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Abstract—Sensor-based human activity recognition (HAR)
requires the acquisition of channel state information (CSI)
data with time series based on sensors to predict human
behavior. Many existing approaches are based on wearable
sensors and cameras, which increases the burden and pri-
vacy issues for patients. Self-powered sensors are capable
of noncontact collection of time series data generated by
human activity while ensuring their own stable operation.
In this article, we propose a deep-learning-based framework
for contactless real-time activity detection of humans using
self-powered sensors, which is called multilayer bidirectional
long short-term memory (MBLSTM). The collected Wi-Fi CSI
data are fed into our proposed network model, which is then
used to learn representative features of both sides from the
original continuous CSI measurements. The attention model
is used to assign different weights to the learned features, and
finally, activity recognition is performed. Experimental results
show that our proposed method achieves an accuracy of more
than 96% for the recognition of six activities in multiple rounds of testing, outperforming other benchmark methods used
for comparison.

Index Terms— Bidirectional long short-term memory (BLSTM), channel state information (CSI), deep learning, human
activity recognition (HAR), self-powered sensors, Wi-Fi.

NOMENCLATURE
BLSTM Bidirectional long short-term memory.
MBLSTM Multilayer bidirectional long short-term memory.

Manuscript received 2 July 2022; revised 23 July 2022;
accepted 23 July 2022. Date of publication 5 August 2022; date of
current version 14 September 2023. This work was supported in part
by the Natural Science Foundation of China under Grant 61802196,
Grant 61872082, and Grant 61472184; in part by the Natural Science
Foundation of Jiangsu Province under Grant BK20180791; in part
by the Engineering Research Center of Digital Forensics, Ministry
of Education; and in part by the National Research Foundation of
Korea (NRF) funded by the Government of Korea (MSIP) under Grant
NRF-2021R1A2B5B03002118. The associate editor coordinating the
review of this article and approving it for publication was Dr. Shahid
Mumtaz. (Corresponding author: Jian Su.)

Jian Su and Zhenlong Liao are with the School of Computer and
Software, Nanjing University of Information Science and Technology,
Nanjing, Jiangsu 210044, China (e-mail: sj890718@gmail.com;
liaozhenlong1105@163.com).

Zhengguo Sheng is with the Department of Engineering and
Design, University of Sussex, Brighton BN1 9RH, U.K. (e-mail:
z.sheng@sussex.ac.uk).

Alex X. Liu is with the Ant Financial Services Group, Hangzhou 310000,
China (e-mail: alexliu360@gmail.com).

Dilbag Singh and Heung-No Lee are with the School of Electrical Engi-
neering and Computer Science, Gwangju Institute of Science and Tech-
nology, Gwangju 61005, South Korea (e-mail: dilbagsingh@gist.ac.kr;
heungno@gist.ac.kr).

Digital Object Identifier 10.1109/JSEN.2022.3195274

CSI Channel state information.
HAR Human activity recognition.
RSS Received signal strength.
APs Access points.
KNN k-nearest neighbor.
STFT Short-time Fourier transform.
GAN Generative adversarial network.
CNN Convolutional neural network.
RF Random forest.
SVM Support vector machine.
LR Logistic regression.
DT Decision tree.
HMM Hidden Markov model.
SAE Sparse autoencoder.

I. INTRODUCTION

IN RECENT years, thanks to the rapid development of
Internet-of-Things (IoT) technology, we can get a lot of

useful information from different types of sensors in IoT.
This information can help IoT technology to be applied in
smart cities, smart farms, medical and health services, and so
on. The application of IoT sensors in the livestock industry
can help practitioners reduce costs and increase efficiency [1].
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Use fiber optic sensors for 3D sound source localization [2].
IoT technologies are also gradually entering our daily life and
can identify human daily activities. HAR is also receiving
increasing attention for research in the field of health detection.
For example, we need to understand the health status of elderly
people and need to monitor their daily activities [3] over time
for fall detection [4] and identification of some diseases that
the elderly are prone to, such as Parkinson’s [5].

