split liability propor-

ions of the pr oponent. Figur e 3 illustr ates the statistics of 11 split
iability ratios . T he x-axis r epr esents the split liability r atio of the
roponent, and the y-axis represents the number of videos in that
atio. T hose that ha ve 20% or fewer proportions of the proponent’s
iability occupy more than 80% of total video clips . T hose that per-
ain to 0% of the proponent’s liability occupy more than 60%. We
ave found that the publicly collected video clips were quite bi-
sed to w ar d the proponent. This is understandable because no
ne would post video clips that showed his or her fault. In other
 or ds, it is human nature to post video clips that are more fa-

orable to themselves. It is also concerned that there is not much
imilarity among particular liability proportions . For example , for
% of the proponent’s liability cases, there existed categories such
s wrong-way driving, collisions while parked, and rear collisions.
e found these categories belonging to the same portion of the

roponent’s liability possessed no visual semantic similarity. 
T hus , we ha v e c hosen to tr ain the classifier based on the cate-

ories of the accident. We used 109 classes of car vs car accidents
hich is a subset of the full classes as described by GIAK. The

lear benefit is that, in this way, a clear visual semantic similar-
ty was ac hie v ed within the same class . T he detail of the classes
s described in the appendix 1. We evaluated the class for three
tems. It is ‘Whether split liability assessment is c hec kable with

y dash cam video’, ‘Necessity of opponent’s dash cam video’,
nd ‘Necessity of rear installed dash cam video’. It can be seen
hat accident analysis is possible only with my dash cam video
or 64 of 109 classes. And it can be seen that accident analysis is



Journal of Computational Design and Engineering, 2023, 10(4), 1579–1601 | 1583 

Figure 2: Excluded video clips: (a) rear-faced dash cams, (b) recorded on the playback, (c) aftereffect of the accident, (d) low light, (e) poor image quality 
and (f)third point of view. 

Figur e 3: T he count of video clips as a function of the proportion of the 
liability. 
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possible only with my video in some situations for 32 cases . T hus ,
out of the 109 classes in dash cam videos, 96 classes can be used 

for our pur pose. Figur e 4 shows the count of video clips available 
for each class. We can see that classes 252, 249, and 253 clearly 
dominate the number of video clips. 

There is a difference in the number of accident types between 

the ranking of GIAK ( https:// accident.knia.or.kr/ ranking ) and our 
constructed dataset. Class 249 is the second most frequent class 
in our dataset, but it does not appear in GIAK’s ranking. This phe- 
nomenon arises from the regional bias in the dataset. GIAK has re- 
gional dependence in Kor ea, wher eas our constructed dataset was 
built through web cra wling, therefore , being more international.
Suc h cultur al bias has been r eported in v arious deep learning a p- 
plications (Gebru et al., 2021 ; Buolamwini & Gebru, 2018 ). 

For simplicity, we have chosen to only concentrate on the top 

three classes (249, 252, 253) to verify the performance of our CNN- 
based spatiotemporal network. If we examine the count of the 
available video clips among these three classes, we can see that 
class 252 almost doubles in the number of counts as compared 

to the remaining two classes (249, 253). The bias on the available 
count in each class can result in unsatisfactory accuracy. In Sec- 
tion 3.2.2, we explain data augmentation methods to overcome 
this bias pr oblem. Thr ough pr e-pr ocessing, we obtained a total of 
192 video clips for three classes . We ha ve split the dataset into 171 
training sets and 21 test sets. 

∗Three classes of the dataset 
The classification criteria for the aforementioned three classes of 
car accidents are illustrated in the following Fig. 5 . The blue car is 
he proponent’s car. The red car is the opponent’s car. Class 249 is
rong-wa y driving. T he opponent’s car seriousl y cr osses the cen-

er line and hits the proponent’s car. Class 252 is a lane change
ccident. While the proponent and opponent are driving in the
ame direction, the proponent changes the lane and collides with
he proponent’s car. Class 253 is a rear collision accident. While
oth are driving, the proponent’s car collides with the rear of the
pponent’s car. The proportions of the liability, as seen by the pro-
onent, are 0%, 30%, and 100%. Each class of accident can be clas-
ified based on the movements of the proponent’s car and the op-
onent’s car. Furthermore, because there exists little resemblance 

n the movements of the cars involved in the accident, it is suitable
or the classifier used in this study. 

.2 Model 
.2.1 3D CNNs 
he split liability assessment is determined by the trajectories of
he cars and the environmental factors before the collision. Here,
t is important that the information leading up to the collision is
onsidered as a criterion for classifying the accident case . T hat
s, the trajectories of the car are accumulated as a principle, and
he accident cases are classified based on the accumulated tra-
ectories . T her efor e, to classify the accident case, it is necessary
o analyse not only spatial information but also temporal infor-

ation. The spatial and temporal development of the cars is of
rimary interest. To analyse these subjects of interest, we used
D CNNs, which are capable of processing time and space. 

3D CNNs are based on 2D convolution on 2D images in the di-
ections of height and width and extended in the third direction of
ime. In other w or ds, the filter (kernel) is a cuboid. Ther efor e, the
ime-stac ked ima ges ar e convolv ed in thr ee dimensions. By utiliz-
ng these features, we can assess the time-dependent motion of
he cars involved in the accident. We discussed the feature map,
ncluding the motion of the car in 4.4, with the class activation

ap (CAM). 
In this study, the featur e extr action ca pability of the bac kbone

f the 3D CNNs plays an important role in accident case classifica-
ion. Ther efor e, using C3D as the basic backbone, the performance
f the backbone was measured by changing the number of layers
nd the pr e-tr ained dataset. C3D is an AI model used in the field of
ction recognition, and because temporal and spatial data can be
im ultaneousl y pr ocessed, it was found to be most a ppr opriate for

https://accident.knia.or.kr/ranking
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Figur e 4: T he count of video clips as a function of the car accident categories . 
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ur problem. To see the effect of the depth of the backbone layer,
e hav e compar ed by c hanging the layers to 11, 13, 16, and 19 lay-

rs. Table 2 shows the configuration of each layer-specific model.
ach layer is denoted as conv3D- < number of channels > . The ac-
ivation function is the RELU. The size of the filter is 3 × 3 × 3,
hich performs best in a 3D convolutional network (Tran et al.,
015 ). Stride and padding are set to one. 

Each layer is a VGG network, and the purpose of using this
ay er w as to take the benefit of 2D CNNs . T he head of the net-
ork is responsible for the classification and is made of soft-max

unctions . T he network was used to classify three car-accident
lasses . T he loss function used in the learning is cr oss-entr opy
osses. 

We also experimented with the effect of transfer learning. As
he depth of the layer is deepened, a larger dataset is r equir ed to
rain the network. This is a common problem in the training be-
ause a small dataset can result in over-fitting and will not gen-
ralize well. T hus , we ha v e pr e-tr ained our network using a huge
port-1M dataset and HMDB51. Afterw ar d, the pr e-tr ained bac k-
one was fixed, and only the classification part was fine-tuned. We
ompared the transfer learning effect with those done by training
r om r andom par ameters. 

The hyper par ameters ar e as follows . T he learning rate was set
o 0.00001, the clip length was set to 16, and the batch size of 10
as used. Each parameter was optimized experimentally. 
Figure 6 shows the overall network diagram. As mentioned

r e viousl y, when the input ima ges (clip) ar e input, the data is
ipelined to the backbone and the head, and the resulting clas-
ification is reported. 

