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Abstract 

In recent years, the field of computational drug design has made significant strides in the development of artificial 
intelligence (AI) models for the generation of de novo chemical compounds with desired properties and biological 
activities, such as enhanced binding affinity to target proteins. These high-affinity compounds have the potential 
to be developed into more potent therapeutics for a broad spectrum of diseases. Due to the lack of data required 
for the training of deep generative models, however, some of these approaches have fine-tuned their molecular gen-
erators using data obtained from a separate predictor. While these studies show that generative models can produce 
structures with the desired target properties, it remains unclear whether the diversity of the generated structures 
and the span of their chemical space align with the distribution of the intended target molecules. In this study, we 
present a novel generative framework, LOGICS, a framework for Learning Optimal Generative distribution Iteratively 
for designing target-focused Chemical Structures. We address the exploration—exploitation dilemma, which weighs 
the choice between exploring new options and exploiting current knowledge. To tackle this issue, we incorporate 
experience memory and employ a layered tournament selection approach to refine the fine-tuning process. The 
proposed method was applied to the binding affinity optimization of two target proteins of different protein classes, 
κ-opioid receptors, and PIK3CA, and the quality and the distribution of the generative molecules were evaluated. The 
results showed that LOGICS outperforms competing state-of-the-art models and generates more diverse de novo 
chemical structures with optimized properties. The source code is available at the GitHub repository (https://​github.​
com/​GIST-​CSBL/​LOGICS).
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Introduction
Recently, deep-learning techniques have been applied 
to various aspects of drug discovery [1]. Deep-learning-
based approaches are expected to accelerate complex 
and time-consuming pipelines and reduce the cost of the 
development of new drugs. The most recent trend in de 
novo molecular design is the advent of deep generative 
modeling approaches [2]. Various generative de novo 
approaches with different neural architectures have been 
introduced over the past several years [3] (Additional 
file 1: Section1).
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Among a wide spectrum of research, we are espe-
cially interested in research on deep generative agents 
that increase the probability of sampling molecules with 
desired properties [4–16]. These generative deep net-
works directly learn the sampling distribution of target 
molecules. For example, language modeling of simplified 
molecular-input line-entry system (SMILES) strings pro-
duces a model that suggests molecules similar to those in 
the training set. Note that datasets of known molecules 
with targeted properties could be too small, and many 
studies have introduced transfer learning approaches 
to tackle such low-data problems. Gupta et  al. [17] pre-
sented the language modeling of SMILES strings using 
generative long short-term memory (LSTM). They first 
pre-trained the LSTM on 550,000 SMILES from ChEMBL 
and fine-tuned the model on specific ligand subsets with 
known activity for target proteins such as PPARγ, trypsin, 
and TRPM8. Similar approaches have been employed 
in other studies [4–6]. Other studies instead utilized the 
independent prediction model in transfer learning and 
fine-tuned the generator online without fixing the train-
ing data [7–16]. Most of the studies adopted policy-learn-
ing reinforcement learning (RL) algorithms by setting the 
SMILES generation as a sequential decision-making pro-
cess [7–11], while other studies fine-tuned the maximum-
likelihood estimation model by selecting high-scoring 
molecules from the samples [12–14]. We categorized 
these methods under the term: generator-predictor col-
laboration (GPC). A transfer learning method is consid-
ered GPC when it meets the following criteria: (a) the 
fine-tuning dataset is not provided and is not fixed; (b) 
instead, the fine-tuned dataset is generated by the gen-
erator; and (c) the generated samples are evaluated by the 
separate prediction models to tell the generator whether 
the samples have positive or negative properties. Previous 
studies, such as that by Segler et al. [12], REINVENT [7], 
ReLeaSE [8], DrugEx [9], Augmented Hill-Climb (AHC) 
[15], and Augmented Memory (AugMem) [16] proposed 
methods that perfectly fit under the GPC framework, 
with recurrent neural network (RNN) language models 
for the generation of SMILES strings.

In GPC studies, the use of the independent prediction 
model for scoring has been reported to make generative 
models exploit scores in detrimental ways [14]. In addi-
tion, naively training the generator to focus on high-score 
samples repeatedly often causes a mode collapse of the 
generator, which is a notorious failure in generative mod-
eling, where the generator only generates samples close 
to a few target modes and neglects the others [18]. This 
failure is closely related to the classic explore-exploit 
dilemma of reinforcement learning, where agents with 
balanced exploration and exploitation can achieve opti-
mal solutions to complex problems [19]. GPC methods 

could be susceptible to over-exploitation; thus, a more 
robust evaluation using independent test sets and distri-
butional metrics is required to detect failures.

To resolve the explore-exploit dilemma of reinforce-
ment learning, we propose LOGICS, a framework for 
learning the optimal generative distribution iteratively 
for target-focused chemical structures. LOGICS, a vari-
ant of the GPC method, employs experience memory 
and an advanced selection procedure to approximate the 
distribution closest to the target chemical space. In this 
study, the proposed method was demonstrated on the 
bioactivity optimization towards two protein targets, 
κ-opioid receptors (KOR) and p110α protein (PIK3CA), 
and evaluated the distribution of generated molecules 
using various metrics. We compared LOGICS with other 
GPC methods from previous studies and performed abla-
tion studies on each component in the framework.

Materials and methods
Datasets
The statistics and descriptions of the data used in model 
construction are summarized in Table 1. We pre-trained 
the generative LSTM using the SMILES dataset provided 
by GuacaMol’s distribution-learning benchmark [20]. We 
specified a set of SMILES tokens to be used throughout 
the study, as described in Additional file  1: Section  2, 
and removed the SMILES with unspecified tokens in the 
dataset. Then, each compound’s SMILES was canonical-
ized using RDKit [21] for compound standardization, and 
duplications were removed.

For the target bioactivity predictors, we built activ-
ity predictors for each of  KOR and PIK3CA. For KOR, 
the pre-processed bioassay dataset was collected from 
Pereira et  al. [10]. The cited study provided compound 
activities as pIC50 values against KOR, derived from func-
tional assays, accompanied by their SMILES representa-
tions. For PIK3CA, we downloaded bioassay data from 
the PubChem database by querying the PIK3CA target 
(gene ID:5290) [22]. Notably, we excluded the bioactivity 
data measured for the mutant form of PIK3CA to main-
tain data consistency. Also, we filtered the activity data 

Table 1  Statistics and descriptions of the compound data used 
in the generator pre-training and the predictor construction

a Cross-validation

Datasets Total Fivefold CVa Test Active threshold

Pre-training 
data (Genera-
tor)

1,583,425  −   −   − 

Training & testing data (Predictor)

 KOR 3881 3230 651  > 7.0 pIC50

 PIK3CA 1462 1215 247  > 8.0 pKx
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that did not have ’ = ’ in the ’acqualifier’ column. The bio-
activity of the compounds for PIK3CA is represented as 
pKi and pKd, and these two measures are labeled as pKx. 
Similar to the pre-processing step mentioned above, the 
compounds were standardized by transforming SMILES 
into a canonical form. The median value was selected as 
the representative bioactivity label if a compound had 
multiple bioactivity values for a given target.