To identify various human activities, many methods
have been used in previous work. Cameras [6]–[9],
wearable sensors [10], [11], and radio frequency
identification (RFID) [12]–[14] have been used for activity
recognition. Camera-based systems have the advantage of
being able to detect minor human movements. However,
these systems face severe problems, such as object blocking
and privacy issues. Because of the great recognition accuracy,
wearable sensors are also useful in HAR [15]. Wearable
sensor-based ones, on the other hand, need the use of
additional devices for action recognition, which is both
uncomfortable and ineffective. The mobile phone is another
popular sensor for recognizing human activity. Smartphones
may be considered electricity sensing platforms for HAR
since different sensors, such as accelerometers, gyroscopes,
and barometers, are incorporated in phones. If the user
forgets to carry their smartphone, activity recognition will
be turned off. Simultaneously, the operation of the sensors
in the phone will be affected by its battery capacity. The
usage of Wi-Fi devices for HAR has also been successful
currently [16]–[19]. Wi-Fi provides new research directions
for universal, nonvisual HAR due to its universality, low cost,
and contactless operation. Use self-powered sensors to obtain
stable and continuous Wi-Fi signal information.

The basic point of using Wi-Fi to recognize activities is
that human motion influences the nearby Wi-Fi signal, and
Wi-Fi signals reflected by different activities exhibit different
characteristics. RSS, which is most widely practiced in the
field of indoor positioning research [20], [21], is the most
extensively utilized signal for Wi-Fi. Although it can be used
to recognize human activity, it has disadvantages because of
noise and unsteady RSS data. Distinguishing different human
actions is mainly a matter of analyzing the pattern of the
signal, CSI. The most advanced work showed pretty decent
recognition accuracy while using a clean Wi-Fi channel in
the experiment. However, in the real world, Wi-Fi channels
are less than clean. Nowadays, wireless signals abound in
indoor places, such as homes, offices, and supermarkets, and
there are numerous private APs. Because most systems now
utilize stationary Wi-Fi channels for action recognition and
CSI acquisition, their performance is extremely vulnerable to
cochannel interference, which can significantly decrease the
quality of the receiver and distort the extracted recognition
features. When classifying activities, traditional classification
models utilized in present systems are highly influenced by
such distortions. Recently, with the rapid development of
deep learning techniques, the method of automatically learning
activity features in CSI using deep learning has provided
a completely new way of thinking for HAR [22]. There is

also experience in combining machine learning and sensors in
previous work, for example, fiber optic tactile sensors com-
bined with machine learning algorithms for surface roughness
recognition [23].

The advantage of long short-term memory (LSTM) net-
works to automatically learn meaningful features and encode
data is widely used in deep learning. The traditional LSTM
only handles the forward continuous CSI data, which means
that the backward CSI data are not used effectively in training.
Future CSI data, we believe, will be important for recognizing
human activities. Furthermore, typical LSTM sequence prop-
erties may contribute differently to the HAR challenge. The
learned characteristics, on the other hand, make an equivalent
contribution to the final identification of human actions in the
classic LSTM technique. We provide a MBLSTM based on
Wi-Fi CSI data for HAR in this research paper. Stacking
LSTM hidden layers gives more depth to the model and
more accurate descriptions obtained as a deep learning tech-
nique while increasing the depth of the network, improving
the efficiency of training, and obtaining higher accuracy.
An MBLSTM network consisting of multiple forward and
backward LSTM layers can handle both forward and backward
continuous CSI measurements. Furthermore, the attention
mechanism can give more weight to more essential charac-
teristics and time steps, resulting in higher generalization for
human activity detection. The effectiveness of the proposed
personnel activity detection algorithm based on wireless CSI
measurement is verified by real experiments. The results are
compared to several published benchmark approaches.

In this article, the major contribution of our work is that we
establish a framework called MBLSTM to recognize human
activities. The following is a detailed description.

1) We designed an MBLSTM network to collect Wi-Fi
CSI data for autonomous feature extraction and selection
using self-powered sensors. Use self-powered sensors
to continuously and steadily collect Wi-Fi time series
information under different activities, and match this
different information with different activities.

