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We study the holographic dual of two-point correlation functions for nonconformal field theories. We 
first take into account a Lifshitz geometry as the dual of a Lifshitz field theory which may appear at a 
critical or IR fixed point. We explicitly show the holographic relation between a Lifshitz geometry and a 
Lifshitz field theory by calculating two-point correlators and equation of state parameter on both sides. 
We also investigate a disorder deformation, which allows a UV conformal field theory to flow into a new 
IR Lifshitz field theory. In this deformed theory, we investigate an anomalous dimension representing the 
change of an operator’s scaling dimension along the RG flow.
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1. Introduction

Knowing correlation functions is important to understand the 
nontrivial quantum nature of strongly interacting systems and 
their physical properties. Nevertheless, it is still hard to calculate 
correlators nonperturbatively due to the absence of a nonpertur-
bative method. In this situation, the AdS/CFT correspondence has 
proposed that nonperturbative features of quantum field theories 
(QFT) can be captured by classical gravity theories [1–4]. For a 
conformal field theory (CFT), the conformal symmetry determines 
two-point functions up to normalization. Intriguingly, it was shown 
that the holographic renormalization can reproduce the same two-
point functions [2–4]. This result is robust because of the large 
symmetry. However, when we take into account a nonconformal 
QFT, can we calculate its nonperturbative correlators holographi-
cally? If there is no sufficiently large symmetry, it is not easy to 
find exact correlators in the QFT as well as in the dual gravity.

Another interesting feature of the AdS/CFT correspondence is 
that some physical quantities of a QFT can be realized as geomet-
rical objects on the dual gravity side. For example, it was shown 
that the qq̄-potential [5–7] and entanglement entropy [8–17] can 
be described by a string worldsheet and minimal surface extend-
ing to the dual geometry. Similarly, it was also conjectured that a 
two-point function maps to a geodesic curve in the dual gravity 
[18–27]

〈O (t1, x1)O (t2, x2)〉 ∼ e−�L(t1,x1;t2,x2)/R , (1.1)
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where � is the conformal dimension of an operator O and 
L(t1, x1; t2, x2) indicates a geodesic length connecting two bound-
ary operators. Applying this proposal to an AdS space, one can 
easily reproduce the CFT’s two-point function. Although there is 
no rigorous proof for this alternative method, it is still fascinat-
ing in that it can be applied to a nonconformal QFT and non-AdS 
geometry.

In order to check the validity of (1.1), we first study two-point 
functions of a Lifshitz field theory (LFT). A LFT is not a CFT because 
it breaks the Lorentz symmetry. Temporal and spatial coordinates 
of a LFT behave in different ways. For a LFT, therefore, we need 
to introduce two different correlators, temporal (equal-position or 
auto-correlation) and spatial (equal-time) correlation functions. In 
this case, temporal or spatial two-point functions indicate correla-
tion between two operators whose distance is time-like or space-
like, respectively. Since a LFT has a scale symmetry, we can cal-
culate two-point functions analytically. In the holographic study, a 
Lifshitz geometry is believed as the dual of a LFT because it has the 
same scale symmetry [28–46]. In this work, we calculate temporal 
and spatial two-point functions of a LFT and then compare them 
with the holographic results derived in the dual Lifshitz geometry. 
We find that the LFT’s results perfectly match to those of the dual 
Lifshitz geometry. Moreover, after calculating the equation of state 
parameter of the LFT’s excitation, we show that the same equation 
of state parameter appears in the Lifshitz black hole. This indicates 
that the Lifshitz black hole can be regarded as thermalization of 
the LFT excitation.

A LFT may appear at a critical or IR fixed point with restoring 
the scaling symmetry. For example, when we deform a CFT by a 
relevant operator, a UV CFT can flow into another IR theory along 
the renormalization group (RG) flow [47]. When a CFT deforms 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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by a disorder, for example, its holographic dual gravity has been 
known in Ref. [48,49]. In this case, a scaling dimension is well de-
fined only at fixed points where the scaling symmetry is restored. 
At the UV and IR fixed points, in general, an operator can have 
different scaling dimensions. To describe the change of a scaling 
dimension, we define an effective scaling dimension depending on 
the RG scale. In the holographic dual of a disordered system, we 
investigate how the disorder modifies an effective scaling dimen-
sion along the RG flow.