.2.2 Data augmentation 

s noted pr e viousl y, we hav e added mor e video clips through data
ugmentation. We chose data augmentation methods that do not
nterfere with the position and movement of the cars. First, we
pplied a horizontal flip. Figure 7 (top) illustrates the horizontal
ip. Because we are dealing with video clips, entire sets of images
r e identicall y flipped. When the ima ges ar e horizontall y flipped,
otice the directions of the movements of the cars, and the lane
arks also change. Ho w ever, these changes do not interfere with

lassifying classes 249, 252, and 253 because they are invariant to
orizontal flips. For example, when a car changes the driving lane
rom left to right, it will c hange fr om right to left when horizontal
ipping is applied. The fact that there was a lane change (class
52) does not c hange. Similarl y, the horizontal flipping is invariant
o classes 249 and 253. 

Next, consider random cropping. When large cropping is used,
t can lead to the loss of the cars involved in the accident. There-
ore, we limited the cropping to be modest and only used cropping
f images less than 20% of the original width and height of the im-
 ges. Notice that cr opping r esulted in ima ges with a reduced num-
er of resolutions. Random cropping is illustrated in Fig. 7 (bot-
om). In addition, basic augmentation was performed to change
he brightness and saturation of the image. 

Here is another important method of augmentation, shuffle. In
his study, the input video clip was shuffled. T hus , the video was
ivided into se v er al clips and shuffled. In other w or ds, the entire
ideo was not used as input consecutiv el y. One clip in our model
onsists of 16 images . T hrough this , w e w er e able to solv e data
horta ge pr oblems and ac hie v e r esults in performance impr ov e-
ents. In addition, the e v aluation of the r esults described in the

ext c ha pter is constructed based on these shuffle augmentation
esults. 

.2.3 Results evaluation 

 dash cam video from car accidents is split into multiple clips
nd input to the model with shuffle augmentation in training ses-
ions . Moreo ver, each clip passes the backbone classifier, where
he classified result is output in the test session. This means that
ne dash cam video can trigger many classified results . T hese re-
ults work as votes, and the majority of the voting result is used
o determine the class of the dashcam video. 

The dash cam video is composed of multiple clips denoted as c i .
he total number of the clip is defined as n. c i is input to the net-
ork N(x). The output of the network is shown as R(c i ). This clas-

ifier gives three probabilities . T he classification result is shown
s p m 

. m denotes the class number: 249, 252, or 253. m � {249, 252,
53}. Ther efor e, p m 

denotes the pr obability that the clip belongs
o a particular class, m. For any one clip c i , 

∑ 

p m 

sums to 1. 
For any given dash cam video V, the result of V can be repre-

ented as 

V = 

{
R ( c 0 ) , R ( c 1 ) , R ( c 2 ) , R ( c 3 ) , . . . R ( c n ) 

}
R ( c n ) ∼p m 

. 
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Figur e 5: T he time sequential mo v ements and the pr oportional liability 
(as seen by the proponent (blue)) for the classes 249, 252, and 253. 

Table 2: 3D Convolutional networks configurations. 

11 la y ers 13 la y ers 16 la y ers 19 la y ers 

input (224 × 224 × 224 RGB video) 

Conv3D-64 Conv3D-64 
Conv3D-64 

Conv3D-64 
Conv3D-64 

Conv3D-64 
Conv3D-64 

maxpool 

Conv3D-128 Conv3D-128 
Conv3D-128 

Conv3D-128 
Conv3D-128 

Conv3D-128 
Conv3D-128 

maxpool 

Conv3D-256 
Conv3D-256 

Conv3D-256 
Conv3D-256 

Conv3D-256 
Conv3D-256 
Conv3D-256 

Conv3D-256 
Conv3D-256 
Conv3D-256 
Conv3D-256 

maxpool 

Conv3D-512 
Conv3D-512 

Conv3D-512 
Conv3D-512 

Conv3D-512 
Conv3D-512 
Conv3D-512 

Conv3D-512 
Conv3D-512 
Conv3D-512 
Conv3D-512 

maxpool 

Conv3D-512 
Conv3D-512 

Conv3D-512 
Conv3D-512 

Conv3D-512 
Conv3D-512 
Conv3D-512 

Conv3D-512 
Conv3D-512 
Conv3D-512 
Conv3D-512 

maxpool 

FC-4096 

FC-4096 

FC-3 

softmax 
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The final class of V is determined by the dominant class of V. In 

other w or ds, the most frequent R(c n ) in V r epr esents the final class 
of V. 

4. Results and Discussion 

4.1 Results with la y ers and parameters 

We tested the effect of changing the depth of layers on the accu- 
racy of 3D CNNs. We used the most popular 2D CNNs backbones of 
varying depths V GG11, V GG13, V GG16, and V GG19. And addition- 
ally, we conducted experiments on the SlowFast model (Feichten- 
hofer et al., 2019 ), whic h is commonl y cited in the field of action 

recognition. SlowFast has a ResNet-50 backbone, and we followed 

the criteria presented in the study for the tr aining par ameters. We 
conducted experiments on the scr atc h model and the pr etr aining 
model. The pr etr aining model was fine-tuned after being tr ained 

on the Kinetics-400 dataset. 
Table 3 shows the result obtained by varying the depth of the
ackbone la yers . Accuracy calculated whether the final prediction
 esult obtained thr ough stac king is corr ect with gr ound truth. The
rst column is the number of la yers . T he second to last columns
r e accur acy. The second column is the av er a ge accur acy for the
ntire video. The third to fifth columns show the accuracy of each
ase. 

In av er a ge accur ac y, the model with 11 lay ers proposed b y C3D
ho ws 71.4% accurac y. And the models with 13 layers and 16 lay-
rs show the same accuracy at 66.7%. Lastly, the layer 19 model
ho ws the lo w est accurac y of 61.9%. The complexity of the model
ncreases with the number of la yers . In the classification of the
hree accident cases used in this study, it can be seen that the
erformance of the small model is high. These results can also be
bserved in comparison with the SlowFast model. The SlowFast 
odel ac hie v ed accur acies of 38.1% and 57.1% in the scr atc h and

r etr aining models, r espectiv el y. 
The accuracy of 253 case of the layer 11 model is the lowest at

3.3%. T hus , the a v er a ge accur acy is the highest due to the high
ccuracy of 249 and 252 cases. On the other side, it can be seen
hat the layer 16 model is e v enl y distributed for each case . T hat
s, it can be seen that the performance of the layer 16 model is
ood in terms of generalization. Ho w ever, as mentioned in Sec-
ion 3.1.3, when 249 case is not the majority, one could also con-
ider choosing 11 or 13 layer models that ac hie v e high accur acy
n other cases . T his a ppr oac h, whic h emphasizes the importance
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Figur e 6: T he network dia gr am of the split liability assessment based on 3D CNN. 

Figure 7: Data augmentation: (top) horizontal flipping, (bottom) random cropping. 

Ta ble 3: Accurac y obtained b y varying the netw ork depth. 

Number of la y ers Accuracy [%] Accuracy_249 Accuracy_252 Accuracy_253 

11 71.4 71.4 100 33.3 
13 66.7 42.9 75.0 83.3 
16 66.7 71.4 62.5 66.7 
19 61.9 71.4 75.0 33.3 
50 ∗ 38.1 42.9 25.0 50.0 
50 ∗∗ 57.1 85.7 62.5 16.6 

∗ slowfast, ResNet-50 backbone, scratch 
∗∗ slowfast, ResNet-50 backbone, kinetic-400 pr e-tr ained 
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f accurate classification for specific classes, has been used in the
eld of medicine (Fotouhi et al., 2019 ). 

