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ABSTRACT Federated learning, where the distribution of distributed data is unknown, is more difficult and
costly to train a central model with than traditional machine learning. In this study, we propose Federated
Learning with Genetic Algorithm, which enables faster central model training at lower cost by providing
an appropriate client selection method. A client can have its own communication cost depending on its
data sharing preference, and based on this cost and the result of the client’s local update, we can select
the appropriate combination of clients each round with a genetic algorithm. In each round, the client’s
combinations are evaluated anew, which are continually explored. To evaluate the algorithm, we distributed
the image dataset and communication costs in two ways and conducted federated learning for the image
classification model. Experiments showed that the proposed algorithm can find a more efficient client
combination and accelerate the training of federated learning.

INDEX TERMS Machine learning, federated learning, evolutionary computation.

I. INTRODUCTION
Federated learning [1], which is attracting attention as interest
in data privacy increases, is a method of training a central
model without collecting distributed raw data. Each entity
with its own data, which is not shared, contributes to central
model training with preserved data privacy. Thanks to these
characteristics, federated learning is used as an algorithm
that can easily access a lot of distributed data and is used
in various fields such as computer vision and IOT [2], [3].
Given increasingly stringent privacy regulations, the range of
applications of federated learning is expanding and impacting
machine learning’s real-world problem solving [4], [5].

However, as a price for according with the privacy, each
participating entity requires frequent communication with
either the server or clients [6]. Due to the need for frequent
communication and the distribution of data unknown to each
other, issues such as significant network cost, latency issues,
and statistical heterogeneity arise in federated learning. In an
attempt to reduce the cost of federated learning, model
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compression, faster training methods, and new communica-
tion protocols have been proposed [7], [8]. With such active
research, federated learning has been able to steadily alleviate
the problem of data security and communication cost between
a server and a client.

In federated learning so far, it has been assumed that
communication between a client and a server has the same
cost for all clients. However, it is more realistic to assume
that the characteristics of clients’ communications are often
different. Clients may have different latencies depending on
the network, and sometimes the client may be busy and
unable to respond to the server [9]. In addition to the physical
characteristics of the communication, it is desirable for the
server to coordinate the communication in consideration of
the individual user’s data sharing preference. This is because,
in fact, each individual has different concerns about privacy,
and even when using the same application, users have differ-
ent preferences for sharing data according to factors such as
age and gender [10].

If the server decides on the training contribution of the
client based solely on the user’s data sharing preference,
it could lead to an undesirable performance of the central
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model. From the server’s perspective, for the highest possible
final performance of the central model, the server wants
to optimize the central model as often as possible and for
as much data as possible. At the moment, since the server
does not know the distribution and size of the data held
by the client at all, if only some clients who want to share
data are selected, the training of the central model slows
down and requires more time and cost. In the worst case,
since the user’s data sharing preference and user data size
can be inversely proportional, clients participating in train-
ing should be selected considering various factors such as
user data preference, local training results, and communica-
tion costs.

In order to solve the aforementioned client combination
problem, the client combination to participate in trainingmust
be evaluated and selected in a complex manner each time.
However, since the server cannot communicate with every
client for every round, it is difficult to evaluate every client’s
information afresh. It is also computationally expensive to
evaluate only possible combinations of clients rather than
evaluating all clients at once. The number of possible client
combinations is very large, and the number of possible cases
is close to 3E+25 when selecting 30 out of 100 clients in each
round of federated learning. Since a huge number of cases
can occur with only 100 clients, it is necessary to apply an
appropriate search algorithm and federated learning to solve
this problem.

In this study, we assume that even if clients exchange
the same central model in a single communication, each
individual incurs different communication costs, in order to
implement federated learning that addresses various issues
such as users’ different data sharing preferences and diverse
communication environment problems. When a client trans-
mits a central model of the same size, a low communication
cost can be defined if the client prefers data sharing, and
a high communication cost can be defined if it doesn’t.
In the real world, different communication costs can be
imposed depending on the various communication environ-
ments. The algorithm we propose uses a genetic algorithm in
such an environment with different communication costs and
biased data distribution to efficiently carry out central model
training.

Federated Learning for Optimization with Genetic
Algorithm (FLOwGA), proposed in this study where it
specifically targets the choice of client training participation,
applies genetic algorithm (GA), a meta-heuristic method,
to federated learning to optimize both performance and
preference at the same time. We encoded the combinations
of clients participating in federation learning training by
chromosome in our genetic algorithm. Each chromosome is a
sequence of bits representing an individual client’s participa-
tion in training, and a new chromosome is created through
the genetic algorithm reproduction process between chro-
mosomes. The reproduction process selects the chromosome
to be the base with respect to the fitness value, which is an

evaluation measure of the chromosome, and the fitness value
is calculated based on the training results of the clients.