The randomly selected 17% of each bioassay dataset 
was held out for the test set. The other 83% were used 
to perform five-fold cross-validation with random splits. 
After inspecting the label value distribution of each KOR 
and PIK3CA, the threshold for classifying a molecule to 
be active was determined to be 7.0 pIC50 for KOR and 8.0 
pKx for PIK3CA (please see Additional file 1: Section 3). 
These values were selected such that the numbers of inac-
tive and active molecules were balanced in the data dis-
tribution. The active molecules in the test set are referred 
to as "test set actives" in later sections and were used for 
evaluating the generative model performance. We suggest 
the balanced cutoff because if the cutoff is too low (less 
stringent), all the fine-tuned generators would easily find 
the active regions, which would diminish the significance 
of performance differences between the models. Whereas 
if the cutoff is too high (too stringent), the distributional 
metrics cannot be appropriately calculated as too few test 
set actives will be used. While we presume a balanced 
cutoff is crucial for ensuring a fair comparison of model 
performance and accurate computation of distributional 
metrics, the evaluations of generative models using vari-
ous cutoffs are provided in Additional file 1: Section 4.

LOGICS framework

a.	 Overview of the proposed approach

The LOGICS framework proposed in this study follows 
the GPC scheme (Fig. 1). The binding affinity prediction 
model, predictor, was trained with the pre-processed 
bioassay dataset described in the Datasets section and 
used to signal the rewards that guide the fine-tuning of 
the generators. For the feature vectors of the regression 
models, RDKit’s Morgan fingerprint using 2048 bits and 
a radius of 2 was used. Random forest regressors (RFR) 
were trained using five-fold cross-validation.

The SMILES generation model used in this study 
is a generative RNN for sequence modeling simi-
lar to those introduced in previous studies [7–10, 12, 
23–25]. The teacher forcing method was adopted to 
train the sequence model [25], and the negative log-
likelihood (NLL) for the given training sequence, 

l(θ) = −
∑T

t=1
log(Gθ (xt |x0:t−1))

= −log
∏T

t=1
Gθ (xt |x0:t−1),  was minimized using 

the Adam optimizer. We refer to the pre-trained genera-
tor as the prior generator (Gθ). The pre-trained generative 
LSTMs can be used not only for generating random mol-
ecules with ChEMBL-like properties but also for measur-
ing the probability of sampling a given SMILES sequence 
by the LSTM as follows: Gθ (x1:T ) =

∏
T

t=1Gθ (xt |x0:t−1).

We refer to this probability of generating a given 
sequence using Gθ as the prior likelihood, following the 
terminology used in a previous report [7]. Refer to Addi-
tional file 1: Section 5 for more details on the predictor 
and prior generator. The main contribution of the pro-
posed work resides in the fine-tuning step, and the details 
are described in the following subsection.

The performance of the model was evaluated based 
on various metrics, such as validity, uniqueness, and the 
average predicted activity of the generations. In addition 
to these metrics, we compared the distributions of the 
generated molecular space and the unseen target active 
molecular space. The Fréchet ChemNet distance (FCD) 
[26] and optimal transport distance (OTD) between 
generations and test set actives were evaluated, and 2-D 
t-distributed stochastic neighbor embedding (t-SNE) 
visualizations were performed accordingly. Refer to the 
Evaluation metrics subsection for further details.

b.	 Fine-tuning and tournament selection

Our fine-tuning algorithm introduces a few compo-
nents. Gφ is an agent generator, which is a generative 
LSTM being trained through the fine-tuning phase. Q is 
an experience memory, which stores the generated mol-
ecules that survived through the tournament selections. 
The fine-tuning phase begins with agent generator ini-
tialization with prior model weights, and initialization 
of Q with the P unique molecules generated by Gθ (Algo-
rithm 1). We can calculate the probability of sampling a 
given sequence x1:T from an agent, referred to as agent 
likelihood, as follows: Gϕ(x1:T ) =

∏
T

t=1Gϕ(xt |x0:t−1).

In the fine-tuning loop, we attempt to create an optimal 
synthetic training set that can guide the agent towards 
high-score regions with the right balance between explo-
ration and exploitation. The first step is to form initial 
candidates of size K. The initial candidates were formed 
by K/2 random samples from the memory and K/2 
generations from the agent. These candidates then go 
through a three-stage tournament selection procedure 
(Algorithm 2). Each tournament was used to select indi-
viduals with a high value of the given scoring function for 
the stage. The first-stage tournament, referred to as the 
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Fig. 1  An overview of the proposed LOGICS framework. In the pre-training phase, the prior generator is trained with ~ 1.6 million molecules 
from ChEMBL. In the fine-tuning phase, the agent generator is fine-tuned with the selected molecules from the generation of the agent itself 
and the experience memory, where the selection is performed with the three stages of tournament selections
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objective stage, is performed by the objective function; 
in our case, the predicted bioactivity. The second stage, 
the exploration stage, is performed using the negative 
agent likelihood. Finally, the third stage, the regulariza-
tion stage, is performed using the positive prior likeli-
hood. While solely focusing on maximizing the objective, 
it can lead to a low-exploration challenge, as noted in the 
Introduction. Thus, the exploration stage is adopted to 
select molecules that are unlikely to be generated by the 

current agent. The role of the regularization stage is to 
prevent catastrophic forgetting, where the agent forgets 
the basic chemical grammar learned in the pre-training 
phase by dropping molecules too far from the prior dis-
tribution. After the three-stage tournament, W, the set 
of finally selected molecules, is obtained and replaces the 
low-scoring individuals in memory Q. Then, agent Gφ is 
fine-tuned with W.

Algorithm 1: LOGICS fine-tuning phase

input: Gθ: prior generator, f: scoring function, P: memory size, K: sample size

output: Gφ: agent generator, Q: final set of memory molecules

Function LOGICS(Gθ, f, P, K)

Gφ ← copy of Gθ

Gφ
neg ← function that returns a negative of Gφ agent likelihood

Q ← set of molecules, initialized with P generations from Gθ

Repeat until the specified number of iterations:

S1 ← randomly sample K/2 molecules from Q
S2 ← K/2 generations from Gφ

S ← S1  S2

W ← TournaSelect(S, f, size(S)/2)

W ← TournaSelect(W, Gφ
neg, size(W)/2)

W ← TournaSelect(W, Gθ, size(W)/2)

qs ← list of f scores of Q
n ← size(W)

Remove n molecules from Q with lowest values in qs

Q ← Q W
Fine-tune Gφ with W

return Gφ, Q
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Algorithm 2: Tournament selection

input: M: a set of molecules, f: a scoring function, s: number of selected molecules

output: W: the set of selected molecules

Function TournaSelect(M, f, s)
W ← empty set

Repeat s times:

m1, m2 ← randomly pick two molecules from M
if f(m1) > f(m2) then:

W ← W {m1}

remove m1 from M
else:

W ← W {m2}

remove m2 from M
return W

The filtering procedure in the loop should take into 
account various factors to promote the exploration of 
chemical space, including the exploration stage of tour-
naments. Tournament selection is adopted to resolve 
the early overfitting problem of the Vanilla GPC (VGPC) 
model, as it only selects the top n best generations for the 
next training set. Tournament selection promotes ran-
domness in that there is a small chance for some inferior 
candidates to survive [27]. This property of tournament 
selection encourages exploration by the agent. Another 
factor is the use of experience memory. We presume that 
the mode-collapsing behaviors of the GPC models in 
late-stage fine-tuning can be mitigated by providing them 
with good samples generated in the previous training 
stages. Experience memory is adopted to record the vari-
ous sound generation examples during the fine-tuning 
phase, so that the agent, which has found a small collapse 
point of the high-score region, can escape from collapse 
by remembering the previous experience. This concept is 
similar to replay buffer mechanisms [28], which are now 
a staple component of most state-of-the-art reinforce-
ment learning algorithms.