.2 Results with pre-trained dataset 
s described abo ve , the model performance according to the pre-

raining dataset is confirmed as a method for e v aluating the per-
ormance of the backbone. Table 4 is a brief description of the pre-
r aining dataset. Pr etr aining is carried out using Sports-1M and
MDB51. Sports-1M consists of more than 1 million videos. It has
 total of 487 classes and 1000–3000 clips per class. It contains la-
els such as skiing, judo and yoga because it is made for sports
ideos. HMDB51 is a dataset with 51 action classes. It consists of
849 video clips. It has classes such as walking and shaking hands
ecause it deals with the action of a person’s motion. 

Table 5 r epr esents the accur ac y accor ding to the pr etr aining
ataset. Other parameters other than the pretraining dataset are
he same for the model used in this section. In other w or ds, it
as the same parameters as the layer 11 model of Section 4.1.
his network learns 200 times (epochs) for the pretraining dataset.
fter that, the head part is fine-tuned using the accident video
ataset. 
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Table 4: Pr e-tr ained dataset. 

Pre-tr ained da taset Size Class Clips per class Objects example 

Sports-1M Over million 487 1000–3000 Skiing, judo etc 
HMDB51 6849 51 101 Walking, shaking hands etc 

Ta ble 5: Accurac y obtained b y varying the dataset. 

Pre-tr ained da taset Accuracy [%] Accuracy_249 Accuracy_252 Accuracy_253 

Sports-1M 71.4 71.4 100 33.3 
HMDB51 90.5 71.4 100 100 
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Experiment results show that the model that learned the 
HMDB51 shows higher performance than the Sports-1M model. 
It can be seen that the av er a ge accur acy is 90.5%, showing higher 
performance e v en in the effect of the change of the layer tested 

earlier. In addition, it can be seen that the accuracy for each case 
is also higher. It can be seen that the performance of the backbone 
by the pr etr aining dataset is mor e important than the effect of the 
number of layers through this result. 

4.3 Results with GUI 
We have implemented a simple GUI to show the intermediate and 

final outcome of the split liability assessment. The left pane shows 
the loaded dashcam video. The bottom area, it shows the loca- 
tion of the loaded video. The right pane shows the analysis result.
The analysis includes the intermediate (on the fly) classifications 
and also the final classification. In this picture, the first, second,
and third lines show the top three classification results that have 
been processed by the dashcam videos played up until that mo- 
ment. The first line shows two colored bars . T he upper bar (sky 
color) shows the predicted likelihood, and the bottom (green color) 
shows the number of votes accredited to the particular class. For 
example, the moment of the dash cam image is predicted to be 
‘lane change (252)’ as shown in Fig. 8 . It has 67% likelihood. And 

this video has been predicted 32 times with the lane change case 
so far. The two bars for the lines second and third also show sim- 
ilar bars. Notice the sum of the three upper bar (sky color) per- 
centile values is 100%. The final conclusion shown at the bottom 

of the right panel is determined by a majority vote . T he classifica- 
tion number, accident types, and split liability assessment follow 

immediately after. In this section, we discuss the result as shown 

in these dashcam videos for se v er al examples. 

4.3.1 253-class 
Figure 9 shows the time lapsed (t0 ∼t3) screenshots of the dash- 
cam video and the accompanying assessment results. We used a 
single Tesla-V100 GPU for inference . T he test performance of the 
model (11 la yers , HMDB51 pr e-tr ained) is 40 FPS. Real-time first 
denotes the most probable class, and real-time second shows the 
second most probable class. At the time t0, we can see that there 
are two cars, one in the front and the other in the second lane. No- 
tice that the model predicts that the top two predictions are first 
252 and second 253 with similar probabilities. And most notice- 
ably, the car in the second lane is closer than the car in the front.
At the time t1, notice the two cars are closer. Notice the prediction 

of the model is now first 253 and second 252. Since the influence of 
the car in the front is stronger, the first value now changes to 253.
At the time t2, the first 253 and second 252 remain unchanged.
And the probability of third 249 is lo w er than at the time t0 and 
1. In other w or ds, tw o cars are in the front view, and the likelihood
f the imminent accident is distributed among the top two predic-
ions. Lastly, at the time t3, first 253 accounts for 74% probability,
nd class 253 seems to be more dominant. T hus , the probability
f first 253 has the highest v alue. Fr om these r esults, we can see
hat the network can distinguish between the two classes, 252 and
53. This is due to the fact that the second lane car is totally out
f sight, and only the front car strongly affects the predicted ac-
ident class. 

As described abo ve , we can understand the ability of the pro-
osed network to classify the type of accident by analysing dash-
am videos. In addition, the network is capable of predicting an ac-
ident that may occur in real-time while watching the video. This
emonstrates that the model is able to analyse the movement of
he car. Furthermore, the model is more accurate in predicting
round truth data in the latter part of the video, closer to the mo-
ent of collision. Lastly, the final assessment of the model’s per-

ormance shows that it is equal to the ground truth label of 253. 

.3.2 249-class 
igure 10 shows the time lapsed (t0 ∼t3) assessments of a case
bout class 249. The assessment results for specific moments are
hown in Fig. 10 . As pr e viousl y shown, r eal-time first denotes the
ost probable class, and real-time second shows the second most

robable class. 
At the time t0, we see that the car (ego) is driving in the second

ane. Notice that the model predicts that the top two predictions
re first 249 and second 252. At the time t1, we suddenly see a car
n the first lane . T he assessment classes are first 252 and second
49. Because a car a ppear ed in the first lane, it is most likely that
n imminent lane-change class accident may occur due to the
 ppear ance of this car. At the time t2, we can see that the model
ontinues to pay close attention to lane-change class as identical
o time t1. Lastly, at time t3, we see that a car tr av eling in the
pposite direction is headed to w ar d the car with the dashcam.
he assessment now reads first 249 and second 253. The reason
hy the second prediction sho w ed an accident while driving is
resumed to be because the last moment of the video shows the
pponent’s rear side of the car. 

The screenshots show that the assessment focuses on wrong- 
a y driving. T his can be presumed to be because the scene just
rior to the collision depicted scenes often seen from wrong-way 
riving in training sessions. Additionally, we can see that the as-
essment c hanges ov er time . T his is due to the effect of the pro-
essed clips. We can understand each clip possesses enough in-
ormation to predict the class of the accident in the near future.
n other w or ds, the model can be used to perceive upcoming acci-
ents. 
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Figure 8: GUI software for the split liability assessment. 
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.3.3 252-class 
astly, we discuss the 252 class. Figure 11 shows the time lapsed
t0 ∼t3) assessments of a case about class 252. At the time t0, the

odel assesses first 249 and second 253. At the time t1, first is
52, and second is 249. And at the time t2, first is 252, and sec-
nd is 249. At times t0 and t1, because cars in sight are very far
 wa y, the model assumes accidents that might occur during such
ituations. At the time t1, the car on the left lane is assessed to
ncrease the probability of causing the lane-change accident. In
ther w or ds, at the time t2, it a ppears that the effect of accum u-
ated voting counts influenced the assessment, not the actual car
n the right-hand side that would e v entuall y collide. We can con-
lude that when the likelihood of the same class of accidents is
igh, this tendency is pr eserv ed thr ough accounted voting counts.
astly, at the time t3, first is 252, and the second is 253. Now at the
oment when the collision occurred, we can see that the model

orr ectl y and quic kl y assessed the accident to be of class 252. It
s interesting to see the second assessment, which is 253. In sum-

ary, the model concluded the case to be of class 252, which is
he lane-change accident. 

By examining Sections 4.3.1 through 4.3.3, we can make the fol-
owing conclusions: 

1) The model assessment with quantized clips pr ov ed to show
accur ate r esults. 

2) When two conflicting classes of accidents exist, the
model lists both with more votes for the true accident
class. 

3) For clips that are far from the moment of collisions, the
model predicts the most likelihood of the accident consid-
ering the current situation. 