2) Continuous CSI data in both forward and reverse direc-
tions are processed by layering several BLSTM net-
works. The MBLSTM can simultaneously consider the
information of different past and future actions in CSI
data, thus bringing richer information reference for
feature learning and using it can also speed up the
convergence process of the training dataset.

3) The MBLSTM network uses an attention model to learn
the relevance between activity features and time series.
For the final personnel activity recognition, more main
features and time series are assigned greater weights,
resulting in improved recognition performance.

The rest of this article is organized as follows. Section II
reviews some state-of-the-art work on using Wi-Fi signals
to identify human activities, and Section III describes the
channel sensing model and the MBLSTM network, as well as
the proposed approach. Section IV describes the experimental
setup and data. Then, this section shows and analyzes the
experimental results. Finally, Section V summarizes this work.
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Fig. 1. Basic framework of the Wi-Fi-based activity recognition system.

II. RELATED WORK

As illustrated in Fig. 1, a conventional Wi-Fi-based activity
recognition system is composed of three parts.

1) Filtering and Monitoring Channel Status: Human activ-
ity is detected using a self-powered sensor. The human
body activity affects the Wi-Fi signal, and this pair of
signals can be observed. Therefore, the first step of
the activity recognition system is to collect the original
signal and denoise it to reveal the changes caused by
human activity.

2) Extraction of Features: The CSI data from this denois-
ing step are still not directly usable, and the next
task is to discover and extract features from the
existing behavioral data that are initially compatible
with the technical requirements. At present, the sig-
nal feature extraction method contains the following
three kinds: the time-domain analysis method, the
frequency-domain analysis method, and the combined
method of time–frequency analysis.

3) Training and Recognition: After getting the feature
dataset, the first operation is to distinguish the dataset
into the training set and the test set, and choosing
the proper division ratio is a key part to ensure the
effect of behavior recognition. The next step is to select
the appropriate classification algorithm to train and test
the data.

Due to the common presence of Wi-Fi in everyday
life, many research teams have developed several activ-
ity recognition systems using Wi-Fi signals. Sigg et al. [24]
proposed a wireless HAR system that analyzes the RSS
information of the interfered Wi-Fi signal for activ-
ity recognition. They extracted several important fea-
tures from RSS data and used a KNN classifier to
recognize four daily activities. Abudulaziz Ali Haseeb
and Parasuraman [25] designed an RSS-based gesture recog-
nition system on cell phones. The system uses deep learning
networks for gesture recognition and achieves high recognition
accuracy. Due to multipath and fading effects, the collection
of raw RSS data containing actions can be unstable and noisy,
so the performance of using RSS to recognize activities with
actions is very limited, even for simple actions. Wi-Fi’s more
steady and informative CSI has received a lot of attention
recently. Zhang et al. [26] investigated the sensitivity of Wi-Fi
signals theoretically and proposed a Fresnel zone method to
recognize human activity using Wi-Fi CSI data.

Some special features may need to be carefully designed
using domain knowledge in order to recognize certain actions
using Wi-Fi CSI measurements. When used to recognize other
activities, these features may not perform effectively. For
example, the traditional KNN method, which has a simple
idea, is applicable to multiclassification problems. However,
when the sample distribution is unbalanced, the new sample
will be classified as the dominant sample, so it cannot bet-
ter approximate the actual classification result. Furthermore,
handcrafted characteristics will gradually lose several of the
implicit qualities that are important for recognizing human
activity. Deep learning is a useful tool for automatically
learning the differentiating features that are used to recognize
the human activity.

Deep learning is a type of machine learning method
that uses a deep neural network to classify data. In most
cases, accurate features need to be identified for input to
the training model, and the model classifies and outputs
results based on these features. As a result, well-designed
features are essential for accurate behavior recognition and
have a significant effect on classification accuracy. Some
feature extraction, on the other hand, may depend on empirical
experience, lowering classification accuracy. Deep learning,
unlike machine learning, generally does not require feature
extraction stages since a deep neural network is able to
automatically identify and extract features from training data.
Deep learning allows us a new method to classify data and
can deal with enormous amounts of data. In other words,
the most significant advantage of deep learning is that it
does not require preprocessing of data in order to obtain data
features. Meanwhile, deep learning can automatically compute
large-scale unknown parameters in neural networks through
the training process. Usually, the process of neural network
training consumes a lot of practice, but the results achieved
are satisfactory. Deep learning algorithms are widely applied
in various fields, including picture target identification, natural
language processing, video classification, visual arts, and
so on [27].