The best way to know which client can give better central
model training results is to test the model against evaluation
data, but since the central server does not own any data,
changes in the model’s parameter values are used to calculate
fitness. The fitness value was also formulated to be inversely
proportional to the client’s communication cost. In other
words, chromosomes have higher fitness when they have
larger updates of the central model with lower communica-
tion cost. This results in fitness that simultaneously considers
client-specific communication costs and fast convergence of
the central model. As federated learning rounds progress, the
combinations of clients going through GA improve to higher
fitness.

With the proposed FLOwGA as above, we can summarize
our contribution as follows.

1) In federated learning, we proposed a more realistic
environment in which each user’s data sharing pref-
erence might be different, and this was embodied in
the communication cost. In particular, we addressed a
dramatic problem that can arise in this environment,
where the size of each client’s data and user preferences
are inversely proportional. Our proposed method was
able to train a central model with minimal communica-
tion based on the user’s local training results and data
preferences.

2) Federated learning is performed with the participation
of a large number of distributed clients, and calculating
the entire combination of them one by one requires a
lot of time and computation cost. We solve this prob-
lem by deriving a new client combination in a short
time every round through GA, and providing a way to
gradually improve this combination based on previous
knowledge.

We designed image dataset distributions under two Scenar-
ios to verify the performance of FLOwGA. One is assuming
the aforementioned worst case Scenario, and the other comes
with random data sizes and costs. In all cases, each client’s
data has a non-IID distribution and disjoint data. We conduct
image classification training using the CNN model on these
image data sets and compare and evaluate them with the
original federated learning.

II. RELATED WORKS
A. FEDERATED LEARNING
Federated learning has been researched since around 2015,
and FedAvg [11] is one of the first studies that introduced it.
This study showed how clients can train a central model with
their own data, and show that models can be trained only with
parameter collection, without exchanging raw data. When
the data distribution of clients follows IID and Non-IID, the
central model is able to converge through the parameter mean
and an appropriate batch size.
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FIGURE 1. This figure shows how FLOwGA works in round t . First, the central server passes the parameters of the
central model submitted by each client after local update to the GA. The GA then selects clients to participate in
the next round through evaluation and reproduction using these parameters and the client’s communication cost. The
selected clients locally update the distributed central model parameters and return the results to the central server.

The server and clients exchange models repeatedly to train
the central model, which can incur significant network costs.
There are studies that have approached from various per-
spectives to reduce these costs. Li et al. [12] proposed a way
to mitigate the problem of global model divergence when a
client’s heterogeneous data is overfitted locally. The proximal
term composed of the parameter difference of the central
model mitigated the statistical instability caused by hetero-
geneous data, achieving the target central model performance
with fewer rounds of communication. Reddi et al. [13], on the
other hand, presented an adaptive optimizer that was used
by the central server rather than by the client. These studies
achieved a more efficient gradient descent of the central
model, allowing the central model to be trained with less
communication cost.

The authors in [14], [15], and [16] have presented rea-
sons and methods for selecting clients in federated learning.
Nishio and Yonetani [14] proposed a method of selecting
clients to solve the problem of the limitations of computing
resources that clients have in a wireless network environment,
which slows down federated learning. In [14], before the
central server distributes the central model to the clients,
it requests information on available computing resources
from the clients. Based on the collected information, clients
that correspond to the constraints are selected, and local train-
ing is conducted from these clients. This research is similar to
our research in that it selects clients, but there are a few differ-
ences. Nishio and Yonetani assume devices that use wireless
connections and have very limited computing resources, such
as mobile devices. In such an environment, some clients often
can only upload local training results much later than other
clients. While the total physical time consumed in federated
learning is reduced by setting a deadline as described above,
our research proposes a method to reduce the total communi-
cation cost by selecting clients optimized to the unique com-
munication costs of each client. Additionally, [14] exchanges
additional communications with all clients in every round of

federated learning to obtain computing resource information,
but we do not exchange additional communications.