4) The voting scheme can be used to conclude the final assess-
ment. This is the reason why we have limited the clip to be
of 3 seconds. 

In the next section, we look into how the model is making the
ssessment through the use of the CAM. 
.4 Results with CAM 

here exist many approaches to understanding how CNNs work
Zeiler & F ergus , 2014 ). For example , the filters are visualized to
ee that the edges are sought in the shallow part of the la yers ,
nd more high-level features are detected in the deeper la yers .
n classification problems, it is of primary interest to understand
hich parts of the network can be attributed to deciding on a
articular class . T her efor e , we used C AM to understand which
arts were responsible for concluding certain classes (Zhou et al.,
016 ). 

CAM can be obtained by replacing the fully connected network
ith Global Av er a ge Pooling in the output layer of a convolutional
etwork. A CNN layer with the number of channels equal to the
umber of classes is attached at the end of the bac kbone, wher e
eatur e ma ps ar e extr acted. Eac h c hannel of the corr esponding
ayer r epr esents one class. By adding a FC layer, a classification
s ac hie v ed with softmax. CAM can be obtained by m ultipl ying
he weights at the Fully Connected (FC) layer with the feature

ap. 
Figure 12 illustrates a snap show about the accident class 252

lane change). We obtained the CAM by assuming three classes
t the last layer. Time-lapsed results are shown from t0 to t3.
he left image shows the raw image, and the right image shows
he CAM r esult. Ar eas of high attention ar e colorized with r ed. At
ime t0, it appears fewer areas are showing red colors . T he lo w er
eft corner pulls some attention. This is due to the fact for lane-
hange classes, lo w er-left and lo w er-right corners are the areas
here lane changes are happening. 
For the t1 image, we still see m uc h attention is given to the

o w er left lane marks. We also see some attention given to the
enter of the image as well as to the right. The attention given
t the center is due to the fact that there exists a car in the
r ont. It is inter esting to see that the parked car on the right is
ulling attention e v en if it is not in a drivable space. We can
nderstand that all cars, whether it is in drivable space or not,
r e attr acting m uc h attention. In fact, w e w ere able to see that
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Figure 9: Time lapsed predictions of the case of accident class 253. 
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m uc h attention was given to all cars in the image for the trained 

dataset. 
At the time t2, we can see the left car is receiving attention. At 

the same time, the r est of the ar eas (lo w er left corner at the time 
t0 and t1) is receiving less attention. This is due to the fact that 
just prior to the collision car that is most likely to collide is given 

more attention. 
Lastl y, the CAM ima ge at the time t2 shows that after the mo-
ent of collision, the attention is increased for the collided car. By

xamining the C AM results , we can see that the model pays spe-
ial attention to cars. And when cars are not present (t0), more
ttention is paid to the generalized circumstances of the r ele v ant
lass . T hroughout this study, we were able to conclude that our
odel is able to categorize car accidents by the trained classes. 
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Figure 10: Time lapsed predictions of the case of accident class 249. 
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. Conclusions 

sually, the field of video recognition is known as the field of
ehavior recognition using a short video clip such as sports-1M.
o w e v er, video anal ysis often analyses information on long videos
n the real w orld. Accor dingly, as a re presentati ve example, a task
or the split liability assessment in a car accident is proposed in
his study. This task involv es gener ating a final classification re-
ult by combining factors that influence a liability assessment
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Figure 11: Time lapsed predictions of the case of accident class 252. 
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over time in a long video. Ther efor e, we pr opose a new task for 
analysing long videos. 

In this study, video analysis is carried out by using 3D CNNs.
It is a network that analyses short videos from the past. There- 
fore, long video classification was performed through a method of 
tac king eac h clip r esult. The r esults of acquiring important infor-
ation from long videos were shown through this method, unlike

r e vious studies . T he C AM r esults ar e also shown in this study to
ee where the network concentrates . T he network focuses on and
r ac ks the movement of the vehicle over time. 
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Figur e 12: C AM results for the class 252: t = time , original = ra w input video, C AM = 252 class C AM results . 

 

c  

H  

t  

w  

t  

b  

b  

t  

m  

i  

r  

c  

n  

i

 

i  

v  

t  

fi
 

C  

t  

3  

a  

o  

p  

h  

f  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/4/1579/7209896 by G

w
ang Ju Institute of Science & Technology user on 10 Septem

ber 2024
From the perspective of using constructed data, we deleted ill-
onditioned data and used the remaining data, as shown in Fig. 2 .
o w e v er, in r eal accidents, the videos taken fr om the v ehicles of-

en contain a number of peculiar footage . T herefore , to enable the
ide use of the de v eloped network in actual accident situations,

hese videos must be dealt with. The camcorder footage obtained
y filming the dashcam screens with a cell phone cannot be used
ecause the AI model confuses the dashboard bac kgr ound and
he r ele v ant tr affic actors in the dashcam playbac k. Perha ps it

ay be possible to extract and use the video by using special-
zed filtering techniques to prune the bac kgr ound dashboard or
 emov e unwanted motion from the screen. Low-definition videos
ould also be pr e-pr ocessed using video super-resolution tech-
iques before applying them. We plan to extend our work to these

ll-conditioned videos in the future. 
The proposals and results of this study show a new video task
n artificial intelligence . T her efor e, it will lead to a ppl ying existing
ideo recognition field research to the real world. It will also be
he foundation for the AI field that can be applied to the legal
eld through split liability assessment research. 

In our study, we anal ysed spatiotempor al information using 3D
NNs . T he 3D CNN has the adv anta ge of being able to simul-

aneousl y pr ocess spatiotempor al information. The oper ation of
D CNN involves the convolution of kernels along the temporal
xis with limited window. Consequently, as the window pr ogr esses
 ver time , information outside the window is lost. While it is ca-
able of handling full temporal information in short videos, it ex-
ibits limitations when processing longer videos . T herefore , our
uture work is to de v elop a tr ansformer-based network that can
a ptur e important spatiotemporal information in long videos. 



Journal of Computational Design and Engineering, 2023, 10(4), 1579–1601 | 1593 

 

 

 

 

 

 

D  

 

F  

F  

F  

 

G  

 

G  

G  

 

 

 

H  

 

H  

 

H  

J  

 

J  

 

K  

K  

K  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/4/1579/7209896 by G

w
ang Ju Institute of Science & Technology user on 10 Septem

ber 2024
Ac kno wledgments 

This work was partly supported by Korea Institute for Advance- 
ment of Technology (KIAT) grant funded by the Korea Government 
(MO TIE) [P0020535, T he Competency De v elopment Pr ogr am for 
Industry Specialist], Institute of Information & communications 
Technology Planning & Evaluation (IITP) grant funded by the Ko- 
r ea gov ernment (MSIT) [No. 2019–0-01842, Artificial Intelligence 
Gr aduate Sc hool Pr ogr am (GIST)] and GIST Researc h Pr oject gr ant 
funded by the GIST in 2023. 

Conflict of interest statement 
The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

References 

Abu-El-Haija , S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Var adar a- 
jan, B., & V ijayanarasimhan, S . (2016). Youtube-8m: A large-scale 
video classification benchmark. arXiv preprint . https:// doi.org/ 10 
.48550/arXiv.1609.08675 .

Adew opo , V., Elsay ed, N., ElSay ed, Z., Ozer, M., Abdelga wad, A., & Ba y- 
oumi, M. (2022). Re vie w on action recognition for accident detec- 
tion in smart city transportation systems. arXiv preprint . https: 
// doi.org/ 10.48550/arXiv.2208.09588 .

Ballas , N. , Yao , L. , Pal, C. , & Courville, A. (2015). Delving deeper into 
conv olutional netw orks for learning video r epr esentations. arXiv 
preprint . https:// doi.org/ 10.48550/arXiv.1511.06432 .