Damodaran et al. [28] used a device-free approach (CSI)
to identify human activities. Wavelet analysis was used for
preprocessing and feature extraction. As a result, they were
able to recognize walking, sitting, standing, and running activ-
ities. High-bandwidth noise was removed using the principal
component analysis by Moshiri et al. [29]. The signal was
transformed to the frequency domain using STFT, and new
data were generated using GANs. The LSTM algorithm was
used for classification. The accuracy was 87.2% using 50%
of the “real” data plus 50% of the synthetic data and 92.8%
using a set of all “real” data.

CNN is a very popular deep learning method that automates
feature extraction and can easily handle high-latitude data.
However, when the network level is too deep, modifying the
parameters using BP propagation will cause the parameters
near the input layer to change more slowly, and the pooling
layer will lose a lot of valuable information and ignore the
local-to-whole correlation.

Since, for different activities, CSI measurements are con-
tinuous measurements with temporal information, BLSTM

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on September 09,2024 at 08:16:35 UTC from IEEE Xplore.  Restrictions apply. 



20636 IEEE SENSORS JOURNAL, VOL. 23, NO. 18, 15 SEPTEMBER 2023

Fig. 2. Proposed MBLSTM framework for CSI-based HAR.

capable of encoding temporal information is a good candidate
for automatic feature learning. BLSTM includes both forward
and backward processes of feature learning. As a result, when
evaluating the current hidden state of the LSTM, BLSTM can
take into account both past and future information, resulting
in richer information features. We propose stacked multilayer
BLSTM networks for human action recognition. Each layer
of the BLSTM neural network automatically learns the input
action features and passes the learned features to the next
layer. At the same time, the feature sequences learned in one
temporal instance may contribute differently to the final HAR.
Furthermore, the significance of CSI collected at different
time stages may differ. Therefore, in order to assign different
weights to different action features in the training for the
purpose of reducing the training time and improving the
accuracy of the model, we add an attention mechanism to the
proposed network model.

III. PROPOSED METHOD

A. System Overview
The proposed MBLSTM framework is shown in Fig. 2.

First, we use a router and a self-powered sensor to collect
CSI signals from Wi-Fi of human actions. Second, we input
the processed CSI signals into the MBLSTM framework to
automatically learn the forward and backward features. There
are 200 hidden nodes in the bidirectional LSTM used for
feature learning in this experiment. Since the attention model
has no available prior information, it can only use the features
learned from BLSTM as input to derive an attention matrix
representing the importance of features and time steps. Then,
we use element multiplication to merge the learned features
with the attention matrix to obtain the modified feature matrix
with attention. After that, the feature matrix is flattened into
feature vectors for final classification using the flattened layer.
Finally, the softmax classification layer is used to identify
different activities with the final feature vectors.

B. Channel Sensing Model
Wi-Fi signals are known to fluctuate significantly when

objects move within the region of interest. The Fresnel zone
model is introduced as a result of this to explore how the
Wi-Fi signals on these receiving antennas change as a result of
different activities. Furthermore, we infer potential behavioral

information from such activity-induced signal fluctuations.
Thus, we use the Intel 5300 NIC, a self-powered sensor,
to collect the reflected Wi-Fi information.

In recent years, the Fresnel zone model has been applied
to the research of human action recognition based on wireless
sensing. It refers to the wireless electromagnetic wave in the
transmission process, the formation of the transceiver at both
ends of the transceiver device, and the location of the trans-
ceiver device as the focus of the ellipse-shaped area; the area
is the wireless electromagnetic wave intensity concentration
area. One of the most important zones is the first Fresnel
zone, where most of the energy of the wireless signal is
located. If there is an obstacle in this region, it will affect
the wireless signal. The wireless signal will form multiple
propagation paths from the receiver (Rx) to the transmitter
(Tx), and the direct propagation path that passes through both
the transmitter and receiver is called the line-of-sight (LoS)
path. When the wireless signal transmission encounters an
obstacle, the transmission path produces reflection, scattering
and diffraction, called non-line-of-sight (NLoS).