Kang et al. [15] proposed a method of selecting reliable
clients, assuming that some clients may intentionally damage
the central model. Each client is assigned a value Reputa-
tion from the central server, which is calculated using the
communication history with the central server. A client has
multiple reputation for various tasks, and these are combined
to calculate the final reputation value. Central servers respon-
sible for each task store and exchange reputation values for
clients to select reliable clients. Kang et al. [15] has a com-
mon point with our work in that it proposes a new metric
for client selection. In our case, we designed a fitness metric
to reduce the total communication cost, and [15] proposed
a reputation metric to exclude unreliable clients. There are
also differences in how these metrics are managed. In [15],
blockchain technology is used to manage the metric by stor-
ing it in a distributed manner, while in our research, a single
central server that manages all clients stores and manages
the metric.

Li et al. [16] selects clients to participate in training by eval-
uating whether the data held by the clients is relevant to the
task being performed and whether the data diversity is high.
In this method, each client generates an embedding vector
representing their data, and after going through an encryption
process to protect privacy, this vector is sent to the central
server. The central server collects these vectors and selects
clients with high-quality data. This method has a similarity
with our work in that it evaluates clients based on the data they
hold. However, while [16] requires additional encryption and
communication for client evaluation, our method evaluates
clients based on the history of local model updates from the
clients, so no additional encryption and communication is
needed. Additionally, while [16] bases client evaluation on
how relevant each data point is to the task, our proposed
method is based on how much more the local model has been
trained relative to the communication cost.
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Wang et al. [17] proposed a method where clients decide
whether to upload to the central model by evaluating their
local parameter updates. They compare the direction of the
local update vector and the global update vector, and if
the direction difference between the two vectors is above
a threshold, the client does not upload the update to the
central model. This is based on the assumption that when the
directions of the two vectors are opposite, the local update
does not contribute to the global update. However, since indi-
vidual clients cannot know in advance the parameter changes
of other clients, they compare their local parameter update
with the global model update from the previous round. Their
research shares similarities with ours in that it selects clients
for participation in training and uses local model updates for
client evaluation. However, in our research, client selection
is conducted at the central server, while in [17], the selection
process takes place at the local client. Therefore, in [17], there
is a need to distribute the central model to all clients in every
round for client selection, while in our research, it is sufficient
to distribute the central model only to selected clients at the
central server. Furthermore, while [17] communicateswith all
clients to compare the directionality of parameter vectors for
higher stability and performance of the central model, we use
the size of local updates for faster convergence to achieve
lower communication costs.

B. EVOLUTIONARY COMPUTATION
Evolutionary computation(EC), inspired by natural evolu-
tionary processes, is one of the global optimization meth-
ods [18], [19]. This method has been shown to be useful in
solving optimization problems as a meta-heuristic method
or in combination with other machine learning methods
[20], [21]. Evolutionary computation starts with a number of
candidate solutions and iteratively evaluates and reproduces
the candidates, gradually converging to the optimal solution.
These processes are based on the fitness value, the quality
of the candidate solutions, which selects a few candidate
solutions to participate in the reproduction process, and the
newly created candidates are evaluated again.

Among evolutionary computation algorithms, Genetic
Algorithm(GA) [22] plays a key role in our proposed feder-
ated learning algorithm. This population-based algorithm is
an appropriate technique for finding a global optimal solution
in a complex fitness space, avoiding local optima [23]. Since
the process of finding the optimal client combination is non-
differentiable, methods such as gradient descent cannot be
used, sometaheuristic algorithms such as GA are appropriate.
GA has been used in conjunction with other machine learning
techniques as a metaheuristic search method.

Zhu and Jin [24] proposed a method in federated learn-
ing to optimize the artificial neural network structure of
the central server through evolutionary computation, achiev-
ing multi-objective optimization of lower communication
costs and higher performance. They iteratively simplified the

structure of the central model during training rounds, indi-
rectly reducing communication costs with the server. They
demonstrated that using EC can achieve the multi-objective
problem of federated learning, which aims to optimize both
performance and communication costs. Liu [25] utilized
federated learning and EC for training a central model on
medical data. They presented a study that respects patient
privacy in medical data through federated learning while
simultaneously exploring appropriate neural network struc-
tures for medical data.

Both [24] and [25] proposed methods to improve the com-
munication cost of federated learning or the performance
of the central model using EC as an optimization tool.
Their research and our work commonly apply the heuristic
optimization algorithm EC to federated learning, but there
are differences in the targets of optimization. They focused
on the fact that the structure of artificial neural networks
is composed of encodable components such as layers and
connections. What [24] and [25] proposed is to gradually
create a more optimized central model structure through the
addition and subtraction of components, not the parameters of
the artificial neural network model. The method we propose
is not the optimization of the central model structure, but
the optimization of the selection of clients participating in
training in each round.We assume that each client has its own
communication cost, data distribution, and size, and we noted
that different communication costs and training results can
be produced when the combination of clients participating
in training is different. Our research proposes a method to
evaluate the fitness of client combinations and a method to
optimize it using EC. Although all these studies with different
optimization targets use EC as an optimization tool, there are
differences in their targets, methods, and assumptions.