Bao , W., Yu, Q., & Kong, Y. (2020). Uncertainty-based traffic accident 
anticipation with spatio-temporal relational learning. In Proceed- 
ings of the 28th ACM International Conference on Multimedia , 2682–
2690. https:// doi.org/ 10.1145/ 3394171.3413827 

Bengio , Y. , Simard, P. , & Frasconi, P. (1994). Learning long-term de- 
pendencies with gradient descent is difficult . IEEE Transactions on 
Neural Networks , 5 , 157–166. https:// doi.org/ 10.1109/ 72.279181 

Buolamwini , J., & Gebru, T. (2018). Gender shades: Intersectional ac- 
curacy disparities in commercial gender classification. In Confer- 
ence on Fairness, Accountability and Transparency . 77–91.

Caba Heilbron , F., Escorcia, V., Ghanem, B., & Carlos Niebles, J. (2015).
Activitynet: A lar ge-scale video benc hmark for human activity 
understanding. In Proceedings of the IEEE Conference on Computer Vi- 
sion and Pattern Recognition . 961–970. https:// doi.org/ 10.1109/ CVPR 

.2015.7298698 
Chan , F. H., Chen, Y. T., Xiang, Y., & Sun, M. (2017). Anticipating ac- 

cidents in dashcam videos. In Computer V ision–A CCV 2016: 13th 
Asian Conference on Computer Vision, Taipei, Taiwan, November 20- 
24, 2016, Revised Selected P apers, P art IV . 13 , 136–153. https://doi.or 
g/ 10.1007/ 978- 3- 319- 54190- 7 _ 9 

Choi , M., Kim, C., & Oh, H. (2022). A video-based SlowFastMTB model 
for detection of small amounts of smoke from incipient forest 
fir es. J ournal of Computational Design and Engineering , 9 , 793–804.
https:// doi.org/ 10.1093/ jcde/qwac027 

Chung , J. , Gulcehre, C. , Cho , K. , & Bengio , Y. (2014). Empirical e v alu-
ation of gated r ecurr ent neur al networks on sequence modeling.
arXiv preprint . https:// doi.org/ 10.48550/arXiv.1412.3555 

Dalal , N., & Triggs, B. (2005). Histograms of oriented gradients for hu- 
man detection. In 2005 IEEE Computer Society Conference on Com- 
puter Vision and Pattern Recognition (CVPR’05) , 1 , 886–893. https: 
// doi.org/ 10.1109/ CVPR.2005.177 

Donahue , J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadar- 
r ama, S., Saenk o, K., & Darr ell, T. (2016). Long-Term Recurrent 
Conv olutional Netw orks for Visual Recognition and Description.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 ,
677–691. https:// doi.org/ 10.1109/ TPAMI.2016.2599174 

oso vitskiy , A., Ros , G . , Codevilla, F. , Lopez, A. , & Koltun, V. (2017).
CARLA: An open urban driving simulator. In Conference on Robot
Learning . 78 , 1–16. https:// doi.org/ 10.48550/arXiv.1711.03938 

 an , Q. , Chen, C. F. R. , K uehne, H. , Pistoia, M. , & Cox, D. (2019). More is
less: Learning efficient video r epr esentations by big-little network 
and depthwise temporal aggregation. Advances in Neural Informa- 
tion Processing Systems, 32 . https:// doi.org/ 10.48550/arXiv.1912.00 
869 

eichtenhofer , C. , F an, H. , Malik, J. , & He, K. (2019). Slo wfast netw orks
for video recognition. In Proceedings of the IEEE/CVF International 
Conference on Computer Vision , 6201–6210. https://doi.ieeecomput 
er society.or g/ 10.1109/ ICCV.2019.00630 

otouhi , S., Asadi, S., & Kattan, M. W. (2019). A compr ehensiv e data
le v el anal ysis for cancer diagnosis on imbalanced data. Journal of
Biomedical Informatics, 90 , 103089. https:// doi.org/ 10.1016/ j.jbi.20 
18.12.003 

ebru , T. , Morgenstern, J. , V ecchione, B ., V aughan, J. W., W allach, H.,
Iii, H. D., & Crawford, K. (2021). Datasheets for datasets. Commu-
nications of the ACM , 64 , 86–92. https:// doi.org/ 10.1145/ 3458723 

owda , S. N., Rohrbach, M., & Se villa-Lar a, L. (2021). Smart frame se-
lection for action recognition. In Proceedings of the AAAI Conference 
on Artificial Intelligence , 35 , 1451–1459. https:// doi.org/ 10.1609/ aaai 
.v35i2.16235 .

o y al , R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal,
S. , Kim, H. , & Memisevic, R. (2017). The" something something"
video database for learning and e v aluating visual common sense.
In Proceedings of the IEEE International Conference on Computer Vision .
5842–5850. https:// doi.org/ 10.1109/ ICCV.2017.622 

ara , K., Kataoka, H., & Satoh, Y. (2018). Can spatiotemporal 3d cnns
r etr ace the history of 2d cnns and imagenet?. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition , 6546–
6555. https:// doi.org/ 10.48550/arXiv.1711.09577 

e , K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
ima ge r ecognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition , 770–778. https:// doi.org/ 10.48550/a 
rXiv.1512.03385 

oussein , E. H., Abohashima, Z., Elhoseny, M., & Mohamed, W. M.
(2022). Hybrid quantum-classical convolutional neural network 
model for COVID-19 prediction using chest X-ray images. Journal 
of Computational Design and Engineering, 9 , 343–363. https://doi.or 
g/ 10.1093/ jcde/qwac003 .

i , S., Xu, W., Yang, M., & Yu, K. (2012). 3D convolutional neural net-
works for human action recognition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence , 35 , 221–231. https:// doi.org/ 10.1
109/TPAMI.2012.59 

iaxin , Y. , F ang, W. , & Jieru, Y. (2021). A r e vie w of action recognition
based on convolutional neural network. In Journal of Physics: Con-
ference Series. 1827, 012138 . https:// doi.org/ 10.1088/ 1742-6596/ 18 
27/1/012138 

arpathy , A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-
Fei, L. (2014). Large-scale video classification with convolutional 
neural networks. In Proceedings of the IEEE conference on Computer 
Vision and Pattern Recognition , 1725–1732. https:// doi.org/ 10.1109/ 
CVPR.2014.223 

laser , A. , Marszałek, M. , & Schmid, C. (2008). A spatio-temporal de-
scriptor based on 3d-gradients. In BMVC 2008-19th British Machine 
Vision Conference , 99.1-99.10. https:// doi.org/ 10.5244/ C.22.99 .

rizhe vsky , A., Sutske v er, I. , & Hinton, G . E. (2017). Imagenet classifi-
cation with deep convolutional neural networks. Communications 
of the ACM , 60 , 84–90. https:// doi.org/ 10.1145/ 3065386 

https://doi.org/10.48550/arXiv.1609.08675
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.48550\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ arXiv.2208.09588
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.48550\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ arXiv.1511.06432
https://doi.org/10.1145/3394171.3413827
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/CVPR.2015.7298698
https://doi.org/10.1007/978-3-319-54190-7_9
https://doi.org/10.1093/jcde/qwac027
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/TPAMI.2016.2599174
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1912.00869
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00630
https://doi.org/10.1016/j.jbi.2018.12.003
https://doi.org/10.1145/3458723
https://doi.org/10.1609/aaai.v35i2.16235
https://doi.org/10.1109/ICCV.2017.622
https://doi.org/10.48550/arXiv.1711.09577
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1093/jcde/qwac003
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1088/1742-6596/1827/1/012138
https://doi.org/10.1109/CVPR.2014.223
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.5244\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ C.22.99
https://doi.org/10.1145/3065386