Evaluation metrics
In this study, we used two types of evaluation metrics: (1) 
standard metrics and (2) optimization metrics. First, for 
the standard metrics, N samples were generated as rep-
resentatives of the generative distribution of the model 
for each training epoch. In the experiments, we set 
N = 20,000. V is the set of valid generations among N, U 
is the set of unique molecules among V, and Z is the set 

of molecules that are not found in the pre-training data-
set among U. The standard metrics are similar to those 
introduced in previous studies [20, 29].

where sim(m1,m2) is the Tanimoto similarity of Morgan 
fingerprint vectors of 2048 bits and a radius of 2 between 
molecules a and b. V1k is a random subset of 1000 from 
V. Smaller generation sets are used to calculate the pair-
wise similarities because of the high computational costs. 
The standard metrics are used to evaluate the capability 
of chemical generative models to determine whether the 
model can generate valid and diverse molecules. These 
metrics are calculated purely based on the model’s gen-
eration, not factoring in the generation’s objective scores 
or closeness to the target distribution.

For the optimization metrics, we used the average of 
the predicted bioactivity (PredAct), the average of pair-
wise similarity between generations and test set actives 
(PwSim), FCD, and OTD. Higher values of PredAct and 
PwSim and lower values of FCD and OTD are desired for 
generative models. In this study, we use FCD to measure 
the distance between the distribution of test set actives 

Validity = |V |/N

Uniqueness = |U |/|V |

Novelty = |Z|/|U |

Internal Diversity =
1

|V1k |
2

∑
m1∈V1k ,m2∈V1k

1− sim(m1,m2)
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and the distribution of model generations. In the follow-
ing equations, T represents the set of target active mol-
ecules in the test or validation set. PwSim and FCD were 
calculated as follows:

where µV  and µT are the means of the feature vectors 
generated by the ChemNet model from a previous study 
[26] using V and T, while CV  and CT are the covariances 
of the vectors.

FCD assumes that the two point sets V and T are nor-
mally distributed [26]. This assumption is not ideal if 
the target distribution formed by T consists of multiple 
modes. Considering that two structurally different mol-
ecules could show similar binding affinities for a pro-
tein target [30], it is reasonable to presume the target 

PwSim =
1

|V1k ||T |

∑
m1∈V1k ,m2∈T

sim(m1,m2)

FCD = ||µV − µT ||
2 + Tr(CV + CT − 2(CVCT )

1/2)

distribution had multiple modes in our experiments. 
Thus, we propose the use of another distributional met-
ric, OTD. In the theory of optimal transport, the distance 
between two probability distributions can be measured 
by determining the transport plan between the two sets 
of masses, thus minimizing the cost of the total transpor-
tation [31]. Based on the concepts from discrete optimal 
transports [32], we determine the optimal transport T by 
solving the following equation:
argminT∈R

∑
xi∈A,yj∈B

Tijdist(xi, yj) 
s.t. Tij ∈ {0, 1c },

∑
yj∈B

Tij =
1

c ,
∑

xi∈A
Tij =

1

c

where Tij is the transport mass from point xi to the 
point yj and R is the set of all possible one-to-one map-
pings from A to B [33]. In our experiments, A is the 
set of generated molecules and B is the set of test set 
actives. The distance used for OTD calculation is: 
dist(xi, yj) = 101−sim(xi ,yj) − 1.

Further details on the metrics are in Additional file 1: 
Section 6.

Table 2  Comparison of bioactivity optimization performance for KOR and PIK3CA with various GPC methods

Bold represents the best-performing value among the methods
a Validity is the ratio of valid generations to 20,000 generations from the model
b Uniqueness is the ratio of unique generations to the valid generations
c Novelty is the ratio of unique generations that are not found in the pre-training dataset
d Diversity measures how dissimilar the 1,000 generations are
e PredAct is the mean of predicted activities of the valid generations
f PwSim is the mean of pairwise similarities between generations and test set activities
g FCD is the Fréchet Chemnet Distance between the generations and the test set activities
h OTD is the optimal transport distance between generations and the test set activities
α Standard metrics
β Optimization metrics

Prior VGPC Segler REINVENT DrugEx AHC AugMem LOGICS

KOR

 Validitya,α 0.95 ± 0.00 0.93 ± 0.02 0.96 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.96 ± 0.00 0.98 ± 0.00

 Uniqueb,α 0.99 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.90 ± 0.00 0.99 ± 0.00 0.87 ± 0.00 0.96 ± 0.00 0.99 ± 0.00

 Noveltyc,α 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.97 ± 0.00 0.98 ± 0.00

 Diversityd,α 0.88 ± 0.00 0.79 ± 0.00 0.85 ± 0.00 0.86 ± 0.00 0.83 ± 0.00 0.86 ± 0.00 0.86 ± 0.00 0.85 ± 0.00

 PredActe,β 5.95 ± 0.00 7.04 ± 0.00 8.30 ± 0.00 7.04 ± 0.01 7.10 ± 0.00 7.16 ± 0.00 7.00 ± 0.00 7.57 ± 0.00

 PwSimf,β 0.11 ± 0.00 0.10 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.13 ± 0.00
 FCDg,β   27.2 ± 0.02   38.8 ± 0.06   22.3 ± 0.03   26.0 ± 0.06   30.4 ± 0.06   24.6 ± 0.05   26.0 ± 0.06   22.2 ± 0.01
 OTDh,β 5.37 ± 0.00 5.85 ± 0.00 5.09 ± 0.00 5.11 ± 0.00 5.37 ± 0.00 5.23 ± 0.00 5.27 ± 0.00 4.95 ± 0.00

PIK3CA

 Validitya,α 0.95 ± 0.00 0.85 ± 0.00 0.97 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

 Uniqueb,α 0.99 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 0.65 ± 0.00 0.99 ± 0.00 0.91 ± 0.00 0.92 ± 0.00 0.71 ± 0.00

 Noveltyc,α 0.94 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.99 ± 0.00

 Diversityd,α 0.88 ± 0.00 0.82 ± 0.00 0.78 ± 0.00 0.79 ± 0.00 0.80 ± 0.00 0.82 ± 0.00 0.81 ± 0.00 0.73 ± 0.00

 PredActe,β 6.84 ± 0.00 8.05 ± 0.00 8.75 ± 0.00 8.83 ± 0.00 8.39 ± 0.00 8.01 ± 0.00 7.99 ± 0.00 9.54 ± 0.00
 PwSimf,β 0.10 ± 0.00 0.11 ± 0.00 0.11 ± 0.00 0.17 ± 0.00 0.11 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.18 ± 0.00
 FCDg,β   41.0 ± 0.08   43.7 ± 0.06   45.7 ± 0.02   32.7 ± 0.08   44.1 ± 0.11   51.0 ± 0.07 50.9 ± 0.03   29.4 ± 0.10
 OTDh,β 5.99 ± 0.01 5.93 ± 0.00 5.78 ± 0.01 4.47 ± 0.02 5.88 ± 0.01 5.94 ± 0.00 5.97 ± 0.00 4.27 ± 0.02
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Results and discussion
Performance of the pre‑trained model and bioactive 
predictor
The pre-trained generative LSTM, or prior model, 
achieved 0.9536 validity, 0.9992 uniqueness, 0.9483 

novelty, and 0.8894 diversity, which are similar values to 
the reported performance of GuacaMol [20]. For bioac-
tive prediction, the MSE and R2 were 0.5416 and 0.7132 
for KOR and 0.4867 and 0.7594 for PIK3CA, respectively. 