III. METHOD
A. PROBLEM FORMULATION
Before explaining the proposed FLOwGA, we first describe
the problem to be solved and the general method of federated
learning.

argmin
θ

loss(θ ) =
∑
i

f (xi; θ ) (1)

We want to obtain parameters of the central model θ that
satisfy the above equation by training the central model with
each client’s data xi through federated learning. The central
model’s loss function is the sum of the loss functions for each
client’s data xi. Here, the server has no information about each
client’s data, and the distribution of data for each client has
nothing to do with other clients.

min
K∑
k

cost(k) = min
K∑
k

Ck∑
ci

g(i) (2)

Federated learning typically operates with the goal of opti-
mizing only Equation 1. However, in this research, we aim to
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minimize the sum of communication costs incurred by each
client in every round, in addition to Equation 1, as expressed
in Equation 2. The communication cost associated with each
ith client is denoted as g(i). The communication cost of each
client can represent the size of the model communicated
between the client and the central server, or it can be a
client-specific value indicating user data sharing preferences,
network conditions, and other factors. We denote the set of
clients that participate in training in federated learning round
k as Ck . To achieve Equation 2, we need to select the clients
to participate in the next round, round k , for training after the
central model update in round k − 1 is completed.
If the central server knows the data distribution and data

size of all clients, it can make the optimal client selection in
each round. However, since the server cannot access the data
or gradients of individual clients, we plan to utilize fitness
values in a genetic algorithm to evaluate client combinations.
To measure fitness, we use the change in the model’s param-
eter θ after local training on client ci, denoted as 1θi, and
the communication cost g(i) of each client. In each round
of federated learning, to indicate the clients participating in
training, we use chromosomes in the genetic algorithm. These
chromosomes are composed of a bit sequence of length N ,
which can represent all N clients. Each chromosome consists
of N bits, where the ith bit being 1 indicates that ith client
participates in training, and the ith bit being 0 indicates that
ith client does not participate.

fitness(c1, . . . , cN )

=
1

max1θi

N∑
i=1

1θi · ci
g(i)

, ci ∈ {0, 1} (3)

Equation 3 represents the calculation of the fitness value
for a chromosome of length N. Each ci represents a bit
indicating whether client i participated in the training, and
1θi represents the difference between the parameter of the
local model obtained from the ith client’s last local training
and the current parameter of the central model. The fitness
evaluation of the chromosome involves finding the maximum
1θi among all clients and assigning a higher value to the
chromosome combination with participating clients having
larger 1θi values and lower communication costs.
It should be noted that not all clients participate in a round

of federated learning at once. Some clients who do not partic-
ipate in the current round will have θi from a past round, not
the updated θi from the current round. This outdated θi could
provide inaccurate information for the fitness evaluation of
the chromosome in the current round. To address this issue in
our Algorithm 1, each client will have a chance to participate
in the training with a low probability, regardless of their
fitness value.

B. ALGORITHM
Algorithm 1 and Figure 1 demonstrate the overall flow of
the proposed method. This algorithm follows the training
approach of federated learning, where the genetic algorithm

Algorithm 1 Federated Learning With Genetic
Algorithm
Data: C = Client Set, θ = Initial Parameters,

R =Maximum round, H = #Chromosomes,
α = Evaluation factor, β = Coefficient to limit
maximum # clients in a single round

Result: θE
1 X1, . . . ,XH ← Initialize each chromosomes with
{x1, . . . , x|C| | xi ∈ {0, 1}}

2 t ← 1
3 while t ≤ R do
4 Xmax ← argmaxXi fitness(Xi)
5 A← Randomly pick αβ|C| elements from

{xi ∈ Xmax | xi ̸= 0}
6 j← argmaxi 1θi
7 In A, set xj to 1
8 B← Randomly pick β|C| − |A| elements from

C − A
9 Ct ← A ∪ B

10 Distribute θ to clients in Ct and starts local train
11 θ1, . . . , θ|Ct|← Collect θi from Ct
12 θ ← 1

|Ct |

∑|Ct |
i=1 θi

13 X1, . . . ,XH ← Reproduce(X1, . . . ,XH )
14 t ← t + 1
15 end

optimizes which clients will participate in the training. The
determination of participating clients goes through several
steps. Firstly, the algorithm selects the chromosome with the
highest fitness(chromosome) value from randomly generated
chromosomes. From this chromosome, αβ|C| clients are ran-
domly extracted, while the remaining (1−α)β|C| clients are
selected fromC . Consequently, we useβ|C| clients in a single
round. β is a variable predetermined in the experiment, and a
higher value allows more clients to participate in the training
at once. The selected clients receive the parameters of the cen-
tral model and perform local training, and the central model
is replaced by the average of the trained models. Through a
reproduction process, H new chromosomes are generated.