1594 | Split liability in car accident using 3D CNN 

K  

 

 

L  

 

L  

 

 

L  

 

 

 

L  

 

 

O  

 

 

 

P  

 

 

P  

 

 

Q  

 

 

R  

 

 

R  

 

 

S  

 

 

S  

 

 

 

S  

 

S  

 

S  

 

S  

 

 

T  

 

 

W  

 

 

W  

 

 

X  

 

 

 

X  

 

 

 

X  

 

 

 

X  

 

 

X  

 

 

 

Y  

 

 

Z  

 

 

Z  

 

 

Z  

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/4/1579/7209896 by G

w
ang Ju Institute of Science & Technology user on 10 Septem

ber 2024
 uehne , H. , Jhuang, H. , Garrote, E. , Poggio , T. , & Serre, T. (2011). HMDB:
A large video database for human motion recognition. In 2011
International Conference on Computer Vision , 2556–2563. https://doi.
org/ 10.1109/ ICCV.2011.6126543 

a pte v , I. (2003). Lindeber g, “Space-time inter est points”. In Proceed-
ings of the 9th IEEE Inter. Conf. Computer Vision (ICCV) . 13–16. https:
// doi.org/ 10.1109/ ICCV.2003.1238378 

e , V.-T ., T ran-T rung, K., & Hoang, V. T . (2022). A compr ehensiv e
r e vie w of r ecent deep learning tec hniques for human activity
recognition. Computational Intelligence and Neuroscience . https://do
i.org/ 10.1155/ 2022/8323962 

i , Y., Ma, D., An, Z., Wang, Z., Zhong, Y., Chen, S., & Feng, C.
(2022). V2X-Sim: Multi-a gent collabor ativ e perception dataset
and benchmark for autonomous driving. IEEE Robotics and Au-
tomation Letters , 7 , 10914–10921. https:// doi.org/ 10.1109/ LRA.2022
.3192802 

o w e , D. G . (1999). Object recognition from local scale-invariant fea-
tures. In Proceedings of the Seventh IEEE International Conference on
Computer Vision , 2 , 1150–1157. https:// doi.org/ 10.1109/ ICCV.1999.
790410 

uyang , L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P.,
& Ray, A. (2022). Tr aining langua ge models to follow instructions
with human feedbac k. Adv ances in Neural Information Processing
Systems . 35 , 27730–27744. https:// doi.org/ 10.48550/arXiv.2203.02
155 

atel , C. I., Garg, S., Zaveri, T., Banerjee, A., & Patel, R. (2018). Human
action recognition using fusion of features for unconstrained
video sequences. Computers & Electrical Engineering , 70 , 284–301.
https:// doi.org/ 10.1016/ j.compeleceng.2016.06.004 

ier giov anni , A. J. , & Ryoo , M. S. (2019). Representation flow for action
recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition , 9945–9953. https:// doi.org/ 10.1109/
CVPR.2019.01018 

uddus , A., Zandi, A. S., Prest, L., & Comeau, F. J. (2021). Using long
short term memory and convolutional neural networks for driver
drowsiness detection. Accident Analysis & Prevention , 156 , 106107.
https:// doi.org/ 10.1016/ j.aap.2021.106107 

edmon , J. , Divvala, S. , Girshick, R. , & F arhadi, A. (2016). You only look
once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition , 779–788. http
s:// doi.org/ 10.1109/ CVPR.2016.91 

en , S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: To w ar ds real-
time object detection with region proposal networks. Advances in
Neural Information Processing Systems , 28 . https:// doi.org/ 10.48550
/arXiv.1506.01497 

covanner , P., Ali, S., & Shah, M. (2007). A 3-dimensional sift de-
scriptor and its application to action recognition. In Proceedings
of the 15th ACM International Conference on Multimedia , 357–360.
https:// doi.org/ 10.1145/ 1291233.1291311 

hang , S., Masson, C., Llari, M., Py, M., Ferrand, Q., Arnoux, P.-J., &
Simms, C. (2021). The pr edictiv e ca pacity of the MADYMO ellip-
soid pedestrian model for pedestrian ground contact kinematics
and injury e v aluation. Accident Anal ysis & Prevention , 149 , 105803.
https:// doi.org/ 10.1016/ j.aap.2020.105803 

imonyan , K., & Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. arXiv preprint , https://do
i.org/10.48550/arXiv.1409.1556 

oomro , K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint . ht
tps:// doi.org/ 10.48550/arXiv.1212.0402 .
teffan , H., & Moser, A. (1996). The collision and trajectory models of
PC-CRASH. SAE Technical Paper . ( 960886). https:// doi.org/ 10.4271/
960886 

teffan , H., Geigl, B., & Moser, A. (1999). A ne w a ppr oac h to
occupant simulation through the coupling of PC-Crash and
MADYMO. SAE Transactions , 785–793. https:// doi.org/ 10.4271/ 1999
- 01- 0444 

 ran , D ., Bourdev , L., F ergus , R., Torresani, L., & Paluri, M. (2015). Learn-
ing spatiotempor al featur es with 3d convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision ,
4489–4497. https:// doi.org/ 10.1109/ ICCV.2015.510 

an , S ., Ding, S ., & Chen, C . (2022). Edge computing enabled video
segmentation for real-time traffic monitoring in internet of vehi-
cles. Pattern Recognition , 121 , 108146. https:// doi.org/ 10.1016/ j.pa
tcog.2021.108146 

ang , L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Van Gool, L.
(2016). Temporal segment netw orks: To w ar ds good practices for
deep action recognition. In European Conference on Computer Vision ,
20–36. https:// doi.org/ 10.48550/arXiv.1608.00859 

iao , Y., Su, X., Yuan, Q., Liu, D., Shen, H., & Zhang, L. (2021). Satel-
lite video super-resolution via multiscale deformable convolution
alignment and temporal grouping projection. IEEE Transactions on
Geoscience and Remote Sensing , 60 , 1–19. http://dx.doi.org/10.1109
/TGRS.2021.3107352 

iao , Y., Yuan, Q., He, J., Zhang, Q., Sun, J., Su, X., & Zhang, L. (2022).
Space-time super-resolution for satellite video: A joint fr ame work
based on multi-scale spatial-temporal transformer. International
J ournal of A pplied Earth Observ ation and Geoinformation , 108 , 102731.
https:// doi.org/ 10.1016/ j.jag.2022.102731 

iao , Y., Yuan, Q., Jiang, K., He, J., Wang, Y., & Zhang, L. (2023a).
Fr om degr ade to upgr ade: Learning a self-supervised degr adation
guided ada ptiv e network for blind r emote sensing ima ge super-
resolution. Information Fusion , 96 , 297–311. https:// doi.org/ 10.101
6/j.inffus.2023.03.021 

iao , Y., Yuan, Q., Jiang, K., Jin, X., He, J., Zhang, L., & Lin, C.-w.
(2023b). Local-Global Tempor al Differ ence Learning for Satellite
Video Super-Resolution. arXiv preprint . https:// doi.org/ 10.48550/a
rXiv.2304.04421 

u , W., Wang, J., Fu, T., Gong, H., & Sobhani, A. (2022). Ag-
gr essiv e driving behavior prediction considering driver’s in-
tention based on m ultiv ariate-tempor al featur e data. Accident
Analysis & Prevention , 164 , 106477. https:// doi.org/ 10.1016/ j.aap.
2021.106477 

ao , Y., Xu, M., Wang, Y., Crandall, D. J., & Atkins, E. M. (2019). Un-
supervised traffic accident detection in first-person videos. In
International Conference on Intelligent Robots and Systems , 273–280.
https:// doi.org/ 10.1109/ IROS40897.2019.8967556 

eiler , M. D., & F ergus , R. (2014). Visualizing and understanding con-
v olutional netw orks. In Proceeedings of the European Conference on
Computer Vision , 818–833. https:// doi.org/ 10.48550/arXiv.1311.29
01 

hou , B. , Khosla, A. , Lapedriza, A. , Oliva, A. , & Torralba, A. (2016).
Learning deep features for discriminative localization. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition ,
2921–2929. https:// doi.org/ 10.1109/ CVPR.2016.319 

hou , B., Andonian, A., Oliva, A., & Torralba, A. (2018). Temporal Re-
lational Reasoning in Videos. In Computer Vision–ECCV2018: 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceed-
ings, Part I , 831–846. https:// doi.org/ 10.1007/ 978- 3- 030- 01246- 5 _ 4
9 . 