The rest of this paper is as follows. In Sec. 2, we first discuss a 
simple LFT and its holographic dual. In Sec. 3, we holographically 
investigate two-point functions of the LFT vacuum and thermalized 
LFT. In Sec. 4, we consider a relevant disorder which deforms a UV 
CFT into an IR LFT. We study how the disorder modifies the scaling 
dimension of an operator along the RG flow. In Sec. 5, we finish 
this work with some concluding remarks.

2. Holographic dual of Lifshitz field theory

We begin with briefly reviewing a LFT and its holographic dual. 
Let us take into account a simple LFT in a d-dimensional Euclidean 
space [39–42]

SL F T ≡
∫

dτ dd−1xL =
∫

dτ dd−1x
√

g

[
1

2
(∂τ φ)2 + 1

2

(
∂λφ

)2]
,

(2.1)

where ∂ =
√

∂ i∂i with i = 1, · · · , d − 1 and gττ = gii = 1. We first 
assume that a dynamical critical exponent λ is an integer and then 
generalize it into a real number by analytic continuation. This LFT 
has the following scale symmetry [40,44,45]

τ → δ−λτ , xi → δ−1xi and φ → δ�φ φ, (2.2)

where the scaling dimension of φ is given by �φ = (d − 1 − λ)/2. 
Since temporal and spatial coordinates transform differently, the 
LFT generally breaks a Lorentz symmetry except for λ = 1. For λ =
1, in particular, the LFT lifts up to a CFT with restoring a conformal 
symmetry.

Using the Fourier transformation

φ(t, xi) =
∫

dωdd−1 p ϕ(ω, pi) e−i(ωt+pi x
i), (2.3)

the Lifshitz field φ(t, xi) must satisfy the following dispersion rela-
tion

0 = w2 + p2λ, (2.4)

where the momentum p is defined as p2 =∑d−1
i=1 p2

i . Now, we con-
sider an energy-momentum tensor. In a Minkowski spacetime after 
the inverse Wick rotation, the energy and pressure are give by

E = −
∫

dd−1x

[
(∂τ φ)2 − 1

2

{
(∂τ φ)2 +

d−1∑
i=1

(
∂λ

i φ
)2}]

,

P V =
∫

dd−1x

[
λ
(
∂λ

i φ
)2 − 1

2

{
(∂τ φ)2 +

d−1∑
i=1

(
∂λ

i φ
)2}]

, (2.5)

where V = ∫ dd−1x is an appropriately regularized volume. These 
quantities together with the dispersion relation (2.4) yield the fol-
lowing equation of state parameter and the trace of the energy-
momentum tensor

w = P V = λ
and T μ

μ = (λ − 1)E. (2.6)

E d − 1

2

For λ = 1, the energy-momentum tensor becomes traceless and the 
LFT lifts up to a CFT, as mentioned before. Recalling that the vac-
uum energy of the free LFT vanishes, (2.5) and (2.6) represent the 
energy-momentum tensor and equation of state parameter of the 
LFT’s excitation. For λ = 1, the equation of state parameter reduces 
to w = 1/(d −1) which describes massless excitation of a CFT [50].

For the LFT, a two-point function appears as a solution of the 
following equation[
−∂2

τ + (−1)λ∂2λ
]

G(x, x′) = δ(d)(x − x′). (2.7)

In the momentum space, therefore, the two-point function reads

G(ω, p) = 1

ω2 + p2λ
. (2.8)

Using the inverse Fourier transformation, the two-point function in 
the position space is given by

〈
φ(τ1, 	x1)φ(τ2, 	x2)

〉= 
d−3

∫
dωdp dθ pd−2 sind−3 θ G(ω, p)

× ei
(
ω(τ1−τ2)−p|	x1−	x2| cos θ

)
, (2.9)

where 
d−3 indicates a solid angle of a (d − 3)-dimensional unit 
sphere. Due to the absence of a Lorentz symmetry, LFT’s two-point 
functions usually have different forms in the temporal and spatial 
directions.