The reason we do not select all clients from X where
fitness(chromosome) is the highest is due to the outdated 1θi
that some clients possess. Fitness is deeply tied to max1θi,
and since max1θi is often significantly influenced by these
outdated 1θis, there is a need to update a client’s 1θi even
if it does not fall into the combination with high fitness.
Especially in the initial rounds of federated learning, max1θi
tends to have a very large value, which results in very low
fitness values for all chromosomes. For instance, if some
clients obtained1θi in the initial rounds of federated learning
and never updated it again, these clients continue to have
very high values of 1θi. This will lower the value in the
fitness calculation of other chromosomes, and consequently,
all fitness values will appear to decrease gradually.
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The selected clients receive the parameters of the central
model and train the model using their local data. The trained
model parameters are gathered at the central server, and their
average parameters become the central model parameters for
the next round. To start the next round, Algorithm 2 generates
new chromosomes. The generation of new chromosomes is
based on the existing chromosomes, using the updated param-
eters of the central model and the results of the previous local
training.

Algorithm 2 Reproduce
Data: P = Existing Chromosomes
Result: Pnew = New Chromosomes

1 Pnew← ∅
2 while Pnew ≤ P do
3 P1← Randomly pick 2 elements from P and

return one with bigger fitness(X )
4 P2← Randomly pick 2 elements from P and

return one with bigger fitness(X )
5 K ← Random integer 1 < K < |P1|
6 P1,new← {xi ∈ P1 | x1, . . . , xK } ∪ {xi ∈ P2 |

xK , . . . , x|P2|}
7 P2,new← {xi ∈ P2 | x1, . . . , xK } ∪ {xi ∈ P1 |

xK , . . . , x|P1|}
8 foreach set P ∈ {Pnew,1,Pnew,2} do
9 foreach element xi ∈ P do
10 Flip xi with probability 1

|P|
11 end
12 end
13 Pnew← Pnew ∪ {Pnew,1,Pnew,2}

14 end

Algorithm 2 probabilistically selects two chromosomes to
create a new chromosome based on the fitness values of the
existing chromosomes. The method of selecting two existing
chromosomes is to randomly select two from all chromo-
somes, choosing the one with the greater fitness value. The
method used at this time is called the tournament selection
method inGA. This tournament selectionmethod is described
in lines 3-4. By selecting the chromosome with a higher
fitness, we expect the newly combined chromosome to have
a higher fitness value than the existing one.

After selecting two chromosomes through tournament
selection, they are combined to create a new client combina-
tion. This is a process of connecting different parts of the two
chromosomes, called the Crossover process. We randomly
select a number between the length P1 of one chromosome
and 1 to use as the index for the combination process. Based
on this index, the new chromosome is a new combination
where the front and back of the existing chromosome have
crossed over. This new combination is stored in a new chro-
mosome set after going through the mutation process with a
low probability of 1

|P| . Algorithm 2 repeats this process until

the new chromosomes are generated as many as the existing
chromosomes.

The client selection method we proposed requires the
calculation of fitness for all clients and the Reproduce that
creates all chromosomes anew each time for the operation
of GA. The time complexity required for each process is
determined by the number of chromosomes H and the total
number of clientsC . In Algorithm 1, in one round of federated
learning, it is necessary to refer to allC clients to calculate the
fitness of one chromosome.We need to repeat this calculation
H times for all chromosomes, and this process occurs in
every round of federated learning. The Reproduce process
creates H new chromosomes, and it takes time equivalent
to the length of a chromosome C to create one chromo-
some. Assuming that the central server conducts federated
learning for R rounds, the time complexity that GA uses
is O(RCH ).
In federated learning, distributing the central model to

all clients and each client training the central model locally
require relatively large computational resources and time.
Compared to the entire process of federated learning, the time
consumed by GA is negligible. The part where GA generally
takes the most time is the calculation of fitness, but in our
case, the calculation of fitness for a single chromosome is
simple, denoted asO(C), sowe can say that the computational
resources and time required for GA are very small. In other
words, our proposed FLOwGA does not demand additional
computational resources on edge devices.While there is some
additional computational resource consumption on the server,
it is only marginally more than that of the central model
training process.