Fig. 2  Heatmap visualization of LSTM softmax probability outputs on a known PIK3CA active. We used a known PIK3CA active, “CC1(C(= O)
N2CCCI(N3CCc4c(-c5cnc(N)nc5)nc(N5CCOCC5)nc43)C2)CCCO1” with 10.2 pKd activity recorded for PIK3CA. The given SMILES is cut off at the first 40 
tokens for the visualization. a, b The tokens on the x-axis are the input SMILES on the time steps, and the token on the y-axis corresponds to each 
output of the softmax layer of the prior generator and the agent generator, respectively. The highlighted cells indicate the correct next tokens to be 
sampled to obtain the given sequence. a The prior model’s conditional likelihood heatmap. b The conditional likelihood heatmap of the LOGICS 
agent from the PIK3CA experiment. c Side-by-side comparison of the correct next token output probability of the prior and the agent and the log2 
fold change of the agent likelihood over the prior likelihood. The fold change is calculated by log2Gϕ(xt |x0:t−1)/Gθ (xt |x0:t−1)
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The detailed performance of the predictors is presented 
in of Additional file 1: Table S2 and Figure S4 in Section 7.

Performance of the fine‑tuned generator
To evaluate the performance of the proposed framework 
LOGICS, we performed a comprehensive analysis using 
various metrics and compared it to other related GPC 
approaches, including VGPC, Segler [12], REINVENT 
[7], DrugEx [9], AHC [15], and AugMem [16]; refer to 
Additional file  1: Section  8 for more details. For a fair 
comparison, all approaches were evaluated under identi-
cal conditions, i.e., starting from the same prior genera-
tor and using the same bioactivity predictors. Using the 
same prior model and predictors, each GPC method uses 
a different fine-tuning algorithm to produce an optimized 
agent generator. The reward signal comes solely from 
the predictors, and no information about the known 
active molecules is provided directly. For policy gradi-
ent methods, such as REINVENT, DrugEx, AHC, and 
AugMem, the transformation from predicted bioactivity 
to the reward value was applied to stabilize the training 
process, as described in Additional file  1: Section  8-2. 
We provided the models with arbitrarily large numbers 
of epochs to make sure that each model converges. We 
then selected the best stopping epoch for the evaluation 
of each method under two conditions: the model should 
(1) achieve a PredAct higher than the target activity 
threshold at the selected epoch and (2) have the mini-
mum OTD × FCD value for the target actives from the 
validation dataset. Once fine-tuning ceased at the chosen 
epoch, we generated 20,000 SMILES samples from each 
model and computed the evaluation metrics using these 
samples. Each model underwent evaluation three times, 
and we reported the mean and standard error of the 
mean for the three values across each metric (Table 2).

Table  2 shows the performance of each method for 
KOR and PIK3CA bioactivity optimization. Additional 
file 1: Figures S6 and S7 in Section 9 show the change in 
each performance metric according to the training pro-
gress in the fine-tuning phase for KOR and PIK3CA, 
respectively. Table  2 demonstrates that all methods 
exhibit a competitive performance according to the 
standard evaluation metrics, such as validity and unique-
ness. According to the optimization metrics in Table  2, 
LOGICS demonstrated the best overall performance. It 
achieved the minimum FCD and OTD values, indicating 
that the proposed method learned the closest generative 
distribution to the test set actives. We also confirmed the 
FCD and OTD performances achieved by LOGICS are 
significantly better than the other methods in statisti-
cal tests, as shown in Additional file 1: Table S4 in Sec-
tion 10. Figure 2 shows the effect of the fine-tuning phase 
of the LOGICS framework. We selected a molecule with 

known PIK3CA activity from the bioassay data and visu-
alized the conditional probability output from the agent 
LSTM. Compared to Fig.  2A, the heatmap in Fig.  2B 
shows that certain tokens have a higher probability of 
being generated. This result indicates that the fine-tuned 
agent is more likely to generate SMILES with a higher 
activity level.

In comparison to the prior model’s performance 
(Table 2), most of the methods were able to achieve a bet-
ter PredAct, which indicates the potential of optimized 
bioactivity. Their uniqueness and diversity also remained 
fairly high. However, some models, such as VGPC and 
DrugEx, performed worse than the prior model in terms 
of the FCD and OTD. This indicates that these models 
only learned to generate a particular portion of the tar-
get active molecular space with high predicted scores and 
were incapable of discovering other spaces with known 
target activity. These results reconfirm that the GPC 
method is susceptible to mode collapse and catastrophic 
forgetting [34, 35]. In VGPC, we consider that these fail-
ures occur because of the repeated maximization of the 
probability of high-score molecules generated early in the 
fine-tuning phase. Once the probability of a certain high-
score molecule is maximized, the next iteration would be 
more likely to generate similar structures to the molecule 
with the learned patterns. Repeated maximization in the 
loop eventually leads to a mode-collapsed generative dis-
tribution. Additional file 1: Figures S6 and S7 further sup-
port our result, as the constant increase in PredAct in the 
fine-tuning process does not directly correspond to the 
decrease in OTD and FCD in many of the tested models. 
Moreover, we note that the proposed selection procedure 
in LOGICS appears to be more effective than the other 
exploration strategies employed by DrugEx, as LOGICS 
achieved higher optimization metric scores than DrugEx.

Additionally, to achieve lower OTD and FCD values, 
the algorithm needs to employ a bit of the exploitation 
strategy because focusing only on exploration can lead 
to a diverging distribution that never converges. There-
fore, a balance between exploration and exploitation is 
required. Indeed, the models with low uniqueness, i.e., 
REINVENT and LOGICS, showed better OTD and FCD 
values than the other models, which indicates that the 
two methods could converge to the various target active 
spaces with the right balance of exploitation and explo-
ration. In the PIK3CA experiment, AHC and AugMem 
performed significantly worse OTD and FCD compared 
to the other methods, and they notably deteriorated 
from REINVENT, even though they are the extensions 
of REINVENT. We presume the degradation of learned 
distribution comes from the application of the diversity 
filter (DF) of AHC and AugMem. The DF could penal-
ize the highly active molecules encountered early in the 



Page 10 of 18Bae et al. Journal of Cheminformatics           (2023) 15:77 

Fig. 3  Chemical space visualization by t-SNE. Chemical space visualization of the Morgan fingerprint vectors transformed by t-SNE on (a) the KOR 
experiment and (b) the PIK3CA experiment, respectively. The t-SNE components were calculated with the test set actives (red) and the valid 
molecules among generations from the prior model as well as the different GPC models (blue). For the purpose of visualization, 2,000 randomly 
selected, valid, generated molecules were used for each generative model
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iterations, and the molecules cannot be repeatedly sam-
pled, which is essential for learning the optimal distri-
bution that covers as many active regions as possible. 
In other words, the DFs forced too much exploration in 
AHC and AugMem, and thus, appropriate exploitation 
cannot occur during the fine-tuning.