Let us first take into account a spatial two-point function. When 
the distance of two operators is space-like, they are causally dis-
connected in the Minkowski spacetime. Therefore, there is no clas-
sical correlation. At the quantum level, however, non-locality of a 
quantum theory allows nontrivial correlation. As a result, a nonva-
nishing spatial two-point function represents quantum correlation 
between two causally disconnected operators. Assuming that two 
local operators are sitting at an equal time τ and different posi-
tions, a spatial two-point function reads up to normalization

〈
φ(τ , 	x1)φ(τ , 	x2)

〉= 
d−3

∫
dωdp dθ pd−2 sind−3 θ G(ω, 	p)

× e−ip|	x1−	x2| cos θ ∼ 1

|	x1 − 	x2|2�φ
. (2.10)

Using the Wick contraction, the spatial two-point function of a 
general operator, O  = φn , yields

〈
O (τ , 	x1) O (τ , 	x2)

〉∼ 1

|	x1 − 	x2|2�
, (2.11)

where � = n�φ . This is the same as the CFT’s result because the 
LFT considered here is different from a CFT only in the temporal 
direction.

We move to a temporal two-point function which represents 
correlation between two operators whose distance is time-like. 
Here, a time-like distance implies that two operators are causally 
connected. Therefore, a temporal two-point function describes 
time evolution of a local operator. When an operator evolves at 
a fixed position 	x, a temporal two-point function becomes

〈
φ(τ1, 	x)φ(τ2, 	x)

〉= 
d−3

∫
dωdp dθ pd−2 sind−3 θ G(ω, 	p)

× eiω(τ1−τ2) ∼ 1

|τ1 − τ2|2�φ/λ
. (2.12)

For a general operator O with a scaling dimension �, it further 
generalizes into

〈
O (τ1, 	x) O (τ2, 	x)

〉∼ 1
2�/λ

. (2.13)
|τ1 − τ2|
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The results in (2.11) and (2.13) are typical two-point functions of a 
LFT [41,42].

Now, let us study the holographic dual of the above LFT. To do 
so, we take into account a Euclidean Lifshitz geometry which is 
obtained from the following Einstein-Maxwell-scalar theory with a 
negative cosmological constant � [40,44–46]

S gr = 1

2κ2

∫
dd+1x

√
g

(
R+ 2� + 1

2
∂μφ∂μφ + 1

4
eαφ Fμν F μν

)
,

(2.14)

where α is an appropriate constant determining a critical dynami-
cal exponent. Assuming that the gauge field has only a time com-
ponent to break a Lorentz symmetry, the above Einstein-Maxwell-
scalar theory allows a Lifshitz geometry as a solution

ds2 = R2

z2

(
R2(λ−1)

z2(λ−1)
dτ 2 + d	x2

d−1 + dz2

)
. (2.15)

For d = 4, a dynamical critical exponent λ is given by α =
2/

√
λ − 1 [44–46]. The Lifshitz metric is invariant under (2.2), 

which makes us believe the Lifshitz geometry as the dual of a LFT.
The Lifshitz geometry can further generalize into a Lifshitz black 

hole

ds2 = R2

z2

(
R2(λ−1)

z2(λ−1)
f (z)dτ 2 + d	x2

d−1 + dz2

f (z)

)

with f (z) = 1 −
(

z

zh

)d−1+λ

, (2.16)

where zh indicates a black hole horizon. According to the AdS/CFT 
correspondence, the Lifshitz black hole maps to the LFT at fi-
nite temperature. In other words, the Lifshitz geometry is the 
dual of the LFT vacuum, whereas a Lifshitz black hole describes 
thermalization of the LFT excitation [44–46]. To see this feature, 
we look into thermodynamics of the Lifshitz black hole. For a 
(d + 1)-dimensional Lifshitz black hole, the Hawking temperature 
and Bekenstein-Hawking entropy are given by