IV. EXPERIMENTS
To verify whether FLOwGA can train the central model faster
with lower communication costs through the optimization
of client combinations, we conducted image classification
experiments using two Scenarios. The two Scenarios use
the same original dataset, but the correlation between the
number of data each client has and the communication cost
is set differently. The algorithms that were tested alongside
FLOwGA are FedAvg [11] and CMFL [17].
In Scenario 1, the communication cost assigned to the

client is inversely proportional to the size of the data held
by the client. We assign communication costs based on the
size of the data each client has, assigning lower costs to
clients with larger data sizes and higher costs to those with
smaller data sizes. In this Scenario, the central server needs to
more frequently select clients with larger data sizes for faster
convergence of the central model at a lower communication
cost. There are three reasons why we designed such data size-
communication cost relationship.

First, Scenario 1 more clearly demonstrates that FLOwGA
works well. When generating arbitrary client combinations in
each of Scenario 1 and 2, when the sum of the data sizes of
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FIGURE 2. The amount of data each client has and its cost in Scenarios 1 and 2.

the clients is above average, Scenario 1 shows a lower sum of
communication costs, and when the sum of the data sizes of
the clients is below average, Scenario 1 shows a higher sum
of communication costs. Therefore, if FLOwGA operates
negatively, it will show worse figures than in a random data
size-communication cost relationship, and if it operates well,
it will show better figures.

Second, we test through Scenario 1 whether FLOwGA
is too greedy for communication costs. In Scenario 1, it is
not the optimal choice for the GA to always select clients
with lower communication costs and more data. If the central
server blindly selects the same clients all the time, it could
lead to overfitting of the central model, falling into local
optima, and inaccurate calculation of fitness values. There-
fore, through this Scenario, we can more clearly confirm than
in Scenario 2 whether FLOwGA can find cost-optimal clients
while not falling into local optima and training the central
model well.

Third, we believe that a data size-communication cost
relationship like Scenario 1 can exist in the real world. Studies
like [26] show that user groups unfamiliar with electronic
devices have lower willingness to share data than user groups
familiar with electronic devices. It also shows that user groups
familiar with electronic devices own more wearable devices.
Based on these findings, we represent the fact that user
groups producing less data have less willingness to share
data through the data size-communication cost relationship
in Scenario 1.

In Scenario 2, there is no correlation between the size of
the data held by the client and the communication cost. This
assumption better represents real-world situations compared
to Scenario 1. Because there is no correlation between cost
and size, if the central server simply selects low-cost clients,
it will result in lower performance at a higher cost. What we
want from the central server in Scenario 2 is a more dynamic
client selection strategy. For example, in the early stages of
federated learning, the central model is barely trained, so it

would be advantageous for the central server to select clients
with larger data sizes, even if it means paying a slightly higher
communication cost.

The image dataset used in the two Scenarios is Fashion
MNIST [27]. This grayscale image dataset has 10 labels, each
image is 28× 28 in size, and it has a total of 60,000 training
images and 10,000 test images. We divided 100 clients into
three groups and distributed the training images with different
probabilities. When distributing an image, clients in group A
have a 1.78% chance of receiving the image, group B has a
0.89% chance, and group C has a 0.45% chance. The size
of group A is 25, group B is 50, and group C is 25. At this
time, each client was allowed to have images belonging to a
maximum of 4 labels. The training data distributed in this way
is disjoint between each client and forms Non-IID training
data.

After distributing the training images, we set the com-
munication cost for each client according to the Scenarios.
In Scenario 1, we assigned a communication cost inversely
proportional to the size of the data held by the client, with a
minimum of 3 and a maximum of 33. For the data formation
process for Scenario 2, we set an arbitrary cost between 3 and
33 for the client, regardless of the size of the data held by the
client. The results of distributing images and communication
costs in this way are shown in Fig. 2.
To train the central model in all image classification exper-

iments, we use SGD with a learning rate of 1E-3. The
central model was implemented using a convolution layer
and ReLU activation. β was fixed at 0.3, allowing a total
of 30 clients to train in one round. α is set to 0.9, so out
of 30 clients, 27 clients will be selected from the chromo-
some with the greatest fitness, and 3 clients will be selected
randomly. To drive FLOwGA to use 30 clients in a round,
we made the lowest fitness value if the chromosome rep-
resents more than 30 clients. We ran a total of 10 times
with these settings and averaged the values to evaluate the
experiment.
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FIGURE 3. Maximum fitness value found in each round according to α and β. (a) β is 0.1, and (b) α is 0.9.