We also verified the robustness of the LOGICS frame-
work to the training data size and structural diversity. 
The detailed discussion can be found in Additional file 1: 
Section 11. Moreover, we found one of the practical ben-
efits of LOGICS is that it doesn’t require reward func-
tion engineering, unlike most RL-based policy gradient 

Fig. 4  Ablation study. Ablation study of LOGICS framework on (a) the KOR bioactivity optimization, and (b) the PIK3CA bioactivity optimization. 
Four significant metrics are reported: uniqueness, diversity, FCD, and OTD. Four unique models (x-axis) with a specific disabled component are 
tested. The y-axis represents the model’s performance minus the full LOGICS model performance value. For the FCD and OTD, the negative value 
of the score is used so that a bar below 0 represents the worse performance of the disabled model. The actual performance value of each model 
is shown in the parentheses of the model name on the x-axis
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models. The discussion on this topic is detailed in Addi-
tional file 1: Section 12.

Distribution of generated molecules in chemical 
space
Figure  3 shows the generative distribution of each fine-
tuned generator in the KOR and PIK3CA bioactivity 
optimization experiments. We collected 20,000 valid gen-
erations from each model, including the prior, 50,000 ran-
dom molecules from the pre-training data, and test set 
actives. We derived the Morgan fingerprint vectors, and 
transformed the vectors to the 2-D space using t-SNE as 
described in [36] with default parameters.

Figure  3 demonstrates that the prior distributions 
could not generate most of the test set actives. According 
to Fig. 3A, the LOGICS, REINVENT, and Segler methods 
discovered most of the KOR test active regions, whereas 
the other two methods, VGPC and DrugEx, could not 
fully explore enough to cover the test set actives. This vis-
ual result corresponds to the analysis from the previous 
section in Table 2, where the OTD and FCD of the VGPC 
and DrugEx were not better than the prior. We can also 
infer the effectiveness of the distribution metrics based 
on these results. In Fig.  3A, DrugEx seems to generate 
a few molecules close to the test set actives at the (−16, 
−4) and (17, 3) coordinates; however, most of its gen-
erations are concentrated at the (10, −10) coordinates. 
From the perspective of distribution learning, DrugEx’s 
generative distribution is biased toward only a few target 
active regions; thus, it should show worse scores of the 
distributional metrics, as shown in Table  2. The differ-
ence between the learned distributions of the GPC meth-
ods is more prominent in Fig. 3B. In the figure, LOGICS 
and REINVENT could properly bias the distributions 
towards the regions of the test set actives, while the other 
methods focused on the regions that did not include any 
test set actives. This also corresponds with the numerical 
data in Table 2, where the models with a distribution sim-
ilar to the test set actives achieved far better optimization 
scores. In addition, by inspecting the figure, we can see 
why LOGICS achieved better optimization scores than 
REINVENT. LOGICS exhibited superior exploitation 
behavior than REINVENT in that LOGICS completely 
abandoned the prior distribution and focused more on 
the spaces close to the test set actives.

Ablation study
To examine the impact of the individual LOGICS 
framework components on the performance of gen-
erative modeling, we conducted ablation studies. We 
constructed four ablation models: (i) removal of the 
memory (no-memory), (ii) removal of the exploration 

stage (no-exploration), (iii) removal of the regulariza-
tion stage (no-regularization), and (iv) substitution of 
tournament selection with another selection method 
and choosing candidates with scores above the median 
(select-topN/2). We tested four disabled models for KOR 
and PIK3CA bioactivity optimization. The performance 
difference between LOGICS and the disabled models is 
shown in Fig.  4. The exact performances are described 
in Additional file 1: Table S8 in Section 13. In Fig. 4, the 
four significant performance metrics, uniqueness, diver-
sity, FCD, and OTD, are selected to demonstrate the 
performance differences. The bars in the uniqueness and 
diversity charts represent the metric value of the disabled 
model minus that of the full LOGICS model. The bars in 
the FCD and OTD charts represent the metric value of 
the full model minus that of the disabled model. Thus, for 
all metrics, a value below zero represents performance 
degradation.

We confirmed the importance of the exploration stage 
(Fig.  4). The uniqueness and diversity of the no-explo-
ration model showed a significant drop in performance. 
Specifically, this model exhibited 0.01 uniqueness in the 
PIK3CA case, which means that 99% of its valid genera-
tions were duplicates, and 0.271 diversity, which is also 
very low, considering that diversity of the other models 
presented in this study never fell below 0.3 in Additional 
file 1: Figure S7. The 4.035 OTD in the KOR case appears 
to be an improvement in the distance to the target, but 
the FCD was the worst of all the models, as shown in 
Fig.  4A. A discrepancy between the OTD and FCD is 
possible when the duplicated generations of the no-
exploration model are located in the middle of a cluster 
of test set actives. As a result, the OTD can be decreased 
suboptimally, while the FCD is penalized with a very 
low variance in the generated distribution. This discrep-
ancy between OTD and FCD (Fig.  4A) exemplifies the 
importance of inspecting various performance metrics 
in evaluating generative models, as using a single metric, 
OTD in this case, to evaluate a model’s capability could 
be misleading.

Disabling the regularization stage in the no-regular-
ization model deteriorated the FCD and OTD in the 
PIK3CA case (Fig.  4B). Although the no-regularization 
model did not show much difference in performance in 
the KOR case (Fig.  4A), the quality of the generations 
decreased (Fig. 5A). We calculated the quantitative esti-
mate of drug-likeness (QED) and synthetic accessibility 
(SA) scores of the generated molecules using modules 
provided by RDKit [21]. A higher QED implies greater 
drug-likeness of the generated molecule [37], whereas 
a lower SA score indicates that the molecule is easier to 
synthesize. [38]. The no-regularization model with lower 
QEDs is compared to the full LOGICS model in both 
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the KOR and PIK3CA experiments (Fig. 5). In the KOR 
case, the SA scores of the no-regularization model were 
also significantly higher (less synthesizable) than those of 
the full model (Fig. 5A). On the basis of these results, we 
can conclude that the regularization stage serves to pre-
serve the chemical quality of the generative distribution 
learned in the pre-training phase.

The select-topN/2 model showed an improved dis-
tribution closer to the PIK3CA test set actives (Fig.  4B) 
according to the FCD and OTD values, while it showed 

a worse distribution that was far from the KOR test 
set actives (Fig.  4A). However, the closer distance to 
the PIK3CA test set actives was achieved at the cost of 
uniqueness and diversity. Thus, disabling the exploration 
ability of tournament selection harbors trade-offs.

Figure  4 shows that disabling experience memory 
reduces FCD and OTD values the most. This is to be 
expected, as the memory contains good examples 
that survived the three tournament stages in previ-
ous iterations, combining exploitation, exploration, and 

Fig. 5  QED and SA score. QED and SA score density plots of generated molecules from the prior, no-regularization, and LOGICS models 
and the known actives from (a) the KOR and (b) PIK3CA experiments. QED and SA score were calculated using RDKit
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regularization. The absence of memory diminishes the 
overall performance of the framework.