Through the analysis and study of the received signals, the
researchers found the characteristics of the changes brought by
the human body movements on the signal propagation. Mean-
while, establish the relationship between these features and the
mapping of different activities, which built the foundation for
Wi-Fi-based HAR.

The phenomenon that different actions have different effects
on Wi-Fi signals is a major discovery that the Fresnel zone
model can be applied to the field of action recognition.
Specifically, different activities cause significant differences
in the speed of signal dynamic paths. Furthermore, CSI’s
amplitude attenuation and phase change can capture these
specific patterns. It demonstrates the feasibility and application
of using unique CSI variations to effectively and precisely
identify and recognize different human activities.

C. MBLSTM Neural Network
In the case of multilayer stacking, each layer of the

BLSTM neural network is composed of a forward recur-
rent network and a backward recurrent network. The com-
bination of the output results of the forward LSTM and
the backward LSTM of the previous layer is sent to the
next layer of the network. Fig. 3 illustrates the MBLSTM
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Fig. 3. Structure of the MBLSTM neural network.
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The output is determined by the sum of each layer’s positive
and negative computations. Here, S(i)

t−1 and S(i)
t are the values

of the i th hidden layer at times t − 1 and t , respectively.
Forward and backward computations do not share weights;
V (i), U (i), and W (i) are the weight matrices of the i th hidden
layer to the output layer, the input layer to the hidden layer,
and the hidden layer. V �(i), U �(i), and W �(i) are the backward
weight matrices used for the computations. i is the number of
BLSTM layers, and i = 0, 1, 2, . . . ,∞ is the output layer’s
value.

D. Attention Model
The attentional model is developed to be used for image

recognition [30]. The concept was inspired by the human
visual system, which says that, during picture recognition,
humans always focus on a certain portion of the image and
adjust their attention over time. During the recognition work,
the attention model allows the computer to attend to the
area of interest while blurring other areas. Recently, atten-
tion models have been used in language processing, proving
that it is clearly effective [31]. For example, in the popular
encoder-decoder method for natural language processing, the
input sentence is encoded as a fixed vector that is translated

throughout the translation process, meaning that, at every time
step, all words in the input sentence contribute equally to
the translation. This task of processing sentence translation
is inefficient. When the encoder model is utilized with the
attention model, translations will focus more on the words
that are more relevant to the current translation process at
different time steps. Since the MBLSTM network learns
high-dimensional sequence features, individual features and
time series may contribute differently to the final recognition
results. We try to use an attention model to intelligently learn
the effects of different actions of features and assign weights
according to their importance.

In the recognition system, there is no usable a priori
information for training. As a result, the attention model, also
known as self-attention, will utilize the sequential features
learned by MBLSTM as input. This attention model is shown
in a simple example here. Given n feature vectors hi , i =
1, 2, . . . , n that can be obtained from the feature learning
network, we build a score function �(·) to evaluate the
significance of each feature vector by computing the score
si as follows:

si = �
(

WT hi + b
)

(2)

where WT and b are the weight vector and bias, respectively.
Any activation function in a neural network, such as tanh,
relu, or linear, can be used to build the score function. We can
normalize each feature vector’s score utilizing the softmax
function, which is written as

ai = softmax(si ) = esp(si )∑
i (si )

. (3)

The final output feature O of the attention model is the
product of the vector and its normalization score as follows:

O =
n∑

i=1

ai ∗ hi . (4)

E. Training Proposed Method
To identify the model parameters, the proposed MBLSTM

framework is trained using CSI data with real labels. First, all
parameters are randomly given. The CSI data is then sent into
MBLSTM, which uses it to predict the labels. The category
cross-entropy errors are measured and backpropagated using a
gradient-based optimization approach to adjust the model para-
meters utilizing the given true labels. We utilize ADAM [32]
to calculate the adaptive learning rate for each parameter in
the optimization process efficiently.