FIGURE 4. Illustration showing the communication cost incurred by the central server in each round.

In CMFL, all clients exceeding the threshold must partic-
ipate in training each round, so there was no way to limit
the training participation to a maximum of 30 clients per
round. We used 0.65 as the threshold for CMFL. We tried
values of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.8} as [17]
did, and also tried to decrease the threshold over time. As a
result, a fixed threshold of 0.65 was the most efficient CMFL
we could find. During the experiment, if CMFL could not
find any client exceeding the threshold, we randomly selected
30 clients from all clients to use for the global update. We use
the average of the results obtained through 10 repeated exper-
iments of the CMFL algorithm for result comparison.

In addition, to evaluate the impact of α and β on
the algorithm’s operation, we conducted experiments to
observe the fitness evaluation results when they are set to
0.1, 0.3, 0.6, 0.9 respectively. We conducted image classifi-
cation experiments in the aforementioned Scenario 1 envi-
ronment, setting β to 0.1 when investigating α, and setting α

to 0.9 when investigating β.

TABLE 1. Results of the Experiment on Scenario 1.

V. RESULTS
The results of our experiments are shown in Figs. 3-8 and
Tables 1-2. Figure 3 presents the experimental results in
Scenario 1, demonstrating the influence of α and β on the
client combination optimization of FLOwGA. Figure 4 shows
the incurred communication costs for each round. Figure 5
illustrates the cumulative sum of communication costs used
by each algorithm. The sum of communication costs in each
round represents the sum of costs carried by the participating
clients in that round. Figure 6 displays the accuracy of the
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FIGURE 5. Shows the total accumulated cost that the central server has consumed up to each round. The y-axis is on a log scale.

FIGURE 6. Illustration showing the performance of the central model achieved through federated learning. (a) shows the
performance in Scenario 1, and (b) shows the performance in Scenario 2.

FIGURE 7. The number of times each client participated in training with Scenario 1. Clients with smaller indices (larger data size) got more
opportunities to participate in training.

central model at each round, which represents the classifi-
cation results on a separate test dataset of 10,000 images
that were not used for training. Figure 7 reveals how many

times FLOwGA involved each client in federated learn-
ing in Scenario 1. The fitness values of the combinations
found by FLOwGA in each round are depicted in Fig. 8.
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TABLE 2. Results of the Experiment on Scenario 2.

Table 1 and 2 show the performance of each algorithm based
on the cumulative sum of communication costs.

α and β play an important role in the operation of GA in
the algorithm, and the effects they have on fitness evaluation
are shown in Fig. 3. In Figure 3a, we can see that when
α is 0.3, GA can find a chromosome with higher fitness.
α determines how greedily the client combination found by
GA will be adopted, and we can see that when the algorithm
operates at a moderate value that is neither too high nor too
low, it can find a combination with a higher fitness value. This
is because a high α increases the probability that a client will
have an outdated θi, and a low α slows down the explora-
tion of GA.

Figure 3b shows the impact of four values of β on fit-
ness evaluation. β determines how much of the total clients
will participate in one round of federated learning, and the
more clients participated, the more combinations with higher
fitness values could be found. The more clients partici-
pate at once, the more often each client can update θi, and
GA has the opportunity to more accurately evaluate vari-
ous combinations. Therefore, as shown in the experimental
results, the higher the β, the higher the fitness value that can
be found.

The communication costs consumed by the three algo-
rithms in each round of federated learning are shown in Fig. 4.
FedAvg always shows similar costs because clients partic-
ipate randomly in each round, while FLOwGA and CMFL
decrease their round-by-round communication cost con-
sumption as federated learning progresses. However, CMFL
startedwith a very high communication cost consumption and
eventually had a reduced communication cost that was higher
than the other two algorithms. In FLOwGA, the consumed
communication cost steadily decreased at a constant rate until
the end of federated learning, which allowed it to ultimately
train the central model with much less communication cost
than the other two algorithms. Comparing Scenarios 1 and
2 in Fig. 4, both FLOwGA and CMFL generally required
higher communication costs in Scenario 1 and optimiza-
tion of communication costs was more difficult. From this,
we can see that communication cost-efficient algorithms like
FLOwGA and CMFL face greater difficulties in training
when clients with less data require more communication
costs.