Based on the ablation studies, we presume that the 
experience memory and selection mechanisms could 
benefit other GPC methods that struggle to learn the 
optimal distribution. We modified a GPC method called 
ReLeaSE from a previous study [8], by adding the LOG-
ICS components in the fine-tuning phase, and evaluated 
the performance of the model before and after the modi-
fication (Additional file 1: Section 14).

Examples of generated de novo structures
Here, we illustrate examples of de novo structures gen-
erated by the fine-tuned LOGICS model from the KOR 
and PIK3CA experiments. These results demonstrate 
that LOGICS can be applied in either direction to gen-
erate de novo compounds for optimizing existing scaf-
folds or to generate novel scaffolds for expanding potent 
structures. Figure  6 illustrates the generated molecules 
that share the same scaffold as the molecule in the bio-
assay data. In each instance, LOGICS was able to gener-
ate a structure with higher activity than the previously 
identified molecule containing the same scaffold. The 
generated molecules also retain better docking scores to 
the target protein structures compared to the reference 

molecules. This preferable docking of optimized genera-
tion is not only specific to the case in Fig. 6, but we also 
confirmed that the docking scores of LOGICS generation 
are significantly better in general compared to the prior 
generator, as shown in Additional file 1: Figure S8 (refer 
to the detailed results in Additional file  1: Section  15). 
Additionally, we performed the retrosynthetic predic-
tion for the generated molecules in Fig. 6, and all of the 
four generated molecules are found to be synthesizable as 
shown in of Additional file 1: Section 16. 

Figure  7 depicts novel structures generated from the 
fine-tuned LOGICS that exhibit high predicted activity. 
Here, we considered a generation as a novel structure 
when the Tanimoto similarity to its nearest neighbor in 
the dataset, union of ChEMBL and bioassay data, is lower 
than 0.4, which indicates LOGICS generated novel struc-
tures with high activity that are distinct from the mole-
cules in the datasets used in the experiments.

Example of binding poses of generated 
compounds
Computational chemistry modeling could provide struc-
tural insights by assessing the predicted binding poses of 
the generated optimized compounds. We investigated 
generated compounds that retain the same scaffold or 
high similarity with the reference ligands of KOR struc-
ture (PDB ID: 4DJH) and PIK3CA structure (PDB ID: 
8EXL), and compared the binding poses of the generated 
compounds and the reference ligands.

The stability and strength of molecular interactions, 
crucial to ligand-receptor binding, are influenced by 
factors such as hydrogen bonding and the surround-
ing amino acid environment. In this regard, we focused 
on identifying and characterizing hydrogen bond for-
mations, as they play a pivotal role in understanding 
ligand–protein interactions. To facilitate this analysis, we 
employed PyMOL [39], a widely used visualization soft-
ware. The description of the process of predicting bind-
ing poses is detailed in of Additional file  1: Section  15. 
The hydrogen bond distance cutoff was set to 3.6  Å, 
which is the default setting in PyMOL and is based on the 
criteria from the DSSP plugin [40].

The binding poses of the generated compounds were 
examined in comparison with the original PDB ligand, 
which either share the same scaffold or exhibited a high 
structural similarity to each ligand (Fig.  8). Figure  8A 
illustrates the binding pose of the reference compound 
(PDB Ligand ID: JDC) within the KOR structure (PDB 
ID: 4DJH), alongside the binding pose of the generated 
compound. These compounds possess a shared scaffold, 
resulting in a noticeable overlap in their binding poses. 
The reference compound forms two hydrogen bonds 
with ASP 138, while the generated compound forms two 

Fig. 6  Generated molecules sharing the same scaffold 
as the molecules from the bioassay. Generated molecules in the 2-D 
structure by LOGICS where the generations and the molecules 
from the bioassay data share the same scaffold. a The scaffold 
is from the KOR bioassay. b The scaffold is from the PIK3CA bioassay
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hydrogen bonds with ASP 138 and additional two hydro-
gen bonds with TYR 312. Notably, the predicted IC50 of 
2.9 nM indicates high activity.

In Fig. 8B, we present the binding pose of the reference 
compound (PDB Ligand ID: 799) within the PIK3CA 
structure (PDB ID: 8EXL), along with the binding pose 
of the generated compound. The generated compound 
exhibits a scaffold similarity of 0.63 (Tanimoto similarity) 
with the reference compound, highlighting a consider-
able structural resemblance. The binding poses of these 
compounds also exhibit overlapping characteristics. The 
reference compound engages in hydrogen bonds with 
three residues: VAL 851, SER 854, and GLN 859. Mean-
while, the generated compound forms hydrogen bonds 
with two residues, VAL 851 and SER 854. Also, the pre-
dicted Kx of 0.49 nM signifies high activity.

Conclusion
In this study, we developed a novel molecular generative 
framework, LOGICS, which generates small molecules 
with the closest distribution to the target chemical space. 
LOGICS uses experience memory and three stages of 
tournament selection for objective optimization, explo-
ration, and regularization to avoid the potential pitfalls 

of GPC, such as mode collapse. Bioactivity optimization 
experiments were conducted for two protein targets, 
KOR and PIK3CA, to evaluate the standard metrics and 
optimization metrics. The results showed that LOG-
ICS performed better than the other methods regarding 
FCD and OTD, indicating that the generative distribu-
tion of the proposed model is more similar to the test set 
actives than the others. Several additional GPC methods 
showed worse performance than the pre-trained gen-
erator in terms of FCD and OTD, which indicates the 
potential failures of GPC. The t-SNE visualization of the 
learned chemical space supported the FCD and OTD 
scores. In addition, an increase in PredAct and PwSim 
did not always correspond to a closer distribution to the 
targeted space, further emphasizing the need to use dis-
tributional metrics. Ablation studies showed that experi-
ence memory was the most impactful component of the 
framework. In addition, disabling the exploration stage 
of tournaments resulted in a lack of generational diver-
sity, and the regularization stage was required to generate 
high-quality molecules.

In summary, the LOGICS framework generates de 
novo chemical compounds with optimized properties. By 
applying experience memory and the three sophisticated 

Fig. 7  Generated novel molecules. Generated novel molecules in the 2-D structures from LOGICS. a novel generations from the KOR experiment. 
b novel generations from the PIK3CA experiment. The generations are selected on conditions: (1) having a Tanimoto similarity less than 0.4 
to the nearest neighbor in the data and (2) predicted activity is above the activity threshold defined for each experiment



Page 16 of 18Bae et al. Journal of Cheminformatics           (2023) 15:77 

stages of tournament selection for the optimization of an 
objective, LOGICS resolves the explore-exploit dilemma 
of reinforcement learning. We expect LOGICS to provide 
high-quality de novo chemical structure libraries with 
the desired properties and to contribute to the structure 
modification step in hit-to-lead optimization.

Though we have focused on the application of LSTM 
generative models, recently, many studies in molecular 

generative modeling demonstrated the effectiveness of 
using transformer-based language modeling in chemical 
representations. For instance, Taiga [41] is a transformer 
decoder-only architecture to learn the SMILES language, 
and policy gradient RL is performed to generate mol-
ecules with desired properties. They demonstrated that 
the attention mechanism of transformers improves valid-
ity and drug-likeness properties of molecular generation. 