https://doi.org/10.1109/ICCV.2011.6126543
https://doi.org/10.1109/ICCV.2003.1238378
https://doi.org/10.1155/2022/8323962
https://doi.org/10.1109/LRA.2022.3192802
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.48550/arXiv.2203.02155
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.1016\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ j.compeleceng.2016.06.004
https://doi.org/10.1109/CVPR.2019.01018
https://doi.org/10.1016/j.aap.2021.106107
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.1145/1291233.1291311
https://doi.org/10.1016/j.aap.2020.105803
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1212.0402
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.4271\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 960886
https://doi.org/10.4271/1999-01-0444
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1016/j.patcog.2021.108146
https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.48550\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ arXiv.1608.00859
http:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ dx.doi.org\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ 10.1109\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ TGRS.2021.3107352
https://doi.org/10.1016/j.jag.2022.102731
https://doi.org/10.1016/j.inffus.2023.03.021
https://doi.org/10.48550/arXiv.2304.04421
https://doi.org/10.1016/j.aap.2021.106477
https://doi.org/10.1109/IROS40897.2019.8967556
https://doi.org/10.48550/arXiv.1311.2901
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1007/978-3-030-01246-5_49


Journal of Computational Design and Engineering, 2023, 10(4), 1579–1601 | 1595 

lity assessment 

Category 
number 

Whether split 
liability assessment 

is c hec ka ble with 
my video data 

Necessity of 
opponent’s 
video data 

Front 
dash 
cam 

Rear 
dash 
cam 

ed 
om 

201 O X O X 

 

ads 
202 O X O X 

ed 
om 

light 

203 O X O X 

ed 
om 

t vs 

204 � O O X 

ane 
e 

205 O X O X 

ane 
e 

th) 

206 O X O X 

lated 207 � O O O 

208 � O O X 

ed 
aight 

209 O X O X 

ed 
eft on 
ight ) 

210 O X O X 

ed 
aight 

211 O X O X 

ed 
om 

affic 

212 O X O X 

 

ads 
213 O X O X 

nt 
213–1 O X O X 

 light) 
214 O X O X 

ed 
aight 

215 O X O X 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/4/1579/7209896 by G

w
ang Ju Institute of Science & Technology user on 10 Septem

ber 2024
Appendix 1. Accident cases for the split liabi

Accident 
case 

Large 
category 

Medium 

category Small category 

Car-to-Car 
accident 

Straight-to- 
straight 
accident 

Cr ossr oads 
(traffic lights 
are on the both 
sides) 

Tr affic violence-r elat
accident by a car fr
one side 

Accident by failing to
escape the crossro

Tr affic violence-r elat
accident by cars fr
both sides (y ello w-
vs red-light) 

Tr affic violence-r elat
accident by cars fr
both sides (red-ligh
red-light) 

Cr ossr oads 
(based on the 
width of road) 

Entering from right l
v ersus fr om left lan
(same road width) 

Entering from right l
v ersus fr om left lan
(differ ent r oad wid

Stop sign vioation-re
accident 

One-way sign 
vioation-related 
accident 

Straight-to- 
left-turn 
accident 
(head) 

Cr ossr oads 
(traffic lights 
are opposite 
one anthoer ) 

Signal violation-relat
accident (going str
on red-light) 

Signal violation-relat
accident (turning l
green-light for stra

Signal violation-relat
accident (going str
on y ello w-light) 

Signal violation-relat
accident by cars fr
both sides (same tr
light) 

Accident by failing to
escape the crossro

Cr ossr oads 
(unprotected 
left turn) 

Unprotected left 
turn-related accide

Cr ossr oads (no 
traffic light) 

Cr ossr oads-r elated 
accident (no traffic

Stright-to- 
left-turn 
accident 
(Side) 

Cr ossr oads 
(traffic lights 
ar e acr oss the 
cr ossr oads ) 

Signal violation-relat
accident (going str
on red-light) 
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Whether split 
liability assessment 
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my video data 

Necessity of 
opponent’s 
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cam 
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dash 
cam 

Signal violation-related 
accident by cars from 

both sides (red-light) 

216 O X O X 

Signal violation-related 
accident by cars from 

both sides (going 
straight on y ello w-light 
vs turning left on 
red-light) 

217 O X O X 

Signal violation-related 
accident by cars from 

both sides (going 
straight on red-light vs 
turning left on 
y ello w-light) 

218 O X O X 

Accident by failing to 
escape the crossroads 

219 O X O X 

Cr ossr oads 
(based on the 
width of road) 

Str aight fr om the left r oad 
vs left-turn from the 
right road accident 

220 O X O X 

Str aight fr om the right 
road vs left-turn from 

the left road accident 

221 O X O X 

Going straight on the wide 
road vs turning left on 
the narrow road 

222 O X O X 

Going straight on the 
narr ow r oad fr om the 
left vs turning left from 

the right wide road 

223 O X O X 

Going straight on the 
narr ow r oad fr om the 
right road vs turning left 
from the left wide road 

224 O X O X 

Cr ossr oads (the 
sign is only on 
one side) 

Stop sign violation-related 
accident (turning left) 

225 � O O X 

Stop sign violation-related 
accident (going straight 
from left road) 

226 � O O X 

Stop sign violation-related 
accident (going straight 
from right road) 

227 � O O X 

Traffic light 
is only on 
one side 

Traffic light is 
only on the 
dir ection wher e 
a car is going 
straight 

Traffic light is only on the 
dir ection wher e a car is 
going straight 

228 � O O X 

Straight vs 
right-turn 
accident 

Cr ossr oads 
(based on the 
width of road) 

Right-turn vs 
str aight-r elated 
accident (same road 
width) 

229 O X O X 

Right-turn on the narrow 

road vs straight on the 
wide road 

230 O X O X 

Right-turn on the wide 
road vs straight on the 
narr ow r oad 

231 O X O X 
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Accident 
case 

Large 
category 

Medium 

category Small category 
Category 
number 

Whether split 
liability assessment 

is c hec ka ble with 
my video data 

Necessity of 
opponent’s 
video data 

Front 
dash 
cam 

Rear 
dash 
cam 

Cr ossr oads (the 
stop sign is 
only on the one 
side) 

Stop sign violation-related 
accident (turning right) 

232 � O O X 

Stop sign violation-related 
accident (going straight) 

233 � O O X 

Among others Accident by changing a 
lane in the cr ossr oads 

233–1 � O O X 

Left-turn vs 
left-turn 
accident 

Cr ossr oads 
(based on the 
width of road ) 

Left-turn from the right 
road vs left-turn from 

the left road (same road 
width) 

234 O X O X 

Left-turn on the narrow 

road vs left-turn on the 
wide road 

235 O X O X 

Cr ossr oads (the 
stop sign is 
only on the one 
side) 

Stop sign violation-related 
accident (turning left) 