In learning-based systems, overfitting is a typical prob-
lem. To avoid overfitting, we utilize the ADAM optimizer.
It provides adaptive learning rates for various parameters.
Furthermore, the suggested attention method will only choose
a few significant features and time series, decreasing the
possibility of overfitting.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first introduce our experimental settings
in detail and then present the extensive experimental results
that validate the effectiveness of our model.
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Fig. 4. Trend of accuracy rate of different network trainings.

A. Experiments’ Settings
We compared the proposed method to several benchmark

CSI-based human activity identification algorithms to evaluate
how effective it is. According to Yousefi et al. [33], the RF
model outperforms SVMs, LR, and DT in Wi-Fi-based HAR.
In [34], HMMs have also been found to be useful for recog-
nizing human activity. As a result, we compared our method
to these two handmade methods. Manual feature extraction is
described in detail in [33]. We also compare it to other deep-
learning-based approaches that can learn features automati-
cally, such as SAE [34], [35] and traditional LSTM [33]. The
SAE algorithm is an unsupervised algorithm that automatically
learns features from unlabeled data and can give a better
feature description than the original data. Validation sets from
the training examples were used to fine-tune the parameters
of all methods. For evaluation, tenfold cross-validation has
been used. We divided all of the data tenfold at random.
Then, we select onefold of data for testing and the rest for
training and, finally, get ten times. The average of all ten
runs determines the final recognition accuracy. The dataset
used for comparison was taken by Yousefi et al. [33] from
an office. A router was used as a transmitter, and a laptop
with an Intel 5300 NIC was used as a receiver. The sampling
frequency was 1 kHz, with three antennas and 30 subcarriers,
and the size of the original CSI data was 90. The window
size used for data segmentation was a sliding window of 2 s.
Transmitters and receivers were separated by three meters
under LOS conditions. Each person performed each activity
for 20 s during data collection. Note that the person remains
stationary at the beginning and end of the activity. Six persons
were involved in the data process of collecting, which included
six normal daily activities: lie down, fall, run, sit down, stand
up and walk. Every volunteer performed 20 rounds of each
activity; the resulting dataset was approximately 17 GB in size.
All experiments were performed on a workstation in our lab
using python to run the code. The workstation is equipped with
an eight-core, 16-thread Intel i9-9900 CPU and an NVIDIA
GeForce RTX 2080 GPU.

We compare the trend of accuracy and loss of BLSTM
networks with the different number of layers in the training

Fig. 5. Trend of training time and accuracy in 60 epochs of training.

Fig. 6. Recognition accuracy of each activity with different numbers of
hidden nodes.

dataset. Fig. 4 shows that the LSTM and BLSTM networks
converge more slowly, with accuracy barely reaching 90% at
the 60th round of training. The multilayer BLSTM network,
on the other hand, converges quickly, with accuracy exceeding
90% at about ten rounds of training, approaching 100% at
close to 20 rounds, and preserving stability in accuracy during
subsequent training.

Although the training converges faster as the number of
BLSTM layers increases, it is not better to have more layers.
As the number of layers increases, the network structure
becomes increasingly large, which means that more and more
computational resources will be used, and more time will be
consumed in training. As shown in Fig. 5, we run exper-
iments using 200 hidden nodes. The results show that the
more complex the network structure is, the time for training
increases significantly. It is obvious that, with the same number
of training rounds, the overall training accuracy does not
improve much after increasing the BLSTM network to three
layers, which are close to 100%, indicating that the limit has
been approached. However, the training time spent by each
network differs greatly. Considering all factors, we choose
the three-layer BLSTM network as the network model for
this experiment in order to minimize the computer resources
consumed while ensuring high accuracy.

1) Impact of the Number of Hidden Nodes: We find that the
number of LSTM hidden nodes has a large impact on the
experimental results. As a result, we performed a second
experiment to see how this parameter affected the accuracy of
activity recognition. The results of the experiment are shown in
Fig. 6. When using 50 hidden nodes, the recognition accuracy
was low for actions, especially for the two activities “sit down”
and “stand up,” which, we guess, are too similar. When the
number of hidden nodes is raised, the recognition performance
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Fig. 7. Confusion matrix of all benchmarks and proposed MBLSTM methods on the dataset. (a) RF. (b) HMM. (c) SAE. (d) LSTM. (e) MBLSTM.