Fig. 8  Binding site visualization with binding poses of PDB ligands and corresponding generated molecules. Using PyMol, the binding sites of (a) 
KOR protein structure (PDB ID: 4DJH) and (b) PIK3CA protein structure (PDB ID: 8EXL) are visualized. The ligands from each of the PDB entries are 
colored in grey. The generated molecules from LOGICS (cyan) having the similar scaffold as the PDB ligands are visualized. Molecular interactions 
between the compounds and the protein residues are shown in dotted lines, and the interacting residues’ positions are specified
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Sc2Mol [42] used a transformer encoder-decoder transla-
tion model to decorate a scaffold to a desired molecule 
in SMILES representation. On the other hand, an appli-
cation of the diffusion model has recently been studied 
by Levy et al. [43], where they demonstrated the capabil-
ity of the denoising diffusion model for fragment-based 
molecular graph generation. The diffusion allowed the 
generation of realistic and complicated drug-like mol-
ecules. We note LOGICS to be a flexible framework in 
that its generative component, language LSTM in this 
study, can be replaced by any other molecular genera-
tive architectures such as transformers or diffusion mod-
els. We expect follow-up comparative studies using the 
recently developed models for the generative component 
of LOGICS in future.

Abbreviations
SMILES	� Simplified molecular-input line-entry system
LSTM	� Long short-term memory
GPC	� Generator-predictor collaboration
RNN	� Recurrent neural network
FCD	� Fréchet ChemNet distance
OTD	� Optimal transport distance
t-SNE	� T-distributed stochastic neighbor embedding
VGPC	� Vanilla generator-predictor collaboration
AHC	� Augmented Hill-Climb
AugMem	� Augmented Memory
PredAct	� Predicted bioactivity
PwSim	� Pairwise similarity
QED	� Quantitative estimate of drug-likeness
SA	� Synthetic accessibility

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00747-3.

Additional file 1: Figure S1. Bioactivity label density plot of the KOR 
(orange) and PIK3CA (navy blue) bioassay datasets. Figure S2. PIK3CA 
bioactivity optimization performance comparison of GPC methods 
using three different sets of test set actives formed by each activity 
cutoff (> 6.0, > 8.0, > 10.0). (a) FCD and (b) OTD are calculated with each 
test set actives described in Table S1. Figure S3. Example of FCD and 
OTD between synthetic 2-D data points of target and generations. Two 
modes are assumed at (1,1) and (11,11) for the target distribution (blue). 
The points of generation1 (orange) were formed by adding (1,-1) to the 
target points. The points of generation2 (green) were sampled from the 
Gaussian distribution with the mean and covariance calculated by the 
target points. The 2-D Euclidean distance was used for OTD calculation. 
Figure S4. Predictor regression performance on KOR and PIK3CA test 
sets. The x-axis represents the pIC50 or pKx value of the test set molecule, 
and the y-axis represents the predicted activity by the predictor. The red 
dotted line is the regression line of true-to-predicted values. Figure S5. 
General overview of generator-predictor collaboration (GPC). Figure S6. 
Performance plot of GPC models during the fine-tuning phase of the KOR 
activity optimization case. PwSim, FCD, and OTD were calculated with 
the test set actives. The x-axis corresponds to the number of iterations 
in the fine-tuning. The vertical dotted line is the best-stopping epoch 
under the conditions: (1) PredAct > 7.0, (2) minimum FCD × OTD on the 
validation set actives. Figure S7. Performance plot of GPC models during 
the fine-tuning phase of the PIK3CA activity optimization case. PwSim, 
FCD, and OTD were calculated with the test set actives. The x-axis cor-
responds to the number of iterations used in the fine-tuning. The vertical 
dotted line represents the best-stopping epoch under the conditions: (1) 

PredAct > 8.0, (2) minimum FCD × OTD on the validation set actives. Fig‑
ure S8. Density plots of docking scores (kcal/mol) on KOR (PDB ID: 4DJH) 
and PIK3CA (PDB ID: 8EXL) with generated compounds. a, b Docking 
score distribution of 4,000 generations from the prior generator (orange) 
and LOGICS fine-tuned (blue) for KOR and PIK3CA, respectively. Two-
tailed t-test between the two distributions is performed to evaluate the 
p-values. Figure S9. Retrosynthetic prediction of the generated molecules 
shown in Fig. 6. The synthetic routes for (a), (b) generated molecules 
optimized for KOR activity, (c), (d). Table S1. The number of test set actives 
depending on the activity cutoff in the PIK3CA experiment. Table S2. 
Predictor model performance on test and validation sets for each protein 
target. Table S3. Reward function hyperparameters for policy gradient 
methods. Table S4. Tests of statistical significance in FCD and OTD metrics 
between LOGICS and the second-best models in Table 2. Table S5. Predic-
tor performance with additional KOR datasets of varying reduced sizes 
and restricted structural diversity. Table S6. Performance of the LOGICS 
framework with the additional KOR datasets with reduced sizes and scaf-
fold split. Table S7. Performance of REINVENT model for different σ and β 
reward function parameter pairs. Table S8. Performance comparison from 
the ablation study for the proposed LOGICS framework on the KOR and 
PIK3CA bioactivity optimization. Table S9. Performance comparison of the 
original ReLeaSE and ReLeaSE + on KOR bioactivity optimization.

Acknowledgements
Not applicable.

Author contributions
BB and HN conceptualized the study. BB implemented the model. BB and HB 
performed experiments. BB and HB prepared the initial draft. HN revised the 
manuscript and supervised the study.

Funding
This work was supported by a National Research Foundation of Korea (NRF) 
grant funded by the Korean government (MIST) (NRF-2020R1A2C2004628, 
RS-2023-00257479) and the Institute of Information & Communications 
Technology Planning & Evaluation (IITP) grant funded by the Korean govern-
ment (MSIT) (No.2019-0-01842, Artificial Intelligence Graduate School Program 
(GIST)).

Availability of data and materials
The source code is available at GitHub repository (https://​github.​com/​GIST-​
CSBL/​LOGICS).

Declarations

Competing interests
We declare no competing interests.

Received: 6 April 2023   Accepted: 23 August 2023

References
	1.	 Kim H, Kim E, Lee I, Bae B, Park M, Nam H (2020) Artificial intelligence in 

drug discovery: a comprehensive review of data-driven and machine 
learning approaches. Biotechnol Bioprocess Eng 25(6):895–930

	2.	 Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning 
for molecular design-a review of the state of the art. Mol Syst Des Eng 
4(4):828–849

	3.	 Tong X, Liu X, Tan X, Li X, Jiang J, Xiong Z, Xu T, Jiang H, Qiao N, Zheng 
M (2021) Generative models for de novo drug design. J Med Chem 
64(19):14011–14027

	4.	 Merk D, Grisoni F, Friedrich L, Schneider G (2018) Tuning artificial intel-
ligence on the de novo design of natural-product-inspired retinoid X 
receptor modulators. Commun Chem 1(1):68

https://doi.org/10.1186/s13321-023-00747-3
https://doi.org/10.1186/s13321-023-00747-3
https://github.com/GIST-CSBL/LOGICS
https://github.com/GIST-CSBL/LOGICS


Page 18 of 18Bae et al. Journal of Cheminformatics           (2023) 15:77 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	5.	 Zheng SJ, Yan X, Gu Q, Yang YD, Du YF, Lu YT, Xu J (2019) QBMG: quasi-
biogenic molecule generator with deep recurrent neural network. J 
Cheminform 11(1):5