T H = (d + λ − 1)

4π

1

zλ
h

and S B H = Rd−1 V

4G

1

zh
d−1

. (2.17)

The first law of thermodynamics determines an internal energy 
and pressure as

E = (d − 1)Rd−1 V

16πG

1

zd+λ−1
h

, and P = λRd−1

16πG

1

zd+λ−1
h

. (2.18)

These quantities satisfy the equation of state parameter (2.6) for 
the LFT’s excitation. This indicates that the Lifshitz black hole is 
dual to thermalization of the LFT excitation.

3. Holographic two-point functions

We study holographic two-point functions in the Lifshitz geom-
etry which are the dual of two-point functions in the LFT vacuum. 
When a local operator O (τ , x) has a scaling dimension �, its holo-
graphic two-point function is determined by [18–27]〈
O (τ1, 	x1) O (τ2, 	x2)

〉∼ e−� L
(
τ1,	x1;τ2,	x2

)
/R , (3.1)

where L 
(
τ1, 	x1;τ2, 	x2

)
is a geodesic length connecting two local 

operators. For a spatial two-pont function, the rotational sym-
metry enables us to rearrange two operator’s positions to be at 
	x1 = {0,0, · · · ,0} and 	x2 = {|	x1 − 	x2|,0, · · · ,0

}
. At a given time τ , 

then, the geodesic length up to a UV divergence results in
3

L(τ , 	x1;τ , 	x2) = R

|	x1−	x2|∫
0

dx

√
1 + z′2

z
= 2R log |	x1 − 	x2|, (3.2)

where the prime means a derivative with respect to x. Therefore, 
the holographic spatial two-point function in the Lifshitz geometry 
reproduces that of the LFT vacuum in (2.11). This is also true for 
a temporal two-point function. To see this, we take into account 
a geodesic connecting two operators located at the same position 
and different time. Then, a temporal two-point function is gov-
erned by

L(τ1, 	x;τ2, 	x) =
|τ1−τ2|∫

0

dτ
R

z

√
R2(λ−1)

z2(λ−1)
+ ż2, (3.3)

where the dot indicates a derivative with respect to τ . Using the 
conserved quantity given by

H = − R2λ−1

z2λ−1
√

ż2 + R2(λ−1)/z2(λ−1)
, (3.4)

and introducing a turning point z0, where ż vanishes, the geodesic 
length becomes up to a UV divergence

L(τ1, 	x;τ2, 	x) = 2R

λ
log
(
λ Rλ−1 |τ1 − τ2|

)
. (3.5)

This reproduces the previous temporal two-point function in (2.13)
[41,42].

Now, we consider an operator interacting with the LFT excita-
tion. Since the Lifshitz black hole corresponds to a thermal state 
involving all LFT excitation, the holographic two-point functions in 
a Lifshitz black hole map to correlation functions of an operator 
interacting with the LFT excitation. First, we look into a spatial 
two-point function. In the Lifshitz black hole, a geodesic length 
connecting two boundary points, 	x1 and 	x2, is given by

L(τ , 	x1;τ , 	x2) =
|	x1−	x2|∫

0

dx
R

z

√
1 + z′2

f
. (3.6)

Since the geodesic length depends on x implicitly, there exists a 
conserved quantity

H = − R
√

f

z
√

f + z′2
. (3.7)

In addition, the invariance of the geodesic length under x → |	x1 −
	x2| − x allows a turning point at x0 = |	x1 − 	x2|/2. Denoting the po-
sition of a turning point in the z-direction as z0, z′ becomes zero 
at z = z0. At the turning point, the conserved quantity further re-
duces to H = −R/z0. Comparing these conserved quantities, the 
operator’s distance at the boundary and geodesic length are deter-
mined by

|	x1 − 	x2| =
z0∫

0

dz
2z√

f
√

z2
0 − z2

, (3.8)

L(τ , 	x1;τ , 	x2) =
z0∫

0

dz
2Rz0

z
√

f
√

z2
0 − z2

. (3.9)