236 � O O X 

Among other 
cr ossr oads- 
related 
accidents 

Passing accident 
on the 
cr ossr oads 

237 O X O O 

The accident at 
the road where 
two cars can 
drive next to 
each other 

238 O X O O 

Cr ossr oads 
where the 
angle is less 
than 90 degree 
for (left) 
right-turn 

239 X X X X 

T-junction 
road- 
related 
accidents 

Straight vs (left) 
right-turn 
accident 

Str aight fr om the left r oad 
vs left-turn from the 
right road accident 

240–
220CO 

O X O X 

Str aight fr om the right 
road vs left-turn from 

the left road accident 

240–
221CO 

O X O X 

Going straight on the wide 
road vs turning left on 
the narrow road 

240–
222CO 

O X O X 

Going straight on the 
narr ow r oad fr om the 
left vs turning left from 

the right wide road 

240–
223CO 

O X O X 

Going stright on the 
narr ow r oad fr om the 
right road vs turning left 
from the left wide road 

240–
224CO 

O X O X 
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Accident 
case 

Large 
category 

Medium 

category Small category 
Category 
number 

Whether split 
liability assessment 

is c hec ka ble with 
my video data 

Necessity of 
opponent’s 
video data 

Front 
dash 
cam 

Rear 
dash 
cam 

Stop sign violation-related 
accident (turning left) 

240–
225CO 

� O O X 

Stop sign violation-related 
accident (going straight 
from left road) 

240–
226CO 

� O O X 

Stop sign violation-related 
accident (going straight 
from right road) 

240–
227CO 

� O O X 

Straight vs right-turn 
(same road width) 

240–
229CO 

O X O X 

Going straight on the wide 
road vs turning left on 
the narrow road 

240–
230CO 

O X O X 

Going straight on the 
narr ow r oad fr om the 
left vs turning on the 
wide road 

240–
231CO 

O X O X 

Stop sign violation-related 
accident (turning right) 

240–
232CO 

� O O X 

Stop sign violation-related 
accident (going straight) 

240–
233CO 

� O O X 

Left-turn vs 
left-turn 
accident 

Left-turn from the right 
road vs left-turn from 

the left road (same road 
width) 

241–
234CO 

O X O X 

Left-turn from the right 
narr ow r oad vs left-turn 
from the left wide road 

241–
235CO1 

O X O X 

Left-turn from the left on 
the narrow road vs 
left-turn on the wide 
road 

241–
235CO2 

O X O X 

Stop sign violation-related 
accident (turning left) 

241–
236CO 

� O O X 

Car 
accidents 
of among 
other road 
types 

Entering to the 
driv e way fr om 

where is not 
the driv e way 

242 O X O X 

Entering to where 
is not the 
driv e way fr om 

the driv e way 

243 O X O X 

Accident on the 
parking lot 

244 X X X X 

Second car 
accident 

245 � O O X 

Merging accident 
where the 
number of 
lanes decrease 

246 O X O X 
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Accident 
case 

Large 
category 

Medium 

category Small category 
Category 
number 

Whether split 
liability assessment 

is c hec ka ble with 
my video data 

Necessity of 
opponent’s 
video data 

Front 
dash 
cam 

Rear 
dash 
cam 

Right (left)-turning accident happens 
cotempor aneousl y fr om two differ ent lanes 

247 O X O X 

Opened 
door-related 
contact 
accident 

248 X X X X 

Wrong-way 
driving-related 
accident 

249 O X O X 

Intersection 
accident on the 
narr ow r oad 

249–1 O X O X 

Passing accident 
ha ppens wher e 
passing 
manner is 
prohibited 

250 O X O X 

Two drivers’ overtaking behavior-related 
accident in where overtaking is prohibited 

250–1 � O O O 

Overtaking 
accident 
(center lane is 
the dotted) 

251 O X O X 

Changing 
lane-related 
accident 

252 O X O X 

Lane 
c hange-r elated 
accident (from 

solid lane to 
overtaking 
lane) 

252–1 O X O O 

Lane change 
happens 
sim ultaneousl y 

252–2 � O O X 

Lane change all 
of sudden 
during traffic 
congestion 

252–3 � O O O 

Lane 
c hange-r elated 
accident 
(passing safty 
zone) 

252–4 � O O O 

Collision 
betw eem tw o 
cars while 
driving 

253 � O O O 

U-turn-related 
accident 
(straight vs 
U-turn) 

254 � O O X 

U-turn-related 
accident 
(right-turn vs 
U-turn) 

254–1 � O O X 
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Accident 
case 

Large 
category 

Medium 

category Small category 
Category 
number 

Whether split 
liability assessment 

is c hec ka ble with 
my video data 

Necessity of 
opponent’s 
video data 

Front 
dash 
cam 

Rear 
dash 
cam 

U-turn-related 
accident (both 
cars are U 

turning) 

254–2 � O O X 

Car collision 
while pulling 

255 O X O O 

Left-turn vs 
right-turn 

256 O X O X 

Car departure 
after pulling 

257 � O O X 

P av ement 
marking 
violation 
accidents 

Going straight on 
left-turn road 
mark 

258 O X O X 

Left-turn on 
str aight r oad 
mark 

259 O X O X 

Right-turn on 
str aight r oad 
mark 

260 O X O X 

Going straight on 
right-turn road 
mark 

261 O X O X 

Accidents on 
round- 
about 

Roundabouts 
(one lane type) 

Entering to roundabouts 
vs driving on the 
roundabouts 

262 O X O X 

Roundabouts 
(two lane type) 

Driving second lane on the 
roundabouts vs 
changing first lane to 
the second lane 

263 O X O X 

Sim ultaneousl y entering 
to roundabouts 

264 O X O X 

Entering to roundabouts 
vs driving on the 
roundabouts 

265 O X O X 

Exiting from first 
roundabout lane vs 
entering to first 
roundabout 

266 O X O X 

Emergency 
car 
accident 

Emergency car 
goes straight 
(signal 
violation) 

267 X X X X 

Emergency car’s 
wrong-way 
driving on the 
left lane (1) 

268 X X X X 

Emergency car’s 
wrong-way 
driving on the 
left lane (2) 

269 X X X X 
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Accident 
case 

Large 
category 

Medium 

category Small category 
Category 
number 

Whether split 
liability assessment 

is c hec ka ble with 
my video data 

Necessity of 
opponent’s 
video data 

Front 
dash 
cam 

Rear 
dash 
cam 

Emergency car 
enters to the 
road (no signal) 

270 X X X X 

Emergency car 
overtakes 
others 

271 X X X X 

Emergency car 
changes the 
lane 

272 X X X X 

Emergency car vs 
a car that 
changes the 
lane 

273 X X X X 

Highway Merging 
road- 
related 
accident 

Merging 
r oad-r elated 
accident 

501 � O O X 

Decrease in 
number of 
lane- 
related 
accident 

Decrease in 
number of 
lane-related 
accident 

502 � O O X 

Lane change- 
related 
accident 

Lane change to 
the fast lane 

503 � O O X 

Lane change 
while driving 

504 � O O X 

Rear-end car 
collision 

Car collision 
while pulling 

505 O X O O 

Car collision 
while pulling 
over 

506 O X O O 

Car collision 
while driving 

507 O X O O 

Falling 
object- 
related 
accident 

Falling 
object-related 
accident 

508 X X X X 

Pedestrian 
related- 
accident 

Pedestrian 
related- 
accident 
(unreasonable 
walking 
behavior) 

509 X X X X 

Pedestrian 
related- 
accident 
(reasonable 
walking 
behavior) 

510 X X X X 

Lane change 
to the road 
shoulder 

Lane change to 
the road 
shoulder 

511 � O O X 
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