	6.	 Awale M, Sirockin F, Stiefl N, Reymond JL (2019) Drug analogs from 
fragment-based long short-term memory generative neural networks. J 
Chem Inf Model 59(4):1347–1356

	7.	 Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo 
design through deep reinforcement learning. J Cheminform 9(1):48

	8.	 Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de 
novo drug design. Sci Adv 4(7):eaap7885

	9.	 Liu X, Ye K, van Vlijmen HWT (2019) AP IJ, van Westen GJP: An exploration 
strategy improves the diversity of de novo ligands using deep reinforce-
ment learning: a case for the adenosine A2A receptor. J Cheminform 
11(1):35

	10.	 Pereira T, Abbasi M, Ribeiro B, Arrais JP (2021) Diversity oriented deep 
reinforcement Learning for targeted molecule generation. J Cheminform 
13(1):21

	11.	 Papadopoulos K, Giblin KA, Janet JP, Patronov A, Engkvist O (2021) De 
novo design with deep generative models based on 3D similarity scor-
ing. Bioorg Med Chem 44:116308

	12.	 Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused 
molecule libraries for drug discovery with recurrent neural networks. ACS 
Cent Sci 4(1):120–131

	13.	 Ahn S, Kim J, Lee H, Shin J (2020) Guiding deep molecular optimization 
with genetic exploration. arXiv:2007.04897

	14.	 Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G (2019) 
On failure modes in molecule generation and optimization. Drug Discov 
Today Technol 32–33:55–63

	15.	 Thomas M, O’Boyle NM, Bender A, de Graaf C (2022) Augmented Hill-
Climb increases reinforcement learning efficiency for language-based de 
novo molecule generation. J Cheminform 14(1):68

	16.	 Guo J, Schwaller P (2023) Augmented memory: capitalizing on experi-
ence replay to accelerate de novo molecular design. arXiv:2305.16160

	17.	 Gupta A, Muller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G 
(2018) Generative recurrent networks for de novo drug design. Mol 
Inform 37(1–2):1700111

	18.	 Thanh-Tung H, Tran T: Catastrophic forgetting and mode collapse in 
GANs. In: 2020 International Joint Conference on Neural Networks (IJCNN): 
19–24 July 2020 2020. 1–10

	19.	 Sutton RS, Barto AG (1998) Reinforcement learning : an introduction. MIT 
Press, Cambridge, Mass

	20.	 Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: bench-
marking models for de novo molecular design. J Chem Inf Model 
59(3):1096–1108

	21.	 RDKit: Open-source cheminformatics (version 2019.03) https://​www.​rdkit.​
org

	22.	 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, 
Thiessen PA, Yu B et al (2019) PubChem 2019 update: improved access to 
chemical data. Nucleic Acids Res 47(D1):D1102–D1109

	23.	 Kotsias PC, Arus-Pous J, Chen HM, Engkvist O, Tyrchan C, Bjerrum EJ 
(2020) Direct steering of de novo molecular generation with descriptor 
conditional recurrent neural networks. Nat Mach Intell 2(5):254–265

	24.	 Blaschke T, Engkvist O, Bajorath J, Chen H (2020) Memory-assisted rein-
forcement learning for diverse molecular de novo design. J Cheminform 
12(1):68

	25.	 Arus-Pous J, Johansson SV, Prykhodko O, Bjerrum EJ, Tyrchan C, Reymond 
JL, Chen H, Engkvist O (2019) Randomized SMILES strings improve the 
quality of molecular generative models. J Cheminform 11(1):71

	26.	 Preuer K, Renz P, Unterthiner T, Hochreiter S, Klambauer G (2018) Frechet 
ChemNet distance: a metric for generative models for molecules in drug 
discovery. J Chem Inf Model 58(9):1736–1741

	27.	 Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, 
and the effects of noise. Complex Syst 9(3):193–212

	28.	 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, 
Riedmiller M. (2013) Playing Atari with Deep Reinforcement Learning. 
arXiv:1312.5602

	29.	 Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, 
Belyaev S, Kurbanov R, Artamonov A, Aladinskiy V, Veselov M et al (2020) 
Molecular sets (MOSES): a benchmarking platform for molecular genera-
tion models. Front Pharmacol 11:565644

	30.	 Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands 
binding at a single protein site: a matter of pre-existing populations. 
Protein Sci 11(2):184–197

	31.	 Peyré G, Cuturi M (2018) Computational Optimal Transport. 
arXiv:1803.00567

	32.	 Solomon J (2018) Optimal Transport on Discrete Domains. 
arXiv:1801.07745

	33.	 Burkard RE, Çela E (1999) Linear assignment problems and extensions. 
In: Du D-Z, Pardalos PM (eds) Handbook of combinatorial optimization: 
supplement, vol A. Boston. MA, Springer, US

	34.	 Srivastava A, Valkov L, Russell C, Gutmann MU, Sutton C (2017) VEEGAN: 
Reducing mode collapse in gans using implicit variational learning. In: 
Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, 
Garnett R (eds) Advances in neural information processing systems. New 
York Curran Associates Inc

	35.	 Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, 
Milan K, Quan J, Ramalho T, Grabska-Barwinska A et al (2017) Overcom-
ing catastrophic forgetting in neural networks. Proc Natl Acad Sci U S A 
114(13):3521–3526

	36.	 Multicore-TSNE https://​github.​com/​Dmitr​yUlya​nov/​Multi​core-​TSNE
	37.	 Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quanti-

fying the chemical beauty of drugs. Nat Chem 4(2):90–98
	38.	 Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score 

of drug-like molecules based on molecular complexity and fragment 
contributions. J Cheminform 1(1):8

	39.	 Schrodinger, LLC: The PyMOL molecular graphics system, Version 1.8. In.; 
2015.

	40.	 Kabsch W, Sander C (1983) Dictionary of protein secondary structure: 
pattern recognition of hydrogen-bonded and geometrical features. 
Biopolymers 22(12):2577–2637

	41.	 Mazuz E, Shtar G, Shapira B, Rokach L (2023) Molecule generation 
using transformers and policy gradient reinforcement learning. Sci Rep 
13(1):8799

	42.	 Liao Z, Xie L, Mamitsuka H, Zhu S (2023) Sc2Mol: a scaffold-based two-
step molecule generator with variational autoencoder and transformer. 
Bioinformatics. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btac8​14

	43.	 Levy D, Rector-Brooks J (2023) Molecular fragment-based diffusion model 
for drug discovery. In: Notin P (ed) ICLR 2023 - Machine learning for drug 
discovery workshop: 2023

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.rdkit.org
https://www.rdkit.org
https://github.com/DmitryUlyanov/Multicore-TSNE
https://doi.org/10.1093/bioinformatics/btac814

	LOGICS: Learning optimal generative distribution for designing de novo chemical structures
	Abstract 
	Introduction
	Materials and methods
	Datasets

	LOGICS framework
	Evaluation metrics
	Results and discussion
	Performance of the pre-trained model and bioactive predictor

	Performance of the fine-tuned generator
	Distribution of generated molecules in chemical space
	Ablation study
	Examples of generated de novo structures
	Example of binding poses of generated compounds
	Conclusion
	Anchor 16
	Acknowledgements
	References