In the UV limit satisfying z0/zh 
 1, the two-point function be-
comes up to a UV divergence

〈
O (τ , 	x1)O (τ , 	x2)

〉≈ 1
2�

e−(|	x1−	x2|/ξuv )d+λ−1
, (3.10)
|	x1 − 	x2|
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where a UV correlation length is proportional to the energy of the 
LFT excitation (2.18)

1

ξd+λ−1
uv

=
�π3/2 R1−dG �

(
d+λ−1

2

)
(d − 1)2d+λ−3 �

(
d+λ+2

2

) E

V
. (3.11)

This shows that, as the excitation energy increases, the two-point 
function at a given distance decreases due to the screening effect 
of the LFT excitation.

In an IR region (z0 → zh), the operator’s distance in (3.8) di-
verges at z0 = zh , so that the IR region corresponds to a long-
distance limit. In the long-distance limit (|	x1 − 	x2| → ∞), the 
geodesic length in (3.9) can be rewritten as

L(τ , 	x1;τ , 	x2) = lim
z0→zh

⎛
⎜⎝ R |	x1 − 	x2|

z0
+ 2R

z0

z0∫
ε

dz

√
z2

0 − z2

z
√

f

⎞
⎟⎠ ,

(3.12)

where ε means a UV cutoff. Here, the second term includes a 
logarithmic UV divergence at ε = 0. After renormalizing the UV 
divergence, the second term becomes finite even at z0 = zh . This 
indicates that the first term is dominant in the long-distance limit. 
Therefore, the leading behavior of the spatial two-point function in 
the IR limit becomes〈
O (τ , 	x1)O (τ , 	x2)

〉∼ e−|	x1−	x2|/ξir , (3.13)

where the interaction with the thermalized LFT excitation gives 
rise to an effective mass

mef f ≡ 1

ξir
= �

(
4π

d + λ − 1

)1/λ

T 1/λ
H , (3.14)

where ξir means a correlation length. This result shows that the ef-
fective mass in the IR region is proportional to T 1/λ

H . Therefore, the 
higher temperature is, the shorter the correlation length becomes.

For a Euclidean Lifshitz black hole with a general λ, a temporal 
geodesic length is given by

L(τ1, 	x;τ2, 	x) =
|τ1−τ2|∫

0

dτ
R

z

√
R2(λ−1)

z2(λ−1)
f + 1

f

(
dz

dτ

)2

, (3.15)

where the Euclidean time τ is periodic. Using the inverse Wick 
rotation (τ = it), this Euclidean black hole is rewritten as the 
Lorentzian one where the Lorentzian time t is not periodic. To 
see the relation between Euclidean and Lorentzian two-point func-
tions, we first focus on the case of λ = 1. Using the conserved 
quantity, dz/dτ is given by

dz

dτ
=

f
√

f z2
0 − f0z2

z
√

f0
, (3.16)

where f0 is the value of f at the turning point. Performing this 
integral, the turning point is determined as a function of the time 
interval

z0 = zh sin

( |τ1 − τ2|
2zh

)
. (3.17)

Using (3.16) and (3.17), the geodesic length reads

L(τ1, 	x;τ2, 	x) = 2R log

[
2zh sin

( |τ1 − τ2|)]
. (3.18)
ε 2zh

4

After the inverse Wick rotation, a Lorentzian temporal two-point 
function becomes [41,42]

〈O(t1, x)O(t2, x)〉 = ε2�

(2i)2�z2�
h

1

sinh (|t1 − t2|/(2zh))
2�

. (3.19)

In the long time interval limit, the Lorentzian two-point function 
exponentially suppresses

〈O(t1, x)O(t2, x)〉 ∼ e−�|t1−t2|/zh . (3.20)

For a LFT with a general λ, exponential suppression usually oc-
curs in the long time interval limit. To see this, we write a time 
interval and geodesic length as function of a turning point

|τ1 − τ2| = 2
√

f0

Rλ−1

z0∫
0

dz
z2λ−1

f
√

f z2λ
0 − f0z2λ

, (3.21)

L(τ1, 	x;τ2, 	x) =
z0∫

ε

dz
2Rzλ

0

z
√

f z2λ
0 − f0z2λ

. (3.22)

Then, a Euclidean geodesic length (3.15) can be rewritten as the 
following form

L(τ1, 	x;τ2, 	x) = Rλ

zλ
0

|τ1 − τ2| + 2R

zλ
0

z0∫
ε

dz
f z2λ

0 −√ f0z2λ

f z
√

f z2λ
0 − f0z2λ

.