TABLE I
TRAINING AND VALIDATION TIMES FOR DIFFERENT NUMBERS OF

HIDDEN NODES

TABLE II
TRAINING AND TESTING TIMES FOR DIFFERENT METHODS

of each activity is improved, and after the number reaches 300,
the accuracy tends to be stable. As shown in Table I, we use
a three-layer BLSTM network, and in the same 30 rounds
of training, the more the hidden nodes, the longer the training
time, and we choose to use 200 hidden nodes in the MBLSTM.

2) Time Complexity: Deep-learning-based approaches’ time
complexity is a common issue. We compared the training time
and testing time of some methods using the same dataset.
Table II shows the training time and testing time for all
methods. It can be clearly seen that algorithms using deep
learning methods have much longer training times than a
typical machine learning algorithm. The proposed MBLSTM
consumes the longest training time of all methods using
deep learning. All of the approaches have short testing times
according to Table II. The proposed MBLSTM, for example,
has a testing time of 8.72 s for 420 test samples. This signifies
that each sample will be tested for 0.0208 s. The window size
for data segmentation is 4 s for each case. We believe that our

proposed MBLSTM approach, which is based on Wi-Fi CSI,
may be utilized for real-time personnel activity recognition.

B. Experimental Results
Fig. 7 shows the confusion matrix of all benchmarks and

proposed MBLSTM methods on the dataset. Activity recog-
nition algorithms that need manual feature extraction, such
as RF and HMM, perform the poorest. The HMM algorithm
performs significantly better than the RF algorithm. Unlike
RF and HMM manual feature extraction, SAE algorithms
using deep learning methods have better performance. This
demonstrates the effectiveness of using the SAE method for
automatic feature learning. The LSTM network outperforms
the SAE method because it incorporates the temporal factors
in the CSI sequences into feature learning. Due to the inclusion
of the attention model and the structure of the multilayer
bidirectional LSTM in our proposed method, our MBLSTM
method achieves excellent recognition results in recognizing
six daily activities. For all six daily activity recognition, the
accuracy is greater than or equal to 96%, which is sufficient
for most recognition situations.

The accuracy of recognition varies greatly depending on the
activity. Higher physical activities, such as “fall,” “walk,” and
“run,” show greater recognition performance. This is due to the
fact that these activities have a large impact on the features
of the collected CSI data. It is also evident that most methods
have relatively low accuracy for recognizing the activity of
“sit down.” This might be because this activity has the same
effect on CSI features as the “lie down” and “stand up”
activities. It is worth noting that the RF method’s recognition
accuracy with handmade features is much lower than 50%. The
“fall” activity is the most important of these six, especially
for the elderly [36]. The proposed MBLSTM approach can
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recognize “fall” activities with 99% accuracy, which will be
useful in a wide variety of medical applications. The extended
training period of the deep-learning-based approach is one of
its drawbacks. However, this time-consuming procedure only
has to be completed once. It is worth noting that deep-learning-
based methods can be tested online quickly enough for most
real-time applications.

V. CONCLUSION

In this article, we use self-powered sensors to collect Wi-Fi
time series information and propose a multilayer BLSTM
network for extracting Wi-Fi signal feature information used
for HAR by improving the traditional LSTM model. In both
directions, the BLSTM network can learn important sequential
features from original Wi-Fi CSI data. The multilayer BLSTM
network can enhance accuracy by accelerating convergence
during training. We evaluated the method in real environments
and compared it to a variety of benchmark methods, such
as RF, HMMs, SAEs, and traditional LSTM. The proposed
MBLSTM for Wi-Fi CSI-based personnel activity recogni-
tion has demonstrated higher performance in experiments.
Although our method has a high recognition rate for single-
person activities, there is still a big room for improve-
ment in multiperson activities. For future work, we hope to
improve the accuracy of multiperson activity recognition and
the compatibility of the system with different environments.
Glowinski et al. [37] used an inertial measurement device to
calculate acceleration. This inspired our proposed method
helps to recognize the type of body movement. In case of
a car accident, it can help to determine the posture of the
injured person.
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