In Scenarios 1 and 2, when comparing the cumulative
sum of communication costs consumed by federated learning,
FLOwGA consumes less cost in all rounds as seen in Fig. 5.
In Scenario 1, when federated learning finished the 100th

round, FLOwGA consumed 41843 (100%) of communica-
tion costs, FedAvg consumed 56112 (134%), and CMFL
consumed 133433 (318%). Looking at the communication
costs consumed, it can be seen that FLOwGA requires less
communication costs throughout the federated learning pro-
cess. In particular, as the rounds progress, the cumulative sum
of communication costs consumed by FLOwGA becomes
even less than the other two algorithms, which shows that the
EC used by FLOwGA is gradually converging to the optimal
client combination. In the case of CMFL, it can be seen from
Fig. 5 that it consumed much more cost than the other two
algorithms, which indicates that CMFL can have more stable
training performance at the expense of higher communication
costs. CMFL accepts all client updates as long as they exceed
the threshold for the stability of the global update, which
required more communication costs.

As can be seen in Fig. 5, even though the three algorithms
have gone through the same federated learning rounds, the
sum of communication costs they consumed is very dif-
ferent from each other. For a fair evaluation of the central
model performance, we decided to show the performance
achieved by the central model when the same communication
cost was consumed. To this end, FLOwGA and FedAvg
continued federated learning until they consumed the same
communication cost as CMFL. Figure 6 shows the per-
formance of the central model in terms of communication
costs. As we can see from Fig. 6, in both Scenarios 1 and 2,
the learning curves of the three algorithms fluctuate due to
the statistical heterogeneity inherent in federated learning,
but FedAvg and FLOwGA show similar patterns. CMFL
showed lower performance than the other algorithms when
the communication cost consumed was low, but recorded
higher performance than FedAvg as the training progressed.
As shown in Tables 1-2, in both Scenarios 1 and 2, FLOwGA
was able to achieve highest performance for the same
communication cost. These results indicate that FLOwGA
achieved more cost-effective federated learning when select-
ing clients using GA. FLOwGA showed rapid performance
improvement especially at the beginning of learning, which
we believe is due to the fitness evaluation method we
use. Fitness increases when one client has a larger central
model update compared to other clients, and the method
of preferring larger central model updates at the begin-
ning of learning allowed for faster achievement of target
performance.

In both Scenarios 1 and 2, FLOwGA worked as we
expected, but there is a slight difference in the size of the
fitness value and communication costs. The main factor is
that the average communication cost of the clients is different
in the two Scenarios. In Scenario 1, the average cost is 18.7,
and in Scenario 2, it is 15.6, which is about 83% of Scenario 1.
The communication cost incurred by FLOwGA in each round
is also about 80% less in Scenario 2.

Looking at Figs. 4 and 8, we can see that the increase in
fitness value is due to finding a combination of lower com-
munication costs. This is evident in both Scenarios 1 and 2,
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FIGURE 8. Illustration showing the highest fitness value found by
FLOwGA in each round in Scenarios 1 and 2.

where the communication cost consumed per round is halved
while the fitness value increases by about twice. Despite the
fact that the size of the central model’s parameter update gen-
erally decreases as federated learning progresses, FLOwGA
was able to adapt to this and find a client combination
with a higher fitness value through communication cost
optimization.

Figure 7 shows the number of times each client partici-
pated in training until FLOwGA terminated in Scenario 1.
As shown in Fig. 2a, clients with smaller indices have smaller
communication costs and larger local datasets, and FLOwGA
found and selected these clients. The larger datasets these
clients have contribute to the generalization of the cen-
tral model, and the cost of communicating with them is
lower than other clients. It can also be seen that the client
selection is not limited to a subset of clients with lower
communication costs, but that all clients are guaranteed
a chance to participate in training. It demonstrates that
FLOwGA can utilize all of the data of all clients while
prioritizing a few.

VI. CONCLUSION
Clients participating in federated learning can have different
data and may also have different costs for communication
or preferences for data sharing. We proposed a method that
uses Genetic Algorithm (GA) to utilize the characteristics
of clients for more efficient federated learning in such an
environment, rather than randomly selecting clients. Our pro-
posed FLOwGA was able to accelerate federated learning
through client combination search by GA. As federated learn-
ing progressed, the central server was able to find clients that
contributed more to parameter updates with less communica-
tion cost.

In future research, we can use heuristic algorithms like
GA for multiobjective optimization to obtain a Pareto set
that can present various aspects such as communication cost,
latency, and training time. In this study, we assumed that all
clients have a constant communication cost over time, but in
future research, we can consider an environment where the
characteristics of clients change.
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