(3.23)

After the inverse Wick rotation, we take a long time interval limit 
(|t1 − t2| → ∞), which appears at z0 → zh . In this limit, f0 → 0
and the second term in (3.23) reduces to

lim
z0→zh

2R

zλ
0

z0∫
ε

dz
f z2λ

0 −√ f0z2λ

f z
√

f z2λ
0 − f0z2λ

=
zh∫

ε

dz
2R√

f z
. (3.24)

Performing this integral leads to a logarithmic UV divergence at 
ε → 0. Ignoring the UV divergence by applying an appropriate 
renormalization scheme, (3.24) is finite if f has only a simple root. 
Therefore, the main contribution to the geodesic length comes 
from the first term in (3.23). Due to this reason, a temporal two-
point function in the long time interval limit reduces to〈
O (t1, 	x)O (t2, 	x)

〉∼ e−�Rλ−1|t1−t2|/zλ
h . (3.25)

From this IR temporal two-point function, a half-life (or relaxation) 
time of an operator reads

t1/2 = (d + λ − 1)

4π�Rλ−1

1

T H
. (3.26)

This shows that the temporal two-point function in a thermal LFT 
suppresses exponentially with a half-life time inversely propor-
tional to temperature.

4. RG flow of two-point functions in a disorder system

Recently, the entanglement entropy of a randomly disordered 
system was studied in the holographic setup [48,49,51]. The dis-
order allows a UV CFT to flow into a new IR LFT. In the holo-
graphic setup, the disorder is described by the following Euclidean 
Einstein-scalar gravity

S = 1
∫

d3x
√

g

(
R− 2

2
+ 2∂aφ∂aφ + 2m2φ2

)
, (4.1)
16πG R
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where the scalar field represents the disorder and we take m2 =
−3/(4R2). For convenience, we set R = 1 from now on. The scalar 
field in an asymptotic AdS allows the following perturbative ex-
pansion

φ = φ1(x) u1/2 + φ2(x) u3/2 + · · · , (4.2)

where u indicates the radial coordinate. The scalar field rapidly 
suppresses in the asymptotic region.

To describe the random disorder, we assume that φ1 is given by 
(see [48] for more details)

φ1(x) = v
N−1∑
n=1

An cos (knx + γn) , (4.3)

where kn = n�k and �k = k0/N with a highest mode k0. Here, γn

denotes a random phase and the disorder amplitude is given by 
An = 2

√
S(kn) �k where S(kn) represents correlation of the noise. 

When S(kn) = 1, the disorder leads to the Gaussian distribution

〈φ1(x)〉R = 0 and 〈φ1(x)φ1(y)〉R = v2δ(x − y). (4.4)

The gravitational backreaction of this scalar field determines the 
dual geometry up to v2 order [48]

ds2 = 1

u2

(
A(u)

F (u)v2/2
dτ 2 + B(u)dx2 + du2

)
, (4.5)

where

A(u) = 1 + v2
[

e−2k0u {(1 + 2k0u) (log(2k0u) + β) − 2k0u}

− log

⎛
⎜⎝ 2k0u√

1 + k2
0u2

⎞
⎟⎠],

B(u) = 1 + v2
(

e−2k0u + β − 1
)

, F (u) = 1 + k2
0u2. (4.6)

Here β is the Euler constant, β ≈ 0.577. This geometric solution 
shows that an asymptotic AdS geometry smoothly changes into 
a Lifshitz one as u increases. In this case, the dynamical critical 
exponent continuously changes from λ = 1 in the UV limit into 
λ = 1 + v2/2 in the IR limit.

To define two-point functions consistently with a disorder de-
formation, we first consider an asymptotic geometry of (4.5). In the 
UV limit (u → 0), the metric reduces to

ds2
U V = BU V

u2

(
dτ 2 + dx2

)
+ du2

u2 with BU V = 1 + v2β. (4.7)

If we absorb the constant BU V into the coordinate, the above 
asymptotic metric reduces to an AdS one. In this UV limit, the 
geodesic length is given by

LU V (|x1 − x2|) =
|x1−x2|∫

0

dx

√
BU V + u′2

u
= 2 log (|x1 − x2|)

+ log

(
1 + v2β

ε2

)
. (4.8)

Introducing a normalized operator O(xi)

O(xi) = N O (xi), (4.9)

with the following normalization factor at the UV fixed point

N =
(

1 + v2β

2

)�/2

, (4.10)

ε
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the normalized UV two-point function becomes

〈O(τ , x1)O(τ , x2)〉 = 1

|x1 − x2|2�
, (4.11)

where � corresponds to the scaling dimension at the UV fixed 
point. This is the normalized two-point function of a UV CFT.

In general, a scaling dimension is well defined only at fixed 
points. When a relevant disorder deforms a UV CFT, it makes a 
nontrivial RG flow. Since the scaling symmetry is broken at inter-
mediate energy scale, the scaling dimension of an operator usually 
changes along the RG flow. To see more details, we introduce an 
effective scaling dimension �ef f (|x1 − x2|) to specify the scale de-
pendence of two-point functions

〈O(τ , x1)O(τ , x2)〉 = 1

|x1 − x2|2�ef f (|x1−x2|) . (4.12)

Although the scaling dimension at fixed points is given by a con-
stant, the effective scaling dimension we defined above crucially 
relies on the energy scale. If we know a two-point function, we 
can determine the effective scaling dimension by

�ef f (|x1 − x2|) = −1

2

d log 〈O(x1)O(x2)〉
d log |x1 − x2| . (4.13)

By using the effective scaling dimension, we investigate how 
the scaling dimension changes in a disorder system. On the dual 
geometry of a disorder system, the general geodesic length is gov-
erned by

L(|x1 − x2|) =
|x1−x2|∫

0

dx

√
B(u) + u′2

u
, (4.14)

and the normalized spatial two-point function is given by

〈O(τ , x1)O(τ , x2)〉 = N 2 e−�L(|x1−x2|), (4.15)

where N is the normalization factor (4.11) which was used to 
normalize the UV two-point function. After numerically calculating 
the spatial two-point function in (4.15), we plot the effective scal-
ing dimensions as a function of the operator’s distance in Fig. 1(a). 
The numerical result shows that the disorder reduces the scaling 
dimension in the short-distance region. In the long-distance limit, 
on the contrary, the scaling dimension increases and finally ap-
proaches the UV scaling dimension at the IR fixed point. This is 
because the UV CFT and IR LFT have the same scaling behavior in 
the spatial direction.

Similarly, we can also evaluate a temporal two-point function 
affected by the disorder. Recalling that for u → 0, A(u) and F (u) in 
(4.6) reduces to AU V = 1 + v2β and FU V = 1, the geodesic length 
for a short time interval is governed by

LU V (|τ1 − τ2|) =
τ2∫

τ1

dτ
1

u

√
AU V

F v2/2
U V

+ u̇2. (4.16)

In the UV limit having a very short time interval (|τ1 − τ2| → 0), 
the geodesic length is given by

LU V (|τ1 − τ2|) = 2 log (|τ1 − τ2|) + log

(
1 + v2β

ε2

)
. (4.17)

In terms of the normalized operator O(xi) =N O (xi), the temporal 
two-point function of the normalized operator becomes in the UV 
limit

〈O(τ1, x)O(τ2, x)〉 = 1
2�

, (4.18)
|τ1 − τ2|
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Fig. 1. We depict how the disorder modifies the scaling dimension (black solid curve) for spatial and temporal two-point functions. We take R = 1, � = 1, k0 = 2, and v = 0.8. 
(a) For the spatial two-point function, the scaling dimensions at UV and IR fixed points have the same value, � = 1. (b) For the temporal two-point function, the UV scaling 
dimension � = 1 continuously changes into a new IR scaling dimension, �I R ≈ 0.758.
which again corresponds to the temporal two-point function of a 
CFT.

As the time interval becomes large, the disorder affects the 
temporal two-point function and modifies the operator’s scaling 
dimension. When we consider a geodesic length extending to the 
deformed geometry (4.5)

L(|τ1 − τ2|) =
τ2∫

τ1

dτ
1

u

√
A(u)

F (u)v2/2
+ u̇2, (4.19)

the temporal two-point function of the normalized operator is 
given by

〈O(τ1, x)O(τ2, x)〉 = 1

|τ1 − τ2|2�ef f (|τ1−τ2|) . (4.20)

After numerical calculation, we depict how the disorder modifies 
the scaling dimension of an operator in Fig. 1(b). Fig. 1(b) shows 
that the effective scaling dimension gradually decreases in a short 
time interval. After the critical time where the scaling dimension 
has a minimum value, the scaling dimension increases with time. 
After infinite time, the scaling dimension finally approaches a con-
stant value, �I R ≈ 0.758, which is the value expected by the IR 
LFT for � = 1 and v = 0.8

�I R = lim|τ1−τ2|→∞�ef f (|τ1 − τ2|) = �

1 + v2/2
. (4.21)

Since the disorder breaks the Lorentz symmetry, the spatial and 
temporal two-point functions at the IR fixed point lead to different 
scaling dimensions which are expected in the LFT.

5. Discussion

We investigated the holographic two-point functions of noncon-
formal field theories and their RG flow. In the holography study, 
some physical quantities of QFTs can be represented as geometrical 
objects in the dual gravity. They are useful to understand nonper-
turbative features of strongly interacting QFTs. One of them is a 
geodesic length connecting two boundary operators, which corre-
sponds to a two-point function of a dual QFT. Although there is 
no rigorous proof for this connection, it is manifest for CFTs be-
cause of the large symmetry. We showed that this is also true 
for nonconformal field theories. To do so, we took into account 
a LFT which may appear at a critical or IR fixed point. After ex-
plicitly calculating a geodesic length in the Lifshitz geometry, we 
explicitly showed that this holographic calculation reproduces the 
6

known two-point functions of the LFT vacuum. Using the same 
holographic method, we further studied two-point functions of an 
operator interacting with the LFT excitation. In the UV region, the 
screening effect of the background LFT excitation slightly modi-
fies the two-point function by reducing the strength of correla-
tion. In this case, the first correction is proportional to the energy 
of the LFT excitation. This feature becomes more manifest in the 
IR regime. We showed that two-point functions involving the in-
teraction with the LFT excitation suppresses exponentially in the 
IR limit. For the temporal two-point function, in particular, such 
suppression determines a half-life time, which is inversely propor-
tional to temperature.

Lastly, we looked into how a relevant disorder affects the scal-
ing dimension of an operator when a UV CFT flows into a LFT. 
In general, a nonconformal field theory has nontrivial two-point 
functions including all quantum corrections. Although it is impor-
tant to understand such quantum feature, it is generally hard to 
calculate all quantum corrections exactly if there is no sufficiently 
large symmetry. However, we showed that the holographic calcu-
lation allows us to investigate how a relevant disorder modifies 
the scaling dimension of an operator. When a disorder changes 
a UV CFT into an IR LFT, we calculated the two-point functions 
and described the change of the scaling dimension along the RG 
flow. On the dual gravity side, we reproduced the expected LFT’s 
two-point functions in the IR limit from UV CFT’s ones. Using the 
results studied in this work, it would be interesting to figure out 
an anomalous dimension and Callan-Symannzik equation from the 
effective scaling dimension defined in this work. In future works, 
we hope to report more interesting results on this issue